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Abstract: The fungus Aspergillus fumigatus, the cause of invasive aspergillosis (IA), is a serious risk
to transplant patients and those with respiratory diseases. Host immune suppression is considered
the most important factor for the development of IA. Less is known about the importance of fungal
virulence in the development of IA including the significance of variation between isolates. In
this study, isolates of A. fumigatus from cases diagnosed as having proven IA or colonisation (no
evidence of IA) were compared in assays to measure isolate virulence. These assays included the
measurement of radial growth and protease production on agar, sensitivity to UV light and oxidative
stressors, and virulence in Tenebrio molitor (mealworm) larvae. These assays did not reveal obvious
differences in virulence between the two groups of isolates; this provided the impetus to conduct
genomic analysis. Whole genome sequencing and analysis did not allow grouping into coloniser or IA
isolates. However, focused analysis of single nucleotide polymorphisms revealed variation in three
putative genes: AFUA_5G09420 (ccg-8), AFUA_4G00330, and AFUA_4G00350. These are known to
be responsive to azole exposure, and ccg-8 deletion leads to azole hypersensitivity in other fungi. A.
fumigatus virulence is challenging, but the findings of this study indicate that further research into the
response to oxidative stress and azole exposure are required to understand the development of IA.

Keywords: Aspergillus fumigatus; virulence; pathogenesis; mealworm; Tenebrio molitor; aspergillosis;
disease modelling

1. Introduction

The fungus Aspergillus fumigatus is a globally distributed decomposer of organic matter
in the environment. It produces vast numbers of conidia, which are easily distributed by
wind currents; these can be inhaled by birds and mammals, leading to the development of
several disease states [1]. In humans, the most severe disease state is invasive aspergillosis
(IA), which usually affects immunocompromised individuals, particularly those that are
neutropenic [2,3]. Not all at-risk patients develop IA, and the severity of host-damage can
vary; the disease occurs in only 7% of acute myeloid leukemia patients [4]. The contribution
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of variation in fungal virulence to the development of IA is poorly understood. Variation
in virulence is apparent in isolates of A. fumigatus from lower respiratory samples of
individuals who have the risk factors for IA but show no evidence of IA; these isolates are
referred to as colonisers [3,5–7]. To date, studies have had difficulty identifying the key
differences between colonising and IA isolates using in vitro tests and model hosts [5].

Intraspecies variation in A. fumigatus isolates has been described in traits that may
be important for pathogenesis [8]. These include the growth rate [8,9], pigmentation [10],
resistance to oxidative stress [11], and azole antifungals [12]. Despite these studies, infer-
ring the clinical significance of intraspecific variation in A. fumigatus remains challenging.
Another approach is the use of invertebrate models to study fungal infections. These mod-
els include nematodes (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), and the
larvae of moths (Galleria mellonella) and beetles (Tenebrio molitor) [13,14]. An advantage of G.
mellonella and T. molitor larvae compared to the other invertebrate models is that they can be
reared at 37 ◦C, the internal body temperature of humans [13]. An issue with G. mellonella
is that it is not readily available in Australia as it is defined as a pest, making T. molitor an
attractive alternative. The validity of these invertebrate models has been strengthened since
the patterns of A. fumigatus virulence are consistent between invertebrate and vertebrate
models [15,16].

Another approach to examine variation in fungal virulence is whole genome sequenc-
ing (WGS), which can be employed to identify intraspecies genetic variation in known
virulence factors [17,18]. The high-resolution nature of WGS has revealed clinically relevant
heterogeneity in the fungal pathogens Candida albicans [19] and Cryptococcus neoformans [20].
C. albicans showed major differentiating genetic variants located on genes associated with
biofilm production [19], and WGS analysis of C. neoformans identified intra-specific hetero-
geneity in 40 genes putatively associated with pathogenesis [20].

Most studies into A. fumigatus intraspecific variation have focused on comparisons
between environmental isolates and clinical isolates. In this study, we examined intraspe-
cific variation in only clinical isolates of A. fumigatus. These came from cases defined as
having no evidence of IA (coloniser isolates) and cases defined as having IA (IA isolates);
cases were defined according to the European Organization for Research and Treatment
of Cancer and the Mycoses Study Group (EORTC/MSG) criteria [21]. This approach was
similar to a study performed using A. fumigatus and A. terreus in Drosophila melanogaster [5].
We adapted T. molitor larvae as a model system [14] to measure A. fumigatus virulence and
used this model along with other assays (radial growth rate, resistance to oxidative stress,
and infection of T. molitor larvae) to assess the virulence. We also used WGS to identify
fungal characteristics linked to IA. This will provide a foundation for future studies into
the factors that determine the outcome of the host–fungus interaction.

2. Results
2.1. Phenotypic Characterisation of Clinical A. fumigatus Isolates

Intraspecific variation in 15 clinical isolates of A. fumigatus was assayed through exposure
to UV light, oxidative stress, radial growth rate, and protease production (Figures 1 and 2).
These data indicated that IA isolates were not clearly different from coloniser isolates in
the virulence-associated traits tested in this study. The coloniser isolates showed a trend
towards greater fitness with respect to radial growth, UV resistance, and resistance to
oxidative stress.
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Figure 1. Phenotypic comparison of clinical A. fumigatus isolates; isolates 1–10 originated from
patients with no evidence of IA, and isolates 11–15 were isolated from patients diagnosed as having
IA. (a) Radial growth rate of coloniser and IA isolates on PDA at 37 ◦C; (c) diameter of the zone of
inhibition on SMA made by colonizer and IA isolates. Blue data points are for coloniser isolates and
red data points are for IA isolates. Variation amongst isolates was examined using a Welch’s ANOVA
with Dunnet’s T3 post hoc analysis. Results of all vs. all post hoc testing are shown in tile plots (b,d).

The radial growth rate of clinical A. fumigatus isolates was evaluated on potato dex-
trose agar (PDA) at 37 ◦C (Figure 1a). Growth of IA isolates displayed a trend towards
slower radial growth than coloniser isolates. On average, coloniser isolates grew 124.1
(± 4.4) µm/h faster than IA isolates. The trend was consistent, with four of the five slowest
growers being IA isolates (Figure 1a). There was variation in protease production between
isolates (p < 0.0001) on skim milk agar (SMA), but there was no significant difference based
on isolate origin (colonisers 997 µm ± 629 µm; IA 534 µm ± 506 µm). The production of
proteases showed greater variability between isolates than radial growth rate (Figure 1c).

Coloniser and IA isolates showed similar levels of viability following one minute of
UV irradiation 1.6 W/m2 (Figure 2a). These data suggest that conidia from IA isolates do
not differ significantly from coloniser isolates with respect to UV irradiation. The response
of A. fumigatus isolates to three hours of exposure to 50 mM H2O2 or 50 mM menadione
indicated an increased resistance to oxidative stress in coloniser isolates compared to IA
isolates, particularly with respect to menadione treatment (Figure 2c,e). After exposure to
menadione, coloniser isolates had an average survival of 71.5% (±2.1) compared to 50.4
(±1.9) for IA isolates, whereas exposure to H2O2 led to 19% (±7.3) survival compared to
2.4% (±0.8%) for IA isolates. The data presented in Figure 1 and Figure 2 do not suggest
that there are sufficient differences between colonizer and IA isolates to explain why the
IA isolates were associated with cases of IA. Therefore, we also conducted virulence and
genomic analyses.
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Figure 2. Phenotypic comparison of clinical A. fumigatus isolates, isolates 1–10 originated from
patients with no evidence of IA and isolates 11–15 were isolated from patients diagnosed as having
IA. (a) Survival of A. fumigatus conidia following 1 min of 1.6 W/m2 UV irradiation; (c) Response
of A. fumigatus conidia to acute treatment (3 h exposure) with 50 mM menadione (e) Response of
A. fumigatus conidia to acute treatment (3 h exposure) with 50 mM H2O2. Blue data points are for
coloniser isolates and red data points are for IA isolates. Variation amongst isolates was examined
using a Welch’s ANOVA with Dunnet’s T3 post hoc analysis. Results of all vs. all post hoc testing are
shown in tile plots (b,d,f).

2.2. Modelling A. fumigatus Virulence in T. molitor Larvae
2.2.1. Model Validation

The injection of mealworms with PBS-tween had an impact on the survival of meal-
worms that was similar for all injection sites (p = 0.96; Figure 3a). However, it was observed
that injecting mealworms at the base of the fifth sternite led to the lowest frequency of
hemolymph leakage, which was associated with better outcomes. The fifth sternite was
chosen as the injection site for all future experiments.

Kaplan–Meier survival curves of mealworms inoculated with A. fumigatus (Af01)
showed a dose-dependent response (Figure 3b). All inoculum sizes tested (5 × 101, 5 × 102,
5 × 103, 5 × 104, 5 × 105, and 5 × 106 conidia per larva) significantly decreased the survival
rate relative to controls. Inoculation with 5 × 104 conidia consistently yielded mortality
rates above 50%, which is required for the calculation of the median survival time, without
killing at a rate so high that isolates of higher virulence would be difficult to resolve. All
further experiments used an inoculum of 5 × 104 conidia per larva.
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Figure 3. Validation of T. molitor larvae (mealworms) as a model of invasive fungal infections.
(a) Survival of mealworms injected with sterile PBS-Tween (0.05% v/v) at the base of 5 different
sternites; (b) dose-dependent survival of T. molitor larvae infected with A. fumigatus (Af01) conidia;
(c) Kaplan–Meier survival plot of mealworms injected with 5 × 104 A. fumigatus spores from coloniser
isolate Af03, IA isolate AF11, or PBST. There were five worms at each time point for only one replicate
experiment to enable optimization of fungal quantification. (d) Corresponding fungal load per T.
molitor larva, expressed as A. fumigatus CFU per larva or (e) A. fumigatus genomes per larva measured
by qPCR. Data presented for CFU and qPCR are mean and standard error for five worms.

2.2.2. Quantification of A. fumigatus in Infected T. molitor Larvae

Methods for monitoring fungal infection in the T. molitor larvae were evaluated
(Figure 3c). Fungal quantification was attempted using both viable plate counts and quanti-
tative PCR (qPCR). Viable plate counts (Figure 3d) showed the presence of greater amounts
of the fungus, 1.3 × 104 (±5.4 × 103) CFU/larva earlier but lower CFU counts, 1.2 × 102

(±3 × 101) CFU/larva later in the experiment, suggesting clearance of the fungus despite
increasing the larval mortality. qPCR analysis (Figure 2e) indicated that the fungal burden
increased over time from 3.1 × 101 (±2 × 101) genomes/larva earlier to 4 × 103 (±6 × 102)
genomes per larva later in the experiment, which matched the expectations of the exper-
iment created by the mortality data (Figure 3c). The difference may be attributable to
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A. fumigatus being a filamentous fungus, leading to unreliable recovery of CFU from larvae
after fungal germination and maturation into hyphae. Monitoring of infection may be
resolved by microscopic analysis of the larvae, but that methodology is challenging and
has not been optimized for this study.

2.2.3. Quantifying Virulence of Clinical A. fumigatus Isolates in T. molitor

The isolate origin had no significant effect on the survival of infected T. molitor larvae
(Figure 4). There was a trend for shorter mean survival times in larvae inoculated with
coloniser isolates, but this was not significant. The average survival rate was 2.52 (±0.25)
days with coloniser isolates and 2.97 (±0.4) days with IA isolates (Figure 3b). In this study,
the shorter survival time represents greater virulence. The ability of fungi to cause death in
mealworms or other invertebrates such as Galleria mellonella is indicative of their virulence
potential in mammalian models. From these data, there is not a clear distinction in virulence
between the two groups of isolates. Inclusion of patient characteristics such as antifungal
treatment would be required to fully resolve the differences between coloniser and IA
isolates.

Figure 4. Virulence of clinical A. fumigatus isolates in T. molitor larvae. (a) Kaplan–Meier curve of larval
infection by A. fumigatus (infection by both coloniser and IA isolates). The chart is a representative
replicate from three replicate experiments. Control represents larvae injected with 5 µL PBS-T; the
p-value was determined by log-rank test run on coloniser and IA isolate data. (b) Median survival
time of T. molitor larvae injected with 5 × 104 spores and incubated at 37 ◦C for 7 days. Blue data
points are for coloniser isolates and red data points are for IA isolates. Data shown are mean and
standard error from three replicate experiments, variation amongst isolates was examined using a
Welch’s ANOVA with Dunnet’s T3 post hoc analysis (p = 0.6).

2.3. Genomic Analysis of Clinical A. fumigatus Isolates
2.3.1. Identifying Single Nucleotide Variants (SNV)

Following the assembly of the ten sequenced genomes (Table S1), the genomes were
analysed to identify SNVs unique to IA isolates. Across the six coloniser and four IA
isolates, a total of 981,551 SNV sites were identified in the core-genome of A. fumigatus
when SNVs were called against the AF293 reference genome. Filtering for bi-allelic sites in
unmasked regions where the locally collinear block (LCB) length is over 200 bp resulted
in a final callset of 95,999 sites. SNPeff annotation revealed a total of 19,589 putative
non-synonymous mutations.

Synonymous variants were filtered for those exclusively found in one group (coloniser
or IA isolates). There were five variants present in all members of one group, which were
absent in all members of the other (Table 1). These variants were all previously reported
in FungiDB (release 48 beta) with an allele frequency greater than 40%, suggesting these
variants are real.
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Table 1. SNVs that occur in IA isolates but not in Coloniser.

Chromosome Position 1 Mutation 2 Gene Transcript Class AA Change AF 3

NC_007198.1 2422543 T>C AFUA_5G09420 rna-XM_748604.1 missense p.Thr502Ala 0.49
NC_007197.1 89009 C>T AFUA_4G00330 rna-XM_741330.1 missense p.Gly11Glu 0.41
NC_007197.1 95331 G>A AFUA_4G00350 rna-XM_741328.1 missense p.His142Tyr 0.41
NC_007197.1 95364 C>G AFUA_4G00350 rna-XM_741328.1 missense p.Glu131Gln 0.41
NC_007197.1 95399 G>A AFUA_4G00350 rna-XM_741328.1 missense p.Ala119Val 0.41

1 1-based; 2 AF293 allele > alternative allele; 3 frequency of alternate allele in FungiDB.

The SNVs found in all IA isolates but absent in coloniser isolates were localized to three
genes: AFUA_5G09420, AFUA_4G00330, and AFUA_4G00350 (Table 2). AFUA_5G09420
is annotated in FunCat as Clock controlled protein (ccg-8) and classified by InterProScan
as Transcription factor opi1, a ccg-8 homolog in yeast (Table 2). No signal peptide or
transmembrane domains were predicted by SignalP5 or TMHMM. AFUA_4G00350 is not
annotated in FunCat but contains a metallopeptidase domain, and protein BLAST reveals
similarity to fungal sequences annotated as archaemetzincin-2. Similarly, AFUA_4G00330
is not annotated in FunCat but does have several transmembrane domains.

Table 2. Investigating the function of genes potentially important for development of IA.

Property AFUA_5G09420 AFUA_4G00350 AFUA_4G00330

FunCat Protein Clock controlled protein
(CCG-8) None None

FunCat Category Cell type differentiation None None

InterProScan Protein family Transcription factor OPI1
Peptidase M54,

archaemetzincin-2.
Metallopeptidase domain

None predicted.

Literature
Knockouts in N. crassa and

Fusarium verticillioides
hypersensitise to azoles [22]

Increased expression
following itraconazole

treatment [23,24].

Increased expression
following itraconazole

treatment [23,24].

Phobius/TMHMM None None
3 TMhelix, 4 Phobius

transmembrane domains
predicted

2.3.2. Detecting Presence/Absence of Oxidative Stress Response Genes

Scanning the genome assemblies of 10 clinical A. fumigatus isolates for the presence or
absence of nine genes involved in the melanin biosynthetic process (GO:0042438) revealed
no inter-isolate variation. Presence/absence analysis of 135 oxidative stress response
genes (GO:0006979) showed some variation across clinical isolates. Each isolate tested had
129–131 oxidative stress response genes present. Neither variation in the total number of
genes present (Table 3) nor the occurrence patterns of individual genes (Table S2) were
consistent with oxidative stress resistance.

Table 3. Presence/absence of genes involved in oxidative stress response (GO:0006979) and melanin
biosynthesis (GO:0042438) in the genomes of 10 clinical A. fumigatus isolates.

Clinical Origin Isolate
Number of Genes Present in Assembly

Oxidative Stress Response Melanin Biosynthesis

Coloniser

Af01 130 9
Af02 130 9
Af03 130 9
Af04 131 9
Af06 131 9
Af10 129 9
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Table 3. Cont.

Clinical Origin Isolate
Number of Genes Present in Assembly

Oxidative Stress Response Melanin Biosynthesis

Proven IA

Af11 131 9
Af12 130 9
Af13 131 9
Af14 130 9

3. Discussion

Many phenotypic properties of A. fumigatus with theoretical links to virulence show
intra-specific heterogeneity [5,17,25–27]; however, the clinical relevance of this variation
remains unclear. In this study, we tested the hypothesis that comparison of phenotypic
traits related to virulence would elucidate differences between isolates that cause IA and
those that just colonise patients. Fifteen clinical A. fumigatus were characterised with respect
to the growth rate, protease production, resistance to oxidative stress, and virulence in T.
molitor larvae. We then compared the genomes of isolates from patients that were colonised
to isolates from patients that had proven IA.

The growth rate of A. fumigatus isolates is theorized to impact virulence as greater
quantities of fungal biomass are more difficult for the immune system to clear [8,9]. In A. fu-
migatus deletion mutants, decreased virulence in murine models is often accompanied by a
decreased growth rate [28–30]. Positive correlations between the growth rate and virulence
in murine models have also been observed in populations of wild-type isolates [9,26,31].
These findings span growth rates calculated using solid and liquid cultures, and both
minimal and nutrient rich media. The growth rate does not always positively correlate
with virulence, as has been demonstrated by studies in both insect and murine models [32].
As in previous studies [8], the isolates examined here showed significant variability in
the growth rate, as assayed on PDA (Figure 1a,b). There was no clear difference between
coloniser and IA isolates, which was also observed for the growth and creation of zones of
clearing on SM agar (Figure 1c,d).

Resistance of A. fumigatus conidia to solar UV radiation and UV-induced reactive
oxygen species (ROS) is important for the survival of airborne conidia. However, there was
very limited intraspecific variation in UV resistance observed in this study (Figure 2a,b).
The limited significant variation in UV resistance is in coloniser isolates and therefore
would not be considered essential for the development of IA [8,11]. Conidia do contain
molecules associated with fungal pathogenesis such as melanin, which may be important
for the establishment of infection by A. fumigatus [33]. Conidial cell wall melanin has been
implicated in pathogenesis by promoting pre-germination concealment of immunogenic
PAMPs [34,35], evasion of internalization by phagocytes [36], and persistence within
immune and alveolar epithelial cells [37,38]. Further studies that focus on the role of
melanin in infection would be required to determine the role of melanin in the differential
development of IA. Analysis of the response to oxidative stress revealed greater resistance
in coloniser isolates than in IA isolates (Figure 2c–f). A link between resistance to oxidative
stress and virulence has been demonstrated previously in A. fumigatus; deletion of catalases
and superoxide dismutases has been associated with reduced or delayed virulence in
murine models, and sensitization to killing by phagocytes [39]. It seems counter-intuitive
for our isolates to demonstrate the inverse association. However, this is similar to the
overall trend in our observations of growth rate (Figure 1) and virulence in T. molitor
larvae (Figure 4).

Hosts susceptible to IA are almost always immunodeficient; however, their immuno-
logical profiles can vary wildly [40]. IA is both uncommon and often misdiagnosed, making
it difficult to obtain a large set of clinical isolates standardised with respect to potentially
noise-creating host factors such as the primary condition, therapeutic history, or geograph-
ical region. The use of animal models (mouse and invertebrate) allows the virulence of
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A. fumigatus isolates from different hosts to be compared in an experimental system where
host factors are standardized. In this study, we validated and optimized T. molitor larvae
(mealworms) as a model for invasive fungal infection. Unlike Drosophila or nematodes,
mealworms can be reared at 37 ◦C. They can also be inoculated via injection, allowing for
precise control over the infective load. Advantages over G. mellonella include low main-
tenance and widespread availability, mitigating the requirement of maintaining in-house
colonies. These advantages of T. molitor have also been reviewed elsewhere [41]. Here, we
have shown that the injection of mealworms with A. fumigatus isolates causes mortality in a
dose-dependent manner (Figure 3b). Furthermore, the fungus is present in the mealworm
throughout the course of experimentation (Figure 3d,e). The mean survival time for G.
mellonella injected with 105 conidia of wild-type A. fumigatus was 2–3 days [16], which
compares well with the data from this experiment (Figure 4). Although our inoculum
was 104 conidia, differences could be expected due to the isolates used and the immunity
systems of the respective hosts.

Several studies comparing clinical and environmental A. fumigatus isolates have been
conducted. In immunosuppressed mice, environmental isolates were found to be less viru-
lent than clinical isolates using mortality-based metrics [42]. A similar trend was observed
in mixed infection murine models, where mice were co-infected with a clinical and corre-
sponding environmental isolate and relative virulence inferred from the ratio of recovery
after the mice shows signs of pulmonary distress [43]. Importantly, this trend in virulence is
not mammal specific. Clinical isolates are also more virulent than environmental isolates in
G. mellonella larvae [25]. Taken together, these studies suggest that virulence data produced
in animal models are clinically relevant and that either (1) some environmental A. fumigatus
isolates possess phenotypic profiles more conducive to causing infection than others, or
that (2) within a human host, virulence-enhancing micro-evolution occurs.

In T. molitor larvae, IA isolates could not be distinguished from coloniser isolates
(Figure 4a,b). This suggests that clinically important fungal properties selected for use in
human hosts were not selected for our invertebrate model. One possibility is that virulence
factors important in overcoming a clinical barrier to infection have fitness costs that be-
come visible when the selective pressure is lifted due to differences between the clinical
environment and the experimental system used to assess virulence. The ability of an isolate
to survive prophylaxis or response therapy is clinically important; this was not modelled
in T. molitor larvae. Significant fitness trade-offs associated with resistance to common
antifungals, including those used in prophylactic and first-line treatment of IA, have been
observed in Candida [44,45]. Notably, some of the common azole-resistance conferring mu-
tations do not appear detrimental to A. fumigatus fitness in either immunosuppressed [46]
or immunocompetent mice [47].

To guide future work, we explored the genomic variation in clinical isolates and
shortlisted variants likely to be of interest (Table 1). Previously, broad-scale phylogenetic
comparison and even geneset-restricted SNV-based analysis has failed to resolve different
clinical forms of aspergillosis [45,46]. In this study, we identified five non-synonymous
SNVs that were found in all IA isolates but not in coloniser isolates. The SNVs are all
common in FungiDB [48], suggesting that they are legitimate genetic variants and not
sequencing artifacts. Identical allele frequencies for four of these variants implies that they
represent a haplotype common in clinical isolates. The shortlisted variants affected three
genes: AFUA_5G09420, AFUA_4G00330, and AFUA_4G00350.

These were further investigated through a literature search to determine their functions
(Table 2). AFUA_5G09420 is transcription factor CCG-8. Knockout studies in Neurospora
crassa and Fusarium verticillioides showed that loss of CCG-8 hypersensitizes cells to azole
antifungals, and this can be rescued by transformation with a CCG-8 containing vector [22].
AFUA_4G00350 and AFUA_4G00330 are less well characterized. AFUA_4G00350 is likely
to be a metallopeptidase (a possible archaemetzincin-2 homolog), as classified by Inter-
ProScan. AFUA_4G00330 contains several transmembrane domains and likely encodes a
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membrane-bound protein (Table 2). There is some evidence that itraconazole treatment
leads to increased expression of both AFUA_4G00330 and AFUA_4G00350 [23,24].

The potential relationship between AFUA_5G09420, AFUA_4G00330, and AFUA_4G00350
with responses to azole fungicides led us to test the isolates against a range of fungicides.
This analysis indicated potential differences in response to some fungicides by IA isolates
(Figure S1). This will require further investigation since further replication and testing
will be required to confirm a role for differential drug responses in IA isolates. The MIC
methodology will also require optimization as differences in drug sensitivity will be subtle
since the tested isolates did not appear to have obvious azole resistance alleles. Strong
drug resistance may not be required to enable the development of IA since consistent drug
concentrations are not always observed between or within patients [49,50]. There will be
patients or regions of the body with sub-optimal drug concentrations that will allow the
growth of fungal variants with low/intermediate drug resistance.

In addition to SNV analysis, we examined the presence/absence of genes involved
in oxidative stress response or the melanin biosynthetic process in the genomes of clin-
ical A. fumigatus isolates. The patterns of variation observed were not consistent with
patterns of oxidative stress resistance (Tables 3 and S2). Thus, it is unlikely that gene
presence/absence drives oxidative stress resistance. Previous studies have also failed to
resolve A. fumigatus isolates of differing clinical significance based on the presence/absence
of virulence-associated genes (including those involved in oxidative stress response) [51].
There is evidence that Saccharomyces cerevisiae has distinct responses to oxidative stress
induced by menadione and H2O2 [52], and this has been supported by transcriptional
analysis of Aspergillus oryzae [53]. In the A. oryzae study, similar oxidative stressors led to
different transcriptional responses in the important transcription factors yap1 and skn7, as
well as catalases and superoxide dismutase. The A. fumigatus yap1 is important for the ox-
idative stress response by controlling the expression of downstream genes. Understanding
differences in oxidative stress response between fungal isolates will require a functional
genomics approach that incorporates genomic, proteomic, and transcriptomic data.

Testing coloniser and IA isolates of A. fumigatus with assays for virulence was incon-
clusive, but genome comparison indicated that understanding the development of IA in
at-risk patients will require further study into complete or partial azole resistance.

4. Materials and Methods
4.1. Isolates of A. fumigatus and Media

All strains of A. fumigatus were provided by the Centre for Infectious Diseases and
Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research,
Westmead Hospital (Table 4). Each case was classified according to the criteria of the
European Organization for Research and Treatment of Cancer and the Mycoses Study Group
(EORTC/MSG) [21]. Fifteen isolates of A. fumigatus were studied; ten isolates (Af1–Af10)
were colonisers, from patients with no evidence of IA [3,5–7], and five (Af11–Af15) were
invasive isolates, from patients with proven IA [5,21]. Cultures were grown on PDA for
three days at 37 ◦C and conidia suspensions were prepared from each isolate as previously
described [54]. Conidial concentrations were determined using a Neubauer chamber and
viability was determined using CFU counts of ten-fold conidial dilutions on PDA (Sigma-
Aldrich, Castle Hill, Australia) plates that were incubated for 24 h at 37 ◦C [55]. New
conidial suspensions were prepared for each replicate experiment and concentrations were
tested before the experiments.
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Table 4. Isolates of A. fumigatus used in the study sourced from Centre for Infectious Diseases
and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research,
Westmead Hospital.

Isolate Name Patient Classification Isolate Origin

Af01 Coloniser 1 Sputum
Af02 Coloniser Sputum
Af03 Coloniser BAL 3

Af04 Coloniser BAL
Af05 Coloniser Sputum
Af06 Coloniser Tissue 4

Af07 Coloniser Tissue
Af08 Coloniser Sputum
Af09 Coloniser Sputum
Af10 Coloniser Sputum
Af11 Proven IA 2 Tissue
Af12 Proven IA BAL
Af13 Proven IA Tissue
Af14 Proven IA BAL
Af15 Proven IA Tissue

1 Coloniser cases had no evidence of IA [3,6,7]. 2 Patients classified according to the EORTC/MSG criteria [21].
3 Bronchoalveolar lavage. 4 Cultured from a tissue biopsy.

4.2. Phenotypic Variation Amongst Clinical A. fumigatus Isolates
4.2.1. Radial Growth Rate and Proteolysis on SMA

The radial growth and growth rate have been associated with fungal virulence in
several studies, with faster growth being indicative of greater virulence [26,56,57]. For each
A. fumigatus isolate, a PDA plate (90 mm diameter) was spot-inoculated with 104 conidia.
Cultures were incubated at 37 ◦C for 3 days. The colony diameter was measured at regular
intervals. The radial growth rate was calculated by plotting the colony diameter (mm)
versus time (h) from five linearly distributed data points; the growth rate was the slope of
this line. Three independent experiments were performed.

Proteolytic activity has been associated with infection and tissue invasion in pathogenic
fungi [58]. A simple method to determine the proteolytic activity is to grow microbes on
a medium such as SMA where the proteolysis of milk proteins creates a zone of clearing
around the colony [59,60]. SMA was prepared by adding 250 mL UHT skim milk to 250 mL
autoclaved, still molten, 4% agar (Sigma-Aldrich). The milk and agar were mixed and
poured into Petri dishes. These were inoculated with 104 conidia to the centre of the Petri
dish. Cultures were incubated at 37 ◦C for 4 days. The zone of inhibition was measured
daily to determine the time where the greatest discrimination between isolates was ob-
served; a wider zone of clearing indicates greater proteolytic activity. Three independent
experiments were performed.

4.2.2. Conidial UV Resistance

Conidial melanin has an important role in protection against UV light and the initial
interactions between host and A. fumigatus, the conidial melanin providing protection
against the activity of host phagocytes [61,62]. In this study, we used the response to UV to
determine whether there were isolates with defects in conidial melanin. For each isolate,
approximately 200 conidia were plated onto malt extract agar (MEA) (Sigma-Aldrich). Five
plates inoculated with the same isolate were placed at different positions within a TopSafe
PC2 Biosafety (Bio-Air, Pero, Italy) cabinet and UV irradiated (1.6 W/m2) for 1 min. This
was repeated for all 15 isolates. Following irradiation of each isolate, the biosafety cabinet
was vented for 5 min to prevent reactive oxygen species (ROS) accumulation. Colony
forming units (CFUs) on control plates were counted following incubation at 37 ◦C for 24 h.
An additional incubation for 24 h at 25 ◦C preceded CFU counting of UV-irradiated plates.
The percent survival for each isolate was calculated relative to a non-irradiated control
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and based on the average CFU counts across the five irradiated plates. The experiment
was repeated four times, with the irradiated isolates being changed to achieve a uniform
average UV-order position amongst all isolates.

4.2.3. Measurement of Response to Oxidative Stress

To measure the effects of acute exposure to oxidative stress, isolates of A. fumigatus
were exposed to H2O2 and menadione (both from Sigma-Aldrich) for three hours [63,64].
H2O2 (30% solution) and menadione (10 mM stock in ethanol) were added to A. fumigatus
spore suspensions from each isolate; 1 × 106 conidia/mL was incubated for 3 h at 37 ◦C
with 0 mM, 50 mM H2O2 or 50 mM of menadione. Acute exposure required greater
exposure doses than used in other studies. After incubation, the conidial viability was
determined using dilution plate counts on PDA (Sigma-Aldrich); plates were incubated at
37 ◦C for 24 h and counted to determine CFU/mL. The percent survival was calculated
relative to the 0 mM control.

4.3. Using T. molitor to Measure A. fumigatus Virulence

The use of T. molitor larvae was based on a study using these larvae to monitor the vir-
ulence of C. albicans and C. neoformans [14]. Mealworms were purchased from BioSupplies
(Biosupplies, Yagoona, Australia) and checked for uniform size (100–150 mg) and colour
(dark brown to black indicates ill health) before use. In all experiments, mortality was
determined by response to physical stimulation. Where not explicitly specified, mealworms
were incubated in Petri dishes (rearing density: 10 mealworms/58 cm2 Petri dish) with
3 mL rearing diet and a slice of frozen carrot for moisture (0.4 cm3; 500 mg; changed daily).
Rearing diet comprised of wheat bran and LSA (linseeds, sunflower seeds, and almonds)
in a 5:1 v/v ratio.

4.3.1. Optimisation and Validation of T. molitor Larvae as Models of Fungal Infection

The site of injection into T. molitor larvae was optimized to reduce mortality due to
physical trauma. Mealworms were injected between sternites with a maximum 5 µL of
liquid using a Hamilton syringe (701 N, 10 µL capacity) [14]. Groups of 20 mealworms
were injected ventrally with 5 µL of PBST at the base of one of five sternites. Sternites 2–6
were tested (Figure 1a). Survival was checked daily over 7 days of incubation at 37 ◦C.
Each treatment group included 20 mealworms. Based on the findings of this experiment,
mealworms were injected at the base of sternite 5 in all virulence assays.

To identify the fungal load with the greatest potential for resolving inter-isolate varia-
tion, a dose–response experiment was run. Groups of 20 mealworms were inoculated with
0, 5, 5 × 101, 5 × 102, 5 × 103, 5 × 104, 5 × 105, or 5 × 106 conidia of isolate AF01. Mortality
was monitored daily over 7 days of incubation at 37 ◦C. The experiment was performed
twice.

Groups of 30 mealworms were inoculated with 5 µL PBST (vehicle control), or 5 × 104

spores from coloniser AF03 or invasive isolate AF11. Each day, 5 mealworms were sampled
from each cohort for fungal load quantification.

4.3.2. Quantification of A. fumigatus Infection of T. molitor Larvae

Both infected and uninfected larvae were frozen and stored at −20 ◦C after virulence
had been measured. Frozen larvae were decapitated and cut below the 8th sternite to
provide a section of worm that would be halved (longitudinally). One half was used for
viable plate counts and the other was used for qPCR.

For viable plate counts the larval section was homogenized in PBS (Sigma-Aldrich)
with a disposable pestle in a 1.5 mL microcentrifuge tube. The contents were serially diluted
and 100 µL was spread using an L-shaped spreader on Petri dishes containing potato
dextrose agar containing chloramphenicol (Himedia, Mumbai, India). Plates were prepared
in duplicate and incubated at 37 ◦C until colonies were visible, approximately 20 h.
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For qPCR DNA was isolated from the other half of the larval section. DNA was
isolated using the ISOLATE II Genomic DNA Kit (Bioline, Eveleigh, Australia) with the
following modifications: larval sections were placed in a 1.5 mL microcentrifuge tube with
lysis buffer (GL), this was homogenized with a micro pestle. Proteinas K was added and the
homogenate incubated at 55 ◦C for 2 h. Glass beads (710–1180 µm and 425–600 µm) were
added to 250 µL in a 2 mL screw cap tube. The homogenate was added to the 2 mL tube
and the sample was disrupted in a Mini-Beadbeater (BioSpec Products, Bartlesville, USA)
for two cycles of 1 min of beadbeating and 1 min on ice. The manufacturer’s instructions
were then followed with an elution volume of 50 µL.

qPCR was performed on a 7500-FAST real-time PCR system (ThermoFisher Scientific,
North Ryde, Australia) using primers targeting the ITS region of A. fumigatus as previously
described [65]. The number of fungal genomes was determined compared to a standard
curve of genomic DNA isolated from 105 conidia.

4.3.3. Measuring Inter-Isolate Variation in Virulence of A. fumigatus

The virulence of all 15 clinical A. fumigatus isolates was evaluated. For each isolate,
20 mealworms were inoculated with 5 × 104 conidia (in 5 µL PBST) at the base of sternite
5. Larvae were incubated for 7 days at 37 ◦C. Each experimental replicate included three
control groups: (1) mealworms injected with sterile PBST, (2) mealworms pierced at sternite
5 but with no solution injected, and (3) mealworms chilled on ice but otherwise untreated.

4.4. Genomic Variation Amongst Clinical A. fumigatus Isolates
4.4.1. DNA Isolation

For each of 10 clinical isolates, malt extract broth (20 mL) was inoculated with 104

conidia and incubated for 4–5 days at 37 ◦C with shaking. Fungal biomass was isolated
through vacuum filtration and stored at −20◦C until use. Genomic DNA was extracted
from biomass using the ISOLATE II Genomic DNA Kit (Bioline) with pre-lysis steps
supplemented by mechanical disruption and RNA degradation. Lysis buffer (180 µL) and
100 mg of biomass was added to FastPrep Lysing Matrix G (MP Biomedicals, Seven Hills,
Australia) before bead milling in a FastPrep-24 (MP Biomedicals) (max speed; 30 s). RNase
A (1 µL of a 20 mg/mL) solution was then added and, samples incubated at 37 ◦C for
30 min. RNase was degraded by adding 25 µL of Proteinase K solution and incubating
at 56 ◦C for 1 h. Secondary lysis steps and column clean-up were conducted as per the
standard protocol.

4.4.2. Library Preparation and Sequencing

WGS library preparation (TruSeq DNA PCR-Free, Opentrons, New York, NY, USA)
and sequencing (Illumina NovaSeq 6000) was conducted by the Ramaciotti Center for
Genomics.

4.4.3. Genome Assembly

FastQC1 (v0.11.2) was used to evaluate the read quality. The leading 7 bp, final
base, Illumina adapters, and low-quality leading and trailing bases (phred < 30) were
removed using trimmomatic2 (v0.38, http://www.usadellab.org/cms/index.php?page=
trimmomatic (accessed on 1 June 2020)). Reads were error-corrected with LIGHTER3
(v1.1.2) [66]. SPAdes4 (v3.13) [67], was used to produce de novo assemblies of the 10 A.
fumigatus isolates. SPAdes contigs were scaffolded into chromosomal level assemblies
with Ragout6 (v2.2) [68]. Ragout scaffolding was based on synteny with the public AF293
reference genome (GCF_000002655.1), the draft genome of A1163 (GCA_000150145), and the
contig-level isolate assemblies of the clinical isolates examined in this study. SPAdes contigs
unplaced by Ragout were run through a nucleotide BLASTN (v2.6.0) similarity search [69].
Hits were filtered and sorted by e-value and percent identity (E < 1 × 10−10, >90% identity).
Unplaced contigs longer than 200 bp with BLASTN top hits against A. fumigatus were
incorporated into the assembly. The completeness of assemblies was evaluated using

http://www.usadellab.org/cms/index.php?page=trimmomatic
http://www.usadellab.org/cms/index.php?page=trimmomatic


Pathogens 2022, 11, 428 14 of 18

BUSCO, and contiguity using the n50stats.pl script packaged with the Just Annotate My
genome5 (JAMg) pipeline (Apr 2016). Contiguity stats were generated assuming a true
genome size of 29.4 Mb.

4.4.4. Variant Analysis

parSNP10 (v1.2) [70], was used to align the assembled A. fumigatus genomes AF293
reference and call SNPs in genomic regions that align across all genomes and the reference.
Harvest tools (v1.2) [70], was used to convert data to VCF format. Variants were filtered
using VCFtools (v0.1.15) [71], to include only bi-allelic sites and thin mutations less than
10 bp away from the nearest SNP. SNPs were annotated based on the RefSeq annotation of
the AF293 reference genome using SnpEff (v 4.3t) [72].

4.4.5. Investigating Biological Function of Mutated Genes

To investigate the biological function of selected genes, associated FunCat annotations
were identified using FungiFun (v2.2) [73]. Protein sequences were run through a protein
BLAST. InterProScan (v5) [74], was used to classify proteins into families and predict protein
domains, including signal peptide sequences using SignalP (v5) [75] and transmembrane
domains using mobius and TMHMM.

4.4.6. Detecting Presence/Absence of Oxidative Stress Response Genes

To investigate whether gene presence/absence explains observed differences in the
oxidative stress resistance of clinical A. fumigatus isolates, each genome assembly was
scanned for the presence of genes involved in either melanin biosynthesis (GO:0042438) or
oxidative stress response (GO:0006979). The nucleotide sequences of each gene in the AF293
reference genome were extracted using the GO search functionality of EuPathDB (release 49
beta) [76]. Gene presence/absence in each assembly was evaluated using ABRicate (v1.0.1,
https://github.com/tseemann/ABRicate, (accessed on 10 march 2020)) [77]. Genes were
considered present if both coverage and percent identity was greater than 90%.

4.5. MIC Determinations

Minimum inhibitory concentrations (MICs) of several antifungal drugs were deter-
mined using Yeast Sensititre YO10 plates (ThermoFisher Scientific) as per the manufac-
turer’s instructions [78]. In brief, fungal conidia were added to the included broth as
described in the manufacturer’s instructions to achieve a density of 1.5–8 × 103 cells/mL;
100 µL of broth containing conidia was added to each well of the YO10 Sensititre plate (Ther-
moFisher Scientific). After inoculation, the plates were incubated at 37 ◦C for 24–48 h. The
YO10 Sensititre plate contains the following drugs (concentration range): Amphotericin B
(0.12–8 µg/mL), Anidulafungin (0.015–8 µg/mL), Caspofungin (0.008–8 µg/mL), Flucona-
zole (0.12–256 µg/mL), 5-Flucytosine (0.06–64 µg/mL), Itraconazole (0.015–16 µg/mL), Mi-
cafungin (0.008–8 µg/mL), Posazonazole (0.008–8 µg/mL), and Voriconazole (0.008–8 µg/mL).

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/pathogens11040428/s1, Figure S1. MIC values determined for
each of the coloniser (10 isolates) and IA (5 isolates) A. fumigatus isolates used in this study. The figure
shows the drugs where there were differences in mean MIC between coloniser and IA isolates based
on the Sensititre YO10 results. The horizontal lines represent the mean value of the isolates in each
group; one Sensitrite YO10 plate was performed for each isolate. Table S1. Assembly Statistics for 10
A. fumigatus isolates and the public AF293 reference genome (GCF_000002655.1; ASM265v1). Table S2
Presence/absence of oxidative stress response genes (GO:0006979) in clinical A. fumigatus isolates.
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