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Objective: Continuous blood pressure (BP) provides valuable information for the
disease management of patients with arrhythmias. The traditional intra-arterial method
is too invasive for routine healthcare settings, whereas cuff-based devices are inferior in
reliability and comfortable for long-term BP monitoring during arrhythmias. The study
aimed to investigate an indirect method for continuous and cuff-less BP estimation
based on electrocardiogram (ECG) and photoplethysmogram (PPG) signals during
arrhythmias and to test its reliability for the determination of BP using invasive BP (IBP)
as reference.

Methods: Thirty-five clinically stable patients (15 with ventricular arrhythmias and
20 with supraventricular arrhythmias) who had undergone radiofrequency ablation
were enrolled in this study. Their ECG, PPG, and femoral arterial IBP signals were
simultaneously recorded with a multi-parameter monitoring system. Fifteen features that
have the potential ability in indicating beat-to-beat BP changes during arrhythmias were
extracted from the ECG and PPG signals. Four machine learning algorithms, decision
tree regression (DTR), support vector machine regression (SVR), adaptive boosting
regression (AdaboostR), and random forest regression (RFR), were then implemented
to develop the BP models.

Results: The results showed that the mean value ± standard deviation of root mean
square error for the estimated systolic BP (SBP), diastolic BP (DBP) with the RFR
model against the reference in all patients were 5.87 ± 3.13 and 3.52 ± 1.38 mmHg,
respectively, which achieved the best performance among all the models. Furthermore,
the mean error ± standard deviation of error between the estimated SBP and
DBP with the RFR model against the reference in all patients were −0.04 ± 6.11
and 0.11 ± 3.62 mmHg, respectively, which complied with the Association for the
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Advancement of Medical Instrumentation and the British Hypertension Society (Grade A)
standards.

Conclusion: The results indicated that the utilization of ECG and PPG signals has the
potential to enable cuff-less and continuous BP estimation in an indirect way for patients
with arrhythmias.

Keywords: arrhythmias, continuous blood pressure, electrocardiogram, photoplethysmogram, machine learning
algorithms

INTRODUCTION

Heart arrhythmia, also known as irregular heartbeat or cardiac
dysrhythmia, is a group of conditions characterized by a heartbeat
that is irregular, too slow, or too fast (Kligfield et al., 2007).
Arrhythmias can be classified into two types according to their
origin: ventricular and supraventricular arrhythmias (Jenkins
et al., 1979). Arrhythmias is an age-related disease (Hatch et al.,
2011; Khurshid et al., 2018). For instance, the incidence of
paroxysmal supraventricular arrhythmias is 14.8 per 100,000
person-years in adults aged 18 to 24 years, but in persons
aged ≥65 years, the rate is increased to 231.9 per 100,000
person-years (Go et al., 2018). It is estimated that by 2050,
supraventricular-related arrhythmias will affect approximately
nine million individuals aged >60 years in China (Tse et al.,
2013). Therefore, with the growth of the aging population,
arrhythmias will bring an increasing burden and challenge to
public healthcare management.

Blood pressure (BP) is an important physiological parameter
of the human body. BP is closely related to the occurrence,
development, and prognosis of arrhythmias (Yildirir et al., 2002).
Continuous (beat to beat) BP monitoring can provide detailed
BP changes to facilitate BP management (Escobar-Restrepo et al.,
2018). Thus, continuous BP monitoring is of importance for
the health management of patients with arrhythmias. However,
because of the irregular heart rate and stroke volume during
arrhythmias, considerable variation (beat to beat BP changes)
occurs in continuous BP. Regular intermittent BP measurement
(e.g., auscultatory technique) was demonstrated to with high bias
in such situations (Cohen and Townsend, 2017). In the clinical
setting, the intra-arterial method is recommended for the BP
measurement of patients with arrhythmias (Alpert et al., 2006).
Nevertheless, the intra-arterial approach involves the catheter
inserted into an arterial by physicians and is thus too invasive
in routine application. A non-invasive approach that can provide
continuous BP measurement is thus of great significance for the
routine healthcare for patients with arrhythmias.

The existing non-invasive approaches, including artery
applanation tonometry and volume clamp technologies, have
been used for continuous BP measurement, but they are
complicated and uncomfortable for long-term monitoring (Peter
et al., 2014). Moreover, the accuracy of these approaches is
low, particularly in patients with arrhythmias (Kim et al.,
2014; Ilies et al., 2015). Cuff-less methods, which can provide
unobtrusive continuous and long-term BP monitoring, have
received increasing attention in recent years. Typical cuff-less

methods include pulse transit time (PTT)-based and multi-
parameter–based approaches. PTT-based approaches have been
widely studied, and they are the most popular methods for
continuous BP measurement (Mukkamala et al., 2015; Huynh
et al., 2018; Liu J. et al., 2018; Yang and Tavassolian, 2018; Ding
and Zhang, 2019). As a potential BP measurement indicator, PTT
refers to the time taken for a pulse wave to propagate between two
locations in the cardiovascular system. It can be calculated from
two pulse signals generated by the cardiovascular system, such
as electrocardiogram (ECG) and photoplethysmogram (PPG)
signals, or two peripheral PPG signals. A novel approach of
measuring arteriolar PTT based on multi-wavelength PPG was
proposed recently by Liu J. et al. (2018); they provided compact
and inexpensive wearable healthcare electronics for continuous
BP measurement. However, because of the fixed hypothesis
of the BP–PTT relationship, PTT-based approaches have low
accuracy and robustness because other indicators such as vascular
tone, physiological statue, and individual affect the BP–PTT
relationship. To improve the accuracy of PTT-based approaches,
potential BP variation indicators, such as time-, slope-, ratio-,
and area-based features, were extracted from ECG and PPG
signals and considered along with PTT to construct a multi-
parameter–based model for BP estimation (Baek et al., 2009;
Ding X.-R. et al., 2016; Kachuee et al., 2017; Miao et al.,
2017; Lin et al., 2018; Liu Z.-D. et al., 2018). For instance,
Ding X.-R. et al. (2016) proposed a new indicator, namely the
PPG intensity ratio (PIR), which can reflect arterial diameter
changes and thus indicate BP variation. Their experimental
results demonstrated that the model using a combination of
the PTT and PIR had better accuracy in tracking BP than
that did the model based on PTT alone. Lin et al. (2018)
also proposed additional PPG indicators for improving the
performance of PTT-methods for continuous BP measurement.
Kachuee et al. (2017) extracted physiological parameters and
whole-based features from ECG and PPG signals and then
established a continuous BP estimation model based on machine
learning algorithms.

PTT-based and multi-parameter–based models enable cuff-
less continuous BP measurement based on ECG and PPG signals.
However, most of them have been mainly applied in individuals
with regular heartbeat; a few studies using intermittent or
Finapres BP as the gold reference have demonstrated attenuated
performance for these models in patients with cardiovascular
diseases (Wagner et al., 2010; Liu et al., 2014; Ding X. et al.,
2016). Studies on cuff-less and continuous BP measurement
for patients with arrhythmias are limited. Continuous BP is
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with a high degree of fluctuations under arrhythmias, and these
fluctuations can be attributed to vessel compliance, unstable
cardiac contractility, and consequent blood volume changes.
By investigating the indicators causing BP variation from
physiological signals (such as ECG and PPG signals) during
arrhythmias and using these indicators to develop the model for
BP estimation, continuous BP estimation in a cuff-less way can be
realized for patients with arrhythmias.

The main purpose of this study is to investigate the feasibility
of using ECG and PPG signals for continuous (beat-to-beat)
systolic BP (SBP) and diastolic BP (DBP) estimation during
arrhythmias based on machine learning algorithms. Potential
indicators extracted from ECG and PPG signals for large BP
variation during arrhythmias were studied and then used to
develop the BP model. The performance was validated using
a clinical experiment involving 35 patients with arrhythmias,
with the invasive technique as the gold reference. Since the
hemodynamic responses to changes in BP vary considerably
among individuals, as well as the difficulty of collecting too
much data under arrhythmias, personalized modeling was used
in this study. The potential clinical application of this work is that
after initial BP calibration, it may provide accurate long-term BP
tracking for patients with arrhythmias in a non-invasive way.

MATERIALS AND METHODS

Experimental Protocol
Study Population
A total of 40 clinically stable patients with arrhythmias
who required radiofrequency catheter ablation through the
femoral artery at FuWai Hospital, Chinese Academy of
Medical Sciences were evaluated observing the inclusion
and exclusion criteria. Exclusion criteria included patients
diagnosed with (1) malignant tumors; (2) severe organic
heart diseases (myocardial infarction, congenital heart disease,
severe valvular disease, and severe atrioventricular block); (3)
arterial stenosis (upper extremity artery, thoracoabdominal
aortic stenosis, and hip artery stenosis). Five patients were
excluded because they met the exclusion criteria: one patient
had malignant tumor; three patients had severe organic heart
diseases; 1patient had arterial stenosis. Flow chart of study
population is shown in Supplementary Figure S1. This study
was approved by the institutional ethics review board of
Fuwai hospital (Approval No. 2019-1239). All enrolled patients
signed informed consent forms before the study. The protocol
was registered on www.chictr.org.cn (registration number:
ChiCTR2000031170).

Signal Acquisition and Pre-processing
Before the operation, a multi-parameter monitoring system
(BeneVision N12, Shenzhen Mindray Bio-Medical Electronics,
China) was used to acquire synchronous ECG, PPG, and invasive
BP (IBP) signals for each patient in the supine position. The
sampling rate for ECG, PPG, and IBP collection was set to
250 Hz. ECG and PPG signals were acquired using I-lead ECG
electrodes placed on the left and right arms and the right

leg, and a PPG sensor was placed on the left index finger.
For IBP monitoring, an arterial catheter was inserted into the
right femoral artery and then connected to the N12 monitor.
Calibration to atmospheric zero was performed before initiation
of each recording by opening the pressure transducer of the
catheter to atmospheric pressure. ECG, PPG, and IBP waveform
recordings were taken for at least 10 min. All procedures were
performed by experienced professionals in the standard ablation
operating room of FuWai Hospital. The experimental conditions
are illustrated in Figure 1A.

Reference SBP and DBP values were defined as the maximum
and minimum values of IBP waveforms in each cardiac cycle. For
each patient, a poor PPG signal quality is defined as the deviation
of the energy of the PPG signal from the average energy by more
than twice the standard deviation. The method for calculating the
energy of PPG signal was described in details in previous research
(Lin et al., 2019).

Feature Extraction
Based on the physiological background between BP and
corresponding ECG and PPG signals, 15 crucial features
(numbered from 1 to 15 and listed in Table 1) containing
cardiovascular information were extracted from ECG and PPG
signals in each cardiac cycle for BP estimation. Figure 2 illustrates
the extracted features, and Table 1 summarizes the detailed
description and calculation methods for the extracted features.
The extracted features are described as follows: according to
different distal timing reference points selected in PPG signals,
three PTTs (i.e., the time interval from the R wave peak of
ECG to the foot of PPG, the peak of the first derivative
of PPG, and the peak of PPG, respectively) were calculated
from ECG and PPG signals in the same cardiac cycle (Miao
et al., 2017, 2020). The corresponding PTTs are called PTTrf,
PTTrm, and PTTrp, respectively (see Figure 2A). Eight PPG
features (Features 4 to 11), including time-, slope- and area-
based features (Lin et al., 2018), were then calculated from
the beat-to-beat ascending (Features 4 to 7) and descending
edges (Features 8 to 11) of the PPG waveform. Since PIR,
pulse width, and heart rate were previously reported as effective
indicators for BP estimation (Baek et al., 2009; Arza et al.,
2013; Ding X.-R. et al., 2016), they were also calculated in the
study. Besides, another indicator K value (Feature 15) from
the whole informative representation of the beat-to-beat PPG
waveform was found to be a potential feature for BP estimation
in our previous study (Miao et al., 2020); it was also included
in this study. Therefore, a total of 15 features were calculated
for BP estimation during arrhythmias. Note that the feature
extraction depends on the precise characteristic points location
on the PPG signals. However, due to the occurrence of irregular
and inappropriate PPG shapes in patients with cardiovascular
diseases, it may be difficult to accurately locate the position
of characteristic points in their PPG waveforms and then to
extract the PPG features (e.g., dicrotic wave related features)
(Somayyeh et al., 2019). In this study, the extracted PPG features
(Features 4 to 15, listed in Table 1) only rely on the location
of three easily detectable points (i.e., the foot and peak of the
PPG waveform and the peak of the first derivative of PPG),
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FIGURE 1 | (A) Experimental scene of simultaneous acquisition of ECG, PPG, and IBP signals. (B) Typical ECG, PPG, and IBP waveforms recorded in arrhythmias.
The type of each beat is labeled in the ECG waveforms. The two adjacent beats in the IBP waveforms with the largest changes in SBP are marked in the red font.
ECG, electrocardiogram; IBP, invasive blood pressure; PVC, premature ventricular contraction; PPG, photoplethysmogram; SR, sinus rhythm; SBP, systolic blood
pressure.

TABLE 1 | Definitions and calculation methods of the extracted features.

Features Calculations Definitions

(1) Pulse transit time R-foot PTTrf Time delay from the R-peak of ECG to the foot of PPG

(2) Pulse transit time R-middle PTTrm Time delay from the R-peak of ECG to the peak of the first derivative of PPG

(3) Pulse transit time R-peak PTTrp Time delay from the R-peak of ECG to the peak of PPG

(4) Ascending time AT Time span between the foot and peak of PPG in ascending edge

(5) Ascending slope AS = IFP/AT Ratio of PPG peak-foot point intensity difference in ascending edge (IFP ) to ascending time

(6) first part of AS FAS = IFM
/

TFM Ratio of PPG M point intensity (IFM ) to the duration from the foot point to M point of PPG (TFM )

(7) Ascending area SYSAREA =
∑P

i=F (Ii − IF ) Area under the ascending portion of the PPG waveform

(8) Descending time DT Time span between the peak and foot of the PPG in Descending edge

(9) Descending slope DS = IPF ′
/

DT Ratio of PPG peak-foot point intensity difference in descending edge (IPF ′ ) to descending time

(10) First part of DS FDS = IM′F ′
/

TM′F ′ Ratio of PPG M′ point intensity (IM′F ′ ) to the duration from the M′ to foot point of PPG (TM′F ′ )

(11) Descending area DIAAREA =
∑F ′

i=p (Ii − IF ′ ) Area under the descending portion of the PPG waveform

(12) PPG intensity ratio PIR (Ding X.-R. et al., 2016) Ratio of PPG peak intensity to foot intensity

(13) Pulse width PW Time span between the M point and M′point of PPG

(14) Heart rate HR Time span between two adjacent peaks of PPG

(15) K value K (Miao et al., 2020) PPG characteristic value

Point M (and its corresponding point M′ in descending edge) represents the maximum derivative point of PPG;
∑P

i=F (Ii − IF ) represents the cumulative sum of intensity

difference of PPG from point foot (F) to point peak (P) in ascending edge;
∑F ′

i=P (Ii − IF ′ ) presents the cumulative sum of intensity difference of PPG from point peak (P) to
point foot (F ′) in descending edge. PPG, photoplethysmogram.

which improve the robustness of the features extracted from
each cardiac cycle.

Model Construction and Validation
Four machine learning algorithms were implemented to establish
the relationship between the extracted features and the reference

BP values by using the Scikit-learn library in a Python
programming environment (Pedregosa et al., 2011). It is
important to note that the proposed method estimates the BP
in terms of beat to beat, with the estimation frequency in
seconds (depending on the patient’s heart rate), which can also
be regarded as continuous (Kachuee et al., 2017).
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FIGURE 2 | Extracted physiological features from ECG, PPG, and 1st dPPG in a cardiac cycle. First dPPG indicates the first derivative of PPG. (A) PTT values
extraction. (B) PPG features extraction. R represent the R-wave peak of ECG; F/F ′ and P represent the foot and peak of the PPG waveform, respectively, and letter
M (and its corresponding point M′) represents the peak of the first derivative of PPG. Abbreviations and detailed definitions show in Table 1.

(1) Decision Tree Regression (DTR): decision trees are
supervised machine learning models for predicting a target
in the form of a tree structure, which consists of many
nodes and branches (Quinlan, 1986). When the target
variable of a decision tree is continuous, the model is called
DTR. In this study, a DTR model was trained using a
built-in function (Decision Tree Regressor) with default
parameters from the Scikit-learn library.

(2) Support vector machine regression (SVR): support vector
machines also belong to supervised learning algorithms.
They can efficiently perform classification or solve a
regression problem by non-linearly mapping input feature
vectors into higher dimensional spaces by using a kernel
function, such as radial basis function (RBF), polynomial
function, and Sigmoid function (Awad and Khanna, 2015).
In this study, an SVR function with RBF kernel in the
Scikit-learn library was used for training and testing the
BP estimation model. The penalty parameter and kernel
parameter for each patient were selected through an
exhaustive grid search (Lee and Lin, 2000).

(3) Adaptive Boosting Regression (AdaboostR): AdaboostR, in
contrast to the SVR, is an ensemble learning algorithm
that creates a strong estimator from many weak estimators
(e.g., decision trees). In AdaboostR, the predictions of
weak estimators are combined into a weighted sum that
represents the final prediction (Freund et al., 1999).
Compared with other complex and strong models,
AdaboostR models are less prone to overfitting (Kachuee
et al., 2017). For training the regression model, an
AdaboostR function (AdaBoostRegressor) with default
parameters in the Scikit-learn library was used.

(4) Random forest regression (RFR): Random forests
are another popular ensemble method, where the

final prediction is the composite outcome from many
weak estimators (Breiman, 2001). Compared with the
AdaboostR, the base estimators in the random forest
are trained independently, so the random forest models
require less training process (Liaw and Wiener, 2002).
Moreover, random forests have the advantage of measuring
the importance of variables (Cutler et al., 2012). Here,
an RFR function (RandomForestRegressor) with 50 trees
and other default parameters in the Scikit-learn library
(Pedregosa et al., 2011) was used for model training. Then
the feature scores returned by the trained model were used
to evaluate the importance of the extracted features.

The machine learning algorithms mentioned above were
implemented to construct an individual BP estimation model
for each patient. The difference between the estimated BP
(SBP or DBP) with the proposed regression algorithm and
the reference BP (invasive SBP or DBP) is defined as the
estimation error. Four metrics, including root-mean-square error
(RMSE), mean error (ME), standard deviation of error (STD),
and mean absolute error (MAE) between the predicated and the
reference BP values were calculated to evaluate the estimation
accuracy of different algorithms. The correlation coefficient (r-
value) was also included as a metric to measure the consistency
between the predicated BP values and the references (invasive
SBP/DBP values). Formulas for these metrics are presented in
Supplementary Text S1.

Details of the dataset partition and the construction and
evaluation process for the individual model were illustrated in
Figure 3. For each patient, the data were divided into training,
validation, and test set, with a ratio of 6:2:2. Train the regression
algorithms on the training set and then validate them on the
validation set to select the best model. More specifically, the
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FIGURE 3 | Dataset partition for each patient (A) and flowchart of blood pressure estimation model construction and evaluation (B). RMSEDTR, RMSESVR,
RMSEAdaboostR, and RMSERFR represents the root mean square error between the reference and the estimated blood pressure values by the DTR, SVR, AdaboostR,
and RFR, respectively. RMSE, root-mean-square error; DTR, decision tree regression; SVR, support vector machine regression; AdaboostR, adaptive boosting
regression; RFR, random forest regression.

RMSE was used to evaluate the estimation performance of
each trained regression algorithm on the validation set for each
patient. The trained regression algorithm with the lowest average
(mean value ± standard deviation) RMSEs in all patients was
considered as the best algorithm. The performance of this best
algorithm in all patients was then further evaluated in terms
of the values of ME ± STD and MAE according to the two
most applied BP devices evaluation standards, the Association
for the Advancement of Medical Instrumentation (AAMI) and
British Hypertension Society (BHS). Statistical significance of the
differences between the performance of different algorithms was
also assessed using Student’s t-test. A p-value <0.05 considered as
statistically significant.

Feature Importance Assessment
Identifying features that are critical for BP estimation under
arrhythmias is of great clinical significance. Moreover, knowing
which features in a model are important for its predicting results
is valuable for selecting features, reducing data dimensionality,
and improving the operability the of model. To evaluate the
importance of each feature during arrhythmias in the study
population, a relative weight-based strategy was proposed. The
important relative level of feature fj in patient pi can be
expressed as

FIi,j = ωi,j

/ M∑
j=1

ωi,j (1)

Frontiers in Physiology | www.frontiersin.org 6 September 2020 | Volume 11 | Article 575407

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/
https://www.frontiersin.org/journals/physiology#articles


fphys-11-575407 September 7, 2020 Time: 18:49 # 7

Liu et al. Continuous BP Estimation During Arrhythmias

where ωi,j, with i = 1, . . . , N and j = 1, . . . , M, is the weight
score of feature fj returned by the RFR model in patient pi, and
N and M are the total number of patients and features in the
experiment, respectively.

The important level of feature fj in the population was then
calculated by averaging the feature level FIi,j:

FI =
N∑
i

FIi,j/N (2)

RESULTS

Baseline Characteristics and of the
Selected Study Population
Based on inclusion and exclusion criteria, 35 clinically stable
patients with arrhythmias who required radiofrequency catheter
ablation through the femoral artery (age: 43.87 ± 14.01 years;
20 were men) were included in the analysis. Among the
35 patients, 15 had ventricular arrhythmias, and 20 had
supraventricular arrhythmias.

Acquired Signals of ECG, PPG, and IBP
After removing the PPG signal segments with poor signal
quality, a final of 17,796 beats of ECG, PPG, and IBP signals
were obtained from 35 patients. The number of beats for each
type (manually marked by two cardiologists) and beat-to-beat
SBP/DBP change for each type were summarized in Table 2.
Noted that the BP change for each beat (sinus beat or non-
sinus beat) is defined as the difference between the BP of the
beat and the BP of its nearest sinus beat. Figure 1B presents a
typical example of synchronous ECG, PPG, and IBP waveforms
and continuous reference SBP and DBP measurements collected
from a patient with arrhythmia. Figure 1B illustrates that during
arrhythmias, irregularity in ECG signals causes large IBP and
beat-to-beat SBP and DBP variations, accompanied by irregular
patterns in PPG signals, such as peak-to-peak interval (i.e., the
time interval between two adjacent peaks of PPG) and PPG
amplitude. With the occurrence of ventricular premature beats
in ECG, the maximum SBP variation is >40 mmHg (as shown
in IBP waveforms in Figure 1B), suggesting a large variation in
continuous BP during arrhythmias.

TABLE 2 | Number of beats and beat-to-beat BP changes (mean ± standard
derivation) of different types of beats.

Type of beat Beats BP Changesa (mmHg)

SBP DBP

Sinus rhythm 6 212 2.13 ± 3.06 1.55 ± 3.89

Ventricular arrhythmias 3 367 33.85 ± 26.03 11.06 ± 6.95

Supraventricular arrhythmias 8 217 15.30 ± 8.51 5.72 ± 4.72

Overall 17 796 9.93 ± 14.61 3.96 ± 5.58

aBP change for each beat is defined as the difference between the BP of the beat
and the BP of its nearest sinus beat. BP, blood pressure; DBP, diastolic blood
pressure; SBP, systolic blood pressure.

Machine Learning Algorithm Selection
Figure 4A illustrates the average group RMSEs of various
regression algorithms on the validation set of all patients. The
results were based on the mean value ± standard deviation
of RMSEs. The RFR model afforded significantly smaller
RMSEs in SBP estimation (5.87 ± 3.13 mmHg) than did the
DTR (7.68 ± 3.91 mmHg) and SVR (7.63 ± 4.12 mmHg)
models; however, although the SBP estimation RMSEs of the
RFR model were also smaller than those of the AdaboostR
model (6.24 ± 3.22 mmHg), the difference was non-significant.
Moreover, the RMSEs of the RFR model in DBP estimation
were 3.52 ± 1.38 mmHg, which were comparable to that of the
SVR (3.88 ± 1.35 mmHg) and AdaboostR (3.62 ± 1.28 mmHg)
models, but significantly smaller than that of the DTR model
(4.44± 1.56 mmHg). Therefore, based on its higher performance
(i.e., lower RMSEs) in BP estimation and faster training capacity
compared with the AdaboostR model (Liaw and Wiener, 2002),
the RFR model was selected as the best estimator algorithm.

Figure 4B presents a typical example of a patient’s beat-
to-beat comparison between the reference BP values (SBP-Ref
and DBP-Ref, marked in black) and estimated BP values (SBP-
RFR and DBP-RFR, marked in red) by using the RFR model.
In the reference BP values, the maximum variations in SBP
and DBP are higher than 70 and 20 mmHg, respectively, as
shown in the 21-th and 22-th cycles in Figure 4B. The estimated
BP values with the proposed approach could follow these
large BP variations accurately. Therefore, the proposed method
shows a good performance in BP measurement for patients
with arrhythmias.

Evaluation Based on the Association for
the Advancement of Medical
Instrumentation and British
Hypertension Society Standards
The overall performance of the proposed method (the best model
based on RFR algorithm) was further evaluated against the AAMI
(Association for the Advancement of Medical Instrumentation
[AAMI], 2009) and BHS (O’Brien et al., 1990) standards. The
AAMI standard require the ME and STD of BP measurement
devices to be ≤5 and ≤8 mmHg, respectively, whereas based on
the BHS standard, BP measurement devices are graded based
on their cumulative percentage (CP) of MAE under the three
thresholds of 5, 10, and 15 mmHg.

Table 3 presents the performance of the proposed method
in estimating BP by using the RFR algorithm in all patients, in
which the performance was calculated based on the estimation
errors in the test set of all patients. Details of the estimation
performance of the proposed method under different types
of beats (as categorized in Table 2) were summarized in
Supplementary Table S1. Overall, ME ± STD values for the SBP
and DBP estimation were −0.04 ± 6.11 and 0.11 ± 3.62 mmHg,
respectively, indicating that the proposed method for the SBP
and DBP estimation meets the AAMI standard for patients
with arrhythmias in the present scenarios. According to the
BHS standard, the proposed method is consistent with grade
A for both SBP and DBP estimation. Besides, according to the
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FIGURE 4 | (A) Performance (mean value ± standard deviation of RMSEs) of different regression algorithms to estimate SBP and DBP in the validation set of all
patients. Triple asterisks “*,” “**,” and “ns” indicate statistical significance at p < 0.05, p < 0.01, and p > 0.05, respectively. (B) Estimated beat-to-beat SBP and
DBP comparisons in a representative patient, with the proposed method indicated in red and the reference shown in black. Abbreviations show in Figure 3.

TABLE 3 | Performance evaluation according to the AAMI and BHS standards.

AAMI Standard BHS Standard

ME (mmHg) STD (mmHg) Special populations CP at 5 mmHg CP at 10 mmHg CP at 15 mmHg

AAMI SBP 5 8 ≥35 BHS Grade A 60% 85% 95%

DBP 5 8 ≥35 Grade B 50% 75% 90%

Grade C 40% 65% 85%

Our results SBP −0.04 6.11 35 Our Results 67.61% 91.13% 97.33%

DBP 0.11 3.62 35 87.04% 95.58% 99.64%

AAMI, advancement of medical instrumentation; BHS, British hypertension society; CP, cumulative percentage; DBP, diastolic blood pressure; ME, mean error; SBP,
systolic blood pressure; STD, standard deviation of error.

AAMI standard (Association for the Advancement of Medical
Instrumentation [AAMI], 2009), an evaluation population of at
least 35 individuals is required when the BP measurement devices
are intended for use in special patient populations. Here, we
verified the proposed approach in a population of 35 patients with
IBP signals as the reference, which guarantees statistical reliability
according to the AAMI standard. Additionally, we also analyzed
the performance of the proposed method with PPG features
only. ME ± STD values for the SBP and DBP estimation using
only PPG features were 0.11 ± 8.17 and −0.07 ± 4.14 mmHg,
respectively (Supplementary Table S2).

Figure 5 presents an example of the correlation and Bland–
Altman plots for the SBP and DBP estimated by the proposed
model compared with the reference BP values in a representative
patient. The correlation coefficients between the estimated SBP
and DBP values and the reference values were 0.90 and 0.94,
respectively, indicating a very high consistency between the BP
estimates and the references. The Bland–Altman plot indicated
that the estimated BP values approximated the reference values
very well, with >95% of the points lying within the limit of
agreement in SBP and DBP estimates. In particular, for this

patient, the bias of differences between our estimation and
the reference values for SBP and DBP were 0.4 ± 5.93 and
−0.39± 3.99 mmHg, respectively.

Feature Importance Assessment
Table 4 presents the average group importance levels of
the extracted features, sorted by the importance level for
predicting BP. In general, the features (SYSAREA, FAS, and
AS) extracted from the ascending edge of PPG were more
significant in the SBP estimation than were those (DIAAREA,
FDS, and DS) extracted from the descending edge of PPG.
Conflicting results were observed in DBP estimation: the
features (DT and DIAAREA) extracted from the descending
edge of PPG played a more significant role in the DBP
estimation than those (AT and SYSAREA) extracted from
the ascending edge of PPG. For SBP estimation, the most
critical indicator was PTTrm, followed by SYSAREA (ascending
area). Correspondingly, for DBP estimation, the most important
predictor was descending time (DT), followed by DIAAREA
(descending area).
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FIGURE 5 | Correlation and Bland–Altman plots for estimated SBP (A,B) and DBP (C,D) values from the proposed model (by using the random forest regression
model) versus the references in a representative patient. In (B) and (D), the black dotted and solid red lines represent the ME ± 1.96 × STD. DBP, diastolic blood
pressure; ME, mean error; STD, standard deviation of error; SBP, systolic blood pressure.

DISCUSSION

In this study, different measures of PTT and several informative
PPG features were calculated from ECG and PPG signals and

TABLE 4 | Average group importance levels of PTTs and PPG features for blood
pressure estimation.

Feature SBP Feature DBP

PTTrm 0.1670 DT 0.2190

SYSAREA 0.1281 DIAAREA 0.1392

PTTrf 0.0889 HR 0.0886

FAS 0.0841 K 0.0884

AS 0.0778 FAS 0.0621

DT 0.0738 DS 0.0548

PIR 0.0637 AS 0.0542

DIAAREA 0.0579 PIR 0.0488

PW 0.0574 SYSAREA 0.0474

K 0.0419 FDS 0.0371

HR 0.0390 PTTrp 0.0367

AT 0.0357 PTTrf 0.0362

DS 0.0315 PW 0.0357

PTTrp 0.0278 AT 0.0267

FDS 0.0253 PTTrm 0.0250

Abbreviations and detailed definitions shown in Table 1.

then used to construct the BP estimation model based on
various machine learning algorithms. The experimental results
revealed that the combination of PTTs and PPG features in the
proposed model based on machine learning algorithms could
realize BP estimation with high accuracy during arrhythmias.
The inherent strength of this paper is the verification of the
feasibility of using ECG and PPG signals to estimate BP in
patients with arrhythmias.

Comparison With Other Works
We compared the proposed method with other works (including
multi-parameter-based methods and PTT-based methods in
terms of dataset type, reference BP type, and the performance
of each on its own dataset). Table 5 present the results of the
comparison. Although the accuracy of the proposed method was
lower than that of methods in studies in healthy populations
using Finapres as the reference (Ding X.-R. et al., 2016; Yan
et al., 2019), it substantially outperformed methods applied in
intensive care unit patients (Kachuee et al., 2017). Furthermore,
compared to other studies in hypertensive and aged population
using the cuff-based method as the reference (Chen et al.,
2018; Miao et al., 2020), our method was verified in patients
with arrhythmias using the IBP as the standard and achieved
relatively good performance, suggesting the higher reliability of
our proposed approach.
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TABLE 5 | Comparison with other works.

Work Dataset Reference BP SBP (mmHg) DBP (mmHg)

ME STD MAE ME STD MAE

PTT and PIR (Ding X.-R. et al., 2016) 27 Healthy subjects Finapres −0.37 5.21 4.09 −0.18 4.13 3.18

Multi-parameter (Yan et al., 2019) 70 Healthy subjects Finapres 0.04 5.00 – 0.01 3.69 –

PTT and heart-rate variability (Chen et al., 2018) 29 Hypertensive subjects Auscultatory technique 0.73 10.04 – 0.90 7.10 –

Multi-parameter (Miao et al., 2020) 85 Aged subjects Oscillometric technique 1.62 7.76 6.13 1.59 5.52 4.54

Multi-parameter (Kachuee et al., 2017) 57 ICU patients Intra-arterial – – 8.21 – – 4.31

This work 35 Arrhythmias patients Intra-arterial −0.04 6.11 5.89 0.11 3.62 2.59

Abbreviations shown in Table 3.

Correlation Between PTT and BP During
Arrhythmias
Pulse transit time is highly correlated with BP variation in healthy
populations (Huynh et al., 2018; Yang and Tavassolian, 2018).
However, the correlation is weak in patients with cardiovascular
diseases (Wagner et al., 2010; Liu et al., 2014; Ding X. et al.,
2016). For instance, Wagner et al. (2010) investigated the
relationship between PTT and BP in patients with chronic
heart failure, and their results revealed that the correlation
coefficient between PTT and BP in patients (r = 0.23) was
lower than that in healthy individuals (r = 0.73), suggesting
that the relationship between PTT and BP is weak. A potential
reason is that the gold reference in the previous studies was
intermittent BP based on the oscillometric technique or Finapres
BP, which are not very reliable methods for patients with
cardiovascular diseases. Furthermore, studies using IBP as the
reference indicated that the beat-to-beat PTT correlated well
with IBP (r = 0.81) in hypertension patients (Kim et al., 2013),
particularly when BP has a wide variation in intensive care
unit patients (Escobar-Restrepo et al., 2018). Because IBP is
recommended for patients with arrhythmias, whether the IBP–
PTT association mentioned above sustains during arrhythmias
should be investigated to provide accurate cuff-less continuous
BP measurement in arrhythmia patients.

In this study, we evaluated three measures of PTT (Features
1 to 3, listed in Table 1), namely PTTrf, PTTrm, and PTTrp,
for BP estimation during arrhythmias, with IBP signals as the
reference. Our analysis results indicated that PTT features play
a more important role in SBP estimation than PPG features.
Supplementary Table S2 presents the overall performance
comparison between the proposed method with and without
PTT features (PTTrf, PTTrm, and PTTrp) for BP estimation.
After removing the PTT features, the performance of the
proposed method decreased, especially the SBP estimation did
not meet the AAMI standard. Therefore, we recommend using
the combination of PTT and PPG features to obtain a more
accurate BP estimation under arrhythmias. Moreover, we found
that PTTrm was more critical for SBP estimation than other
PTTrf and PTTrp. This result is similar to that of our previous
study (Miao et al., 2017), in which the PTT_MaxDeri that
was calculated from the peak of the first derivation of PPG
demonstrated a more significant role than those derived from
the foot and peak of PPG in the SBP estimation. Moreover,

PTTrm was well correlated with SBP (r = 0.61 ± 0.23; Figure 6)
during arrhythmias. These findings provide a potential insight
to estimate continuous BP from ECG and PPG signals in
patients with arrhythmias. The physiological significance of the
correlation between PTT (PTTrm) and BP can be reasonably
deduced. Unstable cardiac contraction and insufficient effective
cardiac output induced by reduced ventricular filling time are
observed during arrhythmias (e.g., supraventricular arrhythmias)
(Hebbar and Hueston, 2002). In terms of physiology, under the
same conditions for peripheral resistance and arterial stiffness,
the attenuated cardiac contraction during arrhythmias can result
in low BP. Besides, studies (Eliakim et al., 1971; Weinman et al.,
1971) on the changes in pulse wave velocity (the reciprocal of
PTT) in patients with arrhythmias have demonstrated that PTT
calculated from ECG and PPG is inversely related to the duration
of the preceding cardiac cycles during arrhythmias, particularly
in shorter cycles. That is, when the heartbeat interval is shortened
during arrhythmias, PTT increases. Therefore, PTT is correlated
with beat-to-beat BP during arrhythmias.

PPG Features for BP Estimation
Photoplethysmogram is a direct reflection of blood volume
changes in the microvascular bed of tissue and then in the artery;
thus, it correlates with BP variation. Furthermore, because of
the changes in blood perfusion in peripheral blood vessels, PPG
reflects not only the blood ejection from the heart but also the
condition of peripheral arteries closely related to BP.

In previous studies, several parameters have been extracted
from PPG signals and considered along with PTT for BP
estimation. For instance, Lin et al. (2018) and Baek et al.
(2009) have indicated that useful features obtained from the
second derivative wave of PPG have the potential to be
non-invasive surrogate markers for BP estimation. However,
all the studies mentioned have mainly focused on a healthy
population. The extracted features they proposed lacks accuracy
in patients because of the inappropriate PPG signal. In this study,
we extracted several crucial features that could be accurately
calculated from the PPG signal to estimate the BP. Feature
importance assessment results demonstrated that among all
the PPG features, systolic area (SYSAREA), mainly extracted
from the systole (ascending edge) of PPG signals, is the most
critical feature for SBP estimation (importance value = 0.1281),
whereas DT, extracted from the diastole (descending edge) of
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FIGURE 6 | Group average absolute correlations (mean value ± standard deviation) between three PTTs and the PPG features that most relevant to blood pressure
versus (A) SBP and (B) DBP. DBP, diastolic blood pressure; SBP, systolic blood pressure; other abbreviations and detailed definitions show in Table 1.

PPG signals, is the most important PPG feature (importance
value = 0.2190). Figure 6 presents the average group absolute
correlation coefficients between the reference BP versus the
corresponding extracted features, which are also consistent with
the findings above. These findings are reasonable because SBP
variation mainly depends on cardiac contraction and relevant
stroke volume reflected in the systole of PPG signal, whereas DBP
variation mostly depends on peripheral resistance and arterial
stiffness reflected in the diastole of the PPG signal.

Clinical Application Prospect
Experimental results based on 35 clinically stable patients
indicated that beat-to-beat BP can be accurately estimated from
ECG and PPG signals under arrhythmias via machine learning
algorithms. Due to the large individual differences in BP changes
under arrhythmias, personalized modeling was used in this study.
However, there are still potential clinical application prospects
of this work in the field of continuous BP measurement. In the
clinical setting, the intra-arterial method is recommended for
the BP measurement of patients with arrhythmias (Alpert et al.,
2006). However, prolonged insertion of a catheter into the artery
can cause risks such as bleeding, thrombosis, arterial damage for
patients (Bedford, 1978; Scheer et al., 2002). Adopting a fusion
strategy, in which individual initial calibration is first performed
through the IBP measured by artery intubation, followed by
long-term tracking using the ECG-PPG–based method, would
reduce the risks associated with prolonged artery cannulation

and provide a non-invasive and accurate long-term continuous
BP monitoring for patients with arrhythmias. This strategy is
similar to the artery applanation tonometry and volume clamp
techniques, which also require the cuff-based BP for initial
calibration (Chung et al., 2013). Moreover, this work provides
the experimental fundament for establishing a universal BP
estimation model under arrhythmias in the future.

Strengths and Limitations
Our study has several strengths. Firstly, this study was the
first to investigate the potential of using ECG and PPG signals
for cuff-less and continuous BP estimation under arrhythmias.
Secondly, an invasive method, which directly measures the BP
inside the vessels, was used as the gold reference to evaluate the
performance of the proposed method. Finally, we have identified
crucial features for BP estimation under arrhythmias from ECG
and PPG signals. However, there are some limitations to the
present study. Firstly, IBP waveforms were measured at the right
femoral artery to prevent additional injury during the operation,
whereas the PPG sensor was placed on the left index finger.
The inconsistency between BPs in the right artery and left artery
may have also led to a certain degree of error in the model.
Secondly, the practical meaning of PTTrm and DT, which are
of most importance for SBP and DBP estimation respectively,
are still unclear and need to be further studied. Thirdly, as
different patients may have different hemodynamic responses
to BP changes, personalized modeling was used in this study.
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Although personalized modeling has its shortcomings, it has
been widely adopted in previous studies to reduce individual
differences (Ding X.-R. et al., 2016; Miao et al., 2017, 2020).
Finally, due to the complexity in collecting IBP for a long time,
only 35 clinically stable patients were enrolled in our study for
short-term BP estimation. In the future, a larger cohort study,
including more patients with arrhythmias, will be conducted to
discover short- and long-term indicators and then develop a
universal BP estimation model under arrhythmias.

CONCLUSION

In this study, for the first time, we investigated the potential
of a cuff-less and continuous BP estimation approach from
ECG and PPG signals during arrhythmias. Thirty-five clinically
stable patients with arrhythmias who underwent radiofrequency
ablation were enrolled for simultaneously ECG, PPG, and
IBP signal collection. Fifteen features were extracted from
ECG and PPG and then used to construct the BP model
with IBP as the gold reference based on machine learning
algorithms. The proposed approach complied with the AAMI
and Grade A of BHS standards in SBP and DBP estimation
during arrhythmias, indicating that the feasibility of using
ECG and PPG signals to estimate continuous BP in an
indirect way for patients with arrhythmias. Further research
is needed in the future to deeply explore the value of
ECG and PPG signals in estimating continuous BP in
more patients with arrhythmias, to promote the clinical
application prospect.
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