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Abstract

Background: Experimental autoimmune encephalomyelitis (EAE), the best available model of multiple sclerosis, can be
induced in different animal strains using immunization with central nervous system antigens. EAE is associated with
inflammation and demyelination of the nervous system. Micro-array can be used to investigate gene expression and
biological pathways that are altered during disease. There are few studies of the changes in gene expression in EAE, and
these have mostly been done in a chronic mouse EAE model. EAE induced in the Lewis with myelin basic protein (MBP-EAE)
is well characterised, making it an ideal candidate for the analysis of gene expression in this disease model.

Methodology/Principal Findings: MBP-EAE was induced in female Lewis rats by inoculation with MBP and adjuvants. Total
RNA was extracted from the spinal cords and used for micro-array analysis using AffimetrixGeneChip Rat Exon 1.0 ST Arrays.
Gene expression in the spinal cords was compared between healthy female rats and female rats with MBP-EAE. Gene
expression in the spinal cord of rats with MBP-EAE differed from that in the spinal cord of normal rats, and there was
regulation of pathways involved with immune function and nervous system function. For selected genes the change in
expression was confirmed with real-time PCR.

Conclusions/Significance: EAE leads to modulation of gene expression in the spinal cord. We have identified the genes that
are most significantly regulated in MBP-EAE in the Lewis rat and produced a profile of gene expression in the spinal cord at
the peak of disease.
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Introduction

On the basis of pathological findings and genetic studies that

show that the majority of genes that predispose to multiple

sclerosis (MS) are associated with T cell activation [1], MS is

thought to be primarily a T-cell mediated autoimmune disease. B

cells and antibodies are also thought to play a role in pathogenesis

[2]. The symptoms of MS are due to demyelination and axonal

loss, and possibly to temporary loss of nerve conduction due to

circulating factors [3]. Experimental autoimmune encephalomy-

elitis (EAE) is the best available animal model of MS, and can be

induced by inoculation of susceptible animals with a range of

central nervous system (CNS) antigens.

EAE was first induced by inoculation of whole brain tissue [4;5].

Myelin basic protein (MBP) was the first encephalitogenic protein

to be studied in detail. Later studies have used myelin proteolipid

protein (PLP) [6;7] and myelin oligodendrocyte glycoprotein

(MOG) [8] to induce EAE. The susceptibility to EAE varies

among animal strains and with the antigen used to induce the

disease. There have been studies of the genetic loci that contribute

to this susceptibility. The most important genes are the MHC class

II, but other genes have been implicated, including other immune

related genes [9–11]. Studies have also identified genetic loci that

contribute to different EAE traits such as the severity of disease,

maximum clinical score and the presence of demyelination [9;10].

In this study we have investigated MBP-EAE, which is

characterized by weight loss and ascending paralysis [12] followed

by spontaneous recovery. It has been clearly shown that recovery

from weakness is associated with restoration of electrical conduc-

tion [13]. The pathology of MBP-EAE involves infiltration of the

spinal cord and nerve roots with inflammatory cells [14], followed

by demyelination of axons. In MBP-EAE there is apoptosis within

the spinal cord [15;16] and there is also axonal damage [17]. The

metabolic processes that cause damage in EAE include glutamate

toxicity [18] and dysregulation of ion channels including calcium

channels [19]. Because of the detailed knowledge of the

pathogenesis of this EAE model, it is of interest to determine

how gene expression correlates with the known features of this

disease. The advantages of using EAE for studies of gene

expression in the CNS are that tissue can be easily obtained at

the peak of disease, without a significant post-mortem delay,

allowing good preservation of RNA for expression studies.
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Because of the extensive characterization of MPB-EAE in the

Lewis rat, it is an excellent candidate for studies aimed at defining

the gene expression profile of the disease. There have been no

previous gene array studies of MBP-EAE in the Lewis rat;

however, the expression profile of selected cytokines, chemokines,

adhesion molecules, cell markers, matrix metalloproteinases and

other genes relevant to disease etiology have been examined in this

model by real-time PCR (RT-PCR) [20]. There have been micro-

array studies of gene expression in MBP-EAE in SJL/J mice [21]

and of the effects of estrogen treatment on gene expression in

MBP-EAE in BV8S2/AV4 double transgenic mice [22]. There

have also been microarray studies of EAE induced with myelin-

oligodendrocyte glycoprotein (MOG) in the spinal cords of mice

[23] and rats [24]. The present study was carried out to investigate

changes in gene expression in MBP-EAE compared to control

Lewis rats, and found that there were significant differences from

controls.

Results

a) Differential Gene Expression in MBP Induced EAE in
the Lewis Rat

Rats were inoculated with MBP to induce EAE. The typical

clinical course of this disease is shown in Figure 1A, which

demonstrates that disease is generally monophasic with spontane-

ous recovery. Rats were sacrificed on day 13 post injection which

corresponds approximately with the peak of clinical disease in our

model. The course of disease of the rats that were used in the

micro-array study is shown in Figure 1B.

RNA quality analysis was carried out on the BioRad Experion

automated electrophoresis system. All preparations used in both

assays had values of values of .9.5 for RNA quality indicator

(RQI) [25]. This is illustrated in Figures S1 and S2. After array

hybridization with the Affimetrix Rat Exon 1.0 ST array, which

contains probe sets for 27,324 genes, data was uploaded for

analysis with the Partek genomics suite. Transcripts from 8,793

genes were detected. Of these, we identified 2,350 genes that were

significantly regulated between the healthy rats and rats with

MBP-EAE (t test, (p-value ,0.05). The overall gene expression

changes in MBP induced EAE are illustrated in the volcano plot in

Figure 2, which shows a large number of genes that were highly

regulated compared to healthy controls.

Of the 2,350 differentially regulated genes, 2,265 mapped to

known locations in the Partek data-base and the remainder were

unmapped. Of these mapped genes, 1,665 were mapped to named

genes. Of the 1,665 differentially regulated genes, 998 were found

to be down-regulated and 667 were up-regulated. These are listed

in Tables S1 and S2.

The 2,530 genes that were differentially regulated were up-

loaded into the Ingenuity Pathway analysis software package (IPA)

(Ingenuity H Systems, www.ingenuity.com ) for functional and

pathway analysis. After filtering to exclude genes that were not of

relevance to the nervous system, we produced an annotated set of

1,190 differentially regulated genes. These genes were used for our

further analysis of functions, pathways and upstream regulators.

To produce a list of the genes that are most significantly and

highly regulated in MBP-EAE, we used a False Discovery Rate

(FDR) [26] of 5% to further refine the data-set. This produced a

list of the most significantly regulated genes (p values #0.0045).

These are shown in Table 1, which lists the most significantly up-

regulated genes (fold-change limit + or –4.0) and Table 2 which

contains the most significantly down-regulated (fold change limit +
or –2.0) transcripts in the data-set. A number of these genes

mapped to loci that predispose to EAE in the rat (http://rgd.mcw.

edu), or have been associated with one or more of the commonly

used EAE models, as shown in Tables 1 and 2.

b) Quantitative Real-Time PCR (rt PCR) Validation of
Micro-array Data

To confirm our micro-array findings, expression levels of a the

genes caspase 1 (Casp1), oligodendrocyte myelin glycoprotein

(OMG), alpha subunit voltage-gated sodium channel type 1

(Scn1a), Fas (TNF receptor superfamily member 6) and superoxide

dismutase 2, mitochondrial (Sod2) were validated using RT-PCR

in 8 rats in each group. These genes were selected as being

regulated in EAE and of biological interest. Gene transcripts were

amplified from cDNA preparations. These were obtained from the

original total RNA samples used in the micro-array analysis and

an additional 4 normal rats with MBP-EAE and an additional 4

healthy rats. The results are shown in Figure 3. All transcripts

Figure 1. Clinical course of EAE. A. The figure shows the results of a clinical course experiment (n = 10) in which female Lewis rats (10–12 wks
old) were injected with 50 mg Guinea Pig MBP emulsified in incomplete Freund’s Adjuvant containing 4 mg/ml heat inactivated M.Butyricium. The
peak of disease generally occurs between 12 and 14 days post injection and resolves, usually within 7–10 days later. Mild relapses occur in a few
animals between 28 and 40 dpi. B. Spinal cords used to prepare RNA for microarray analysis were collected on day 13 when the disease course was
either at its peak or in the phase of very early resolution. Clinical course scores were recorded using a 12 point scale [43].
doi:10.1371/journal.pone.0048555.g001
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amplified showed similar expression patterns in the RT-PCR assay

compared to the micro-array analysis.

c) Biological Functions Most Significantly Regulated in
MBP-EAE

The functional predictions that are generated from IPA are

based on the direction of expression of a number of downstream

genes which have been previously shown to be associated with that

function. The functions that are most significantly altered in MBP-

EAE are shown in Tables 3 and 4. The functions that are

predicted to be up-regulated include activation of central nervous

system cells, cell death or apoptosis (of leukocytes, microglia and

dopaminergic neurons), formation of amyloid fibrils, and prolif-

eration of oligodendrocyte precursor cells. The functions that are

predicted to be down-regulated include long term-potentiation,

neurotransmission, synaptic transmission, quantity of vesicles and

delay in the death of neurons.

d) Canonical Pathways Regulated in MBP-EAE
A number of Canonical pathways were identified in IPA as

being significantly regulated in MBP-EAE, based on the expres-

sion profile of genes in MBP treated animals compared to healthy

controls. These are shown in Figure 4. These include immune

related pathways and neural pathways. The details of some of the

pathways that were regulated are shown in Figures S3, S4, S5, S6,

S7, S8, S9, S10, S11, S12, S13, S14, S15, S16, S17, S18, S19, S20.

e) Upstream Factors Predicted to be Regulated in MBP-
EAE

From IPA we have identified the upstream regulators that are

predicted to be activated or inactivated in MBP-EAE. These are

shown in Table 5. These include Sirtuin 2, stat1 and presenilin 2.

Discussion

In this study, using female Lewis rats, we have investigated the

expression of genes in MBP-EAE compared to controls. We have

studied rats at day 13, which is the peak of clinical disease, when

processes that lead to recovery are under way. The pathology of

MBP-EAE involves infiltration of the CNS with macrophages and

activated T lymphocytes [27]. There are morphological changes in

microglia and astrocytes and there is demyelination of axons and

axonal transaction. Consistent with this, we have found that MBP-

EAE is associated with changes in expression of genes and

biological functions of the immune system and also of the nervous

system. We found markedly increased expression of MHC class II

molecules and other immune related genes. This is consistent with

the pathological findings of upregulation of MHC class II

molecules and infiltration with immune cells [14]. Micro-array

analysis of C57/BL6 mice with EAE induced with myelin-

oligodendrocyte protein also found upregulation of numerous

genes [23] including MHC class II and immune related genes. We

note increased expression of lipocalin 2, which is a protein that can

be involved in the immune response and that has been found to be

upregulated in MOG-EAE in DA rats [28] and in C57/BL mice

[29].

Genes involved in the inflammatory response and in antigen

processing and presentation were some of the most highly

regulated genes identified. Cell-cell signalling and interaction

and cell movement were also highly represented amongst the most

differentially regulated gene transcripts identified. A number of

chemokines and their receptors, annexin 3A and fibronectin were

all up-regulated more than four-fold in the diseased spinal cords.

Cellular growth factors, notably IL2-a and the common gamma

chain were highly up-regulated as was the inflammatory cytokine

IL1-b which is expressed in activated microglial cells [30]. IL18,

the IL1 receptor agonist IL1rn, the interleukin receptors IL1r1,

Figure 2. Volcano plot. This shows the significance (y axis) versus the fold change (x axis) for genes in rats with EAE compared to healthy controls.
doi:10.1371/journal.pone.0048555.g002
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IL4r, IL6r, and the interferon gamma inducible cytokine IL18

were all moderately up-regulated (Table S1).

The regulation of key components of the classical (C1q, C4,

C3b, Serping1) and alternative (C3, Cfb) complement pathways

and the complement component 3a receptor 1 (3ar1), but not

molecules in the terminal pathway, is in accordance with previous

studies which indicate that the common terminal pathway

(culminating in the membrane attack complex) is not important

for the development of fulminant demyelinating EAE [31].

Genes associated with apoptosis which were highly regulated in

our data set include the apoptosis related serine peptidases

(Caspases) which have all been associated with disease in various

EAE models [32;33] and the toll like receptors 2 and 4 (Tlr2, Tlr4)

which have previously been found up-regulated in active lesions of

MS and MOG induced EAE in the DA rat [34;35]. As mentioned

above, the apoptotic inducer lipocalin 2 (Lcn2) [36] which has

previously been identified as up-regulated in MOG induced EAE

in DA rats [28] and C57BL mice [29] was also highly expressed in

MBP-EAE in the present study.

Down-regulation of gene transcripts in MBP induced EAE in

the Lewis rat was much more subtle than up-regulation however

almost a thousand genes were found to be significantly down-

regulated in the model (Table S2). Eighteen of these were down-

regulated more than 2-fold, notably including key enzymes in the

cholesterol biosynthesis pathway and molecules involved in

cellular growth and proliferation, signalling and interaction.

Of the most highly regulated genes in the spinal cord (Tables 1

& 2), many are associated with processes associated with induction

of disease, such as cell-cell signalling, chemotaxis antigen

presentation, activation of both infiltrating cells such as T-

lymphocytes and macrophages and resident astrocytes and

microglia. There is also regulation of genes associated with

resolution of disease, for example apoptosis of immune infiltrating

cells and activated glial cells, and growth and proliferation of

oligodendrocyte precursor cells which migrate to the sites of

demyelination and differentiate into mature oligodendrocytes able

to carry out the remyelination of axonal processes damaged during

the inflammatory phase of the disease [37].

EAE can only be induced in susceptible animals. In studies of

different mouse and rat strains, some genetic loci have been

identified as being important in the predisposition to EAE. In our

study, many of the genes identified as being differentially regulated

found to map to those regions (http://rgd.mcw.edu/).

From IPA, the cellular functions that are regulated can be

predicted. The upregulated functions in MBP-EAE included

activation of CNS cells, cell death or apoptosis (of immune cells,

microglia and dopaminergic neurons), formation of amyloid fibrils,

and proliferation of oligodendrocyte precursor cells. Apoptosis is

known to be an important function in EAE. Apoptosis of T cells is

important in the regulation of MBP-EAE [15;16]. Apoptosis of

oligodendrocytes could also contribute to pathology in EAE.

Consistent with this, we have found upregulation of genes

associated with apoptosis. Our finding of increased proliferation

of oligodendrocyte precursor cells is consistent with the observa-

tion that recovery in MBP-EAE is due to restoration of conduction

in demyelinated fibres.

The functions that are predicted to be downregulated include

long term-potentiation, neurotransmission, synaptic transmission,

quantity of vesicles and delay in the death of neurons. These

downregulated functions presumably reflect damage to neural

tissue.

From IPA we also obtained a list of the canonical pathways that

were regulated in MBP-EAE. There were changes in immune

pathways and neural pathways. The immune related pathways
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include antigen presentation, T cell differentiation and comple-

ment pathways, all of which would be expected to be activated in

EAE. The neural related pathways include dopamine feedback of

cAMP signalling, Creb signalling in neurones, biosynthesis of

steroids and ALS signalling.

From IPA we have identified the upstream regulators that are

predicted to be activated or inactivated in MBP-EAE. The greatest

inactivation was predicted in sirtuin 2 (sirt2). Sirt 2 is is a member

of the sirtuin family of histone deacetylases and has been shown to

have a role in promoting longevity [38]. With proteomic studies,

sirtuin 2 has also been found to be downregulated in EAE [39].

Resveratrol which is an agonist of sirt2 has been shown to reduce

the severity of EAE [40]. Stat1 is a member of the JAK/STAT

group of proteins [41]. Stat 1 regulates genes involved in interferon

signalling which is shown in this study to be upregulated in MBP-

EAE. Presenilin 2 is a member of the gamma-secretase family and

is predominantly expressed in neurones where it plays a role in the

processing of amyloid precursor protein [42] and was predicted in

this study to be downregulated.

In conclusion, we have shown that MBP induced EAE alters

gene expression in the spinal cord. We have produced a gene

expression profile for this model in the Lewis rat which correlates

well with the documented characteristics of the disease. Further

examination of the pathways and functions regulated should pave

the way for future studies into their regulation which may lead to

the identification of potential drug targets for enhancement of the

resolution of inflammatory disease in the CNS.

Materials and Methods

Ethics Statement
This research was approved by the Animal Ethics Committee of

the University of Queensland. The approval number was

UQCCR/770/08/MSRA.

Induction of EAE
EAE was induced in 11 wk old female Lewis rats by

subcutaneous injection at the base of the tail of 50 mg recombinant

MBP, using our standard methods (McCombe et al., 1996).

Healthy age-matched unimmunized rats were used as controls.

Weakness of the tail, hindlimbs and forelimbs was assessed by

grading the degree of weakness of each region separately on a scale

of 0 (no weakness) to 4 (total paralysis), as described previously

[43]. On each day of examination, the scores from each region

were added together to give a total clinical score per rat (maximum

total clinical score = 12). Figure 1 shows the typical clinical course

of rats with this form of EAE.

Tissue Collection
On day 13 after inoculation, which is the peak of clinical

disease, rats were sacrificed and the spinal cord was excised from

the spinal column by insufflation using a large bore blunt ended

needle and a 60 ml syringe. Figure 1B shows the clinical course of

these rats up to the day of sacrifice. Tissue was snap frozen in

liquid nitrogen prior to being stored at 280uC. Four rats in each

group were used for micro-array analysis and a total of 8 rats in

each group were used for rt-PCR.

RNA Extraction
Total RNA was extracted from tissues using QIAGEN

RNeasyH Lipid tissue Midi kits as per the manufactures

instructions and treated with DNase1 (QIAGEN) to remove all

traces of genomic DNA prior to storage at 280uC. The RNA

quality analysis was carried out using the BioRadExperion

automated gel electrophoresis system (BioRad Laboratories Inc.).

Array Hybridization
For each group, 4 biological replicates were used. cDNA

synthesis and amplification was performed using the Applause

WT-Amp Plus ST kit (NuGEN). Samples were enzymatically

fragmented and biotinylated using the Encore Biotin Module

labelling kit (NuGEN). Samples were hybridized to Affimetrix-

GeneChip Rat Exon 1.0 ST Arrays as per the manufacturer’s

instructions. Briefly, 5 mg of fragmented biotinylated ssDNA was

hybridised for 16 hrs at 45uC, 60 rpm to the array chip. After

16 hrs GeneChips were washed on a FS_450 Fluidics station using

the washing script FS450_0001 with buffers and stains supplied

with the GeneChip Hybridisation, Wash and Stain Kit from

Affymetrix.

Data Acquisition and Analysis
Data was acquired on a 7G GeneChip Scanner 3000 and.CEL

file generation performed using AGCC. Expression Console with

Robust Multi-chip Average (RMA) was used initially to extract

probe intensity data. This data was used to access Affimetrix

Figure 3. RT- PCR validation of 5 genes expressed differentially in the spinal cords of Lewis rats with MBP induced EAE. Tissue
samples were snap frozen in liquid nitrogen and stored at 280uC prior to total RNA preparation using the QIAGEN RNeasy Lipid tissue kit. RNA quality
analysis was carried out on the BioRadExperion automated electrophoresis system. All preparations used in both assays had RNA quality indicator
(RQI) values of .9.5. For RT-PCR, total RNA was reverse transcribed and amplified as described in the methods. Analysis of selected genes up or down
regulated at the peak of disease in EAE. Bars represent the average fold change between expression in the spinal cord level at peak of disease
compared to normal healthy animals (+/2 SEMs, Microarray n = 4, RT-PCR n = 8). Dark columns represent fold change derived from the microarray
data. Similar amplification patterns were obtained from RT-PCR amplification of the same total RNA samples and a second set of 4 animals samples at
an identical time point.
doi:10.1371/journal.pone.0048555.g003
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supplied PolyA and Eucaryotic Hybridisation controls to confirm

consistent processing of the RNA samples. Subsequent statistical

analysis was performed in Partek Genomics Suite – Version

6.110801 (Partek Inc. St Louis, MO). The Affymetrix RaEx-1_0-

st-v1.r2.dt.core.mps was used to filter probe sets. RMA back-

ground correction was applied including pre-background adjust-

ment for GC content and quantile normalization across all chips in

the experiment. Probe data was log2 transformed.

Gene Level Expression Analysis
For gene transcript expression analysis, core probe sets were

averaged for each gene. The significance of differences in gene

expression between the EAE and healthy control data sets was

evaluated by analysis of variance (ANOVA) that compared the

controls and normal rats and investigated the effect of different

batches. There was no significant batch effect in this study.

Although we are aware that the data may not be distributed

normally and that a reduced homogeneity of variance may exist,

the alternative non-parametric tests such as the Kruskal Wallis

analysis would not produce the ratio of means required to identify

statistically significant functional categories and pathways and

make predictions about the possible downstream functional effects

of fold change for various groups of genes. As a result, the above

violations to the assumptions made by this analysis were

considered to be adequately compensated for by the robust nature

of the analysis. We have produced a list of all the genes that are

regulated in EAE, and also a smaller list of the genes that are most

highly regulated in MBP-EAE.

Functional Association Analysis
IPA (IngenuityH systems, www.ingenuity.com) was used to

identify biological functions, gene networks and pathways which

were significantly regulated in the spinal cord in EAE compared to

healthy controls. In IPA, right-tailed Fisher’s exact test was used to

calculate a p-value determining the probability that each function

network or pathway assigned to that data set is due to chance

alone. Molecules from the data set that met the p,0.05 cut off and

were associated with biological functions in the Ingenuity

knowledge base were considered for the analysis.

Downstream Effects Analysis in IPA
The Ingenuity downstream effects analytic were used to identify

biological functions which were predicted to be increased or

decreased based on the observed gene expression changes in the

data-set. The software compared the direction of change for each

gene to the causal effects information between genes and biological

functions stored in the IPA Knowledge base. Statistical validation

of the predictions made were carried out based on the calculation

of the regulation z score ‘‘which is designed such that data sets

composed of randomly chosen perturbed genes with random sign

of fold change do not lead to significant results on average’’

(Ingenuity Downsteam Effects Analysis, whitepaper). Each bio-

logical function considered is associated with a number of

upstream genes based on annotations derived from the literature

and stored in the Ingenuity knowledgebase. The previously

observed effects on function of each gene in this set are then

used to predict an increase or decrease in the function under the

conditions studied. Table 3 shows the biological functions found to

be significantly up or down-regulated in MBP induced EAE in the

Lewis rat.

Quantitative RT-PCR Validation of Micro-array Data
Validation of the results obtained from the micro-array

experiments was carried out using real time PCR. Five genes

(rtCasp1, rtOmg, rtScn1a, rtFas and rtSod2) found to be

differentially regulated in EAE in the micro-array gene expression

Figure 4. Summary of Canonical pathways that are regulated in MBP-EAE. The most regulated canonical pathways are listed. The
percentage of genes of each specific pathway that are up-regulated are shown in red and the percentage of genes that are down-regulated are
shown in green. The genes involved in each pathway are shown in individual supplementary figures.
doi:10.1371/journal.pone.0048555.g004
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experiments, were selected for validation by RT-PCR. Rat primer

pairs were purchased from SA BioSystems (RT2qPCR Primer

Assay, QIAGEN). Real time PCR analysis was carried on the

MyIQTM real time PCR thermo-cycler and detection system

(BioRad Laboratories Inc.) using the RT2 QPCR Primer assay

according to the manufactures’ protocol. Briefly, 1 mg of total rat

spinal cord RNA was treated with QIAGEN Genomic DNA

Elimination mix for 5 min at 42?C prior to being reverse

transcribed using the kit protocol. RT-PCR conditions were as

follows: 95?C, 10 min (Hot Start Taq polymerisation activation

step) followed by 40 cycles of 95?C, 15 sec, 60?C, 1 min. The

reactions were monitored using SYBR Green containing fluores-

cein (RT2 SYBR Green Fluor qPCR Master mix, QIAGEN). At

the end of each PCR run a melting curve analysis was carried out

to verify that homogeneous products of equal size had been

amplified for each primer pair. The same set of RNA samples that

was used for the micro-array experiments was also analysed by

RT-PCR and in addition we tested four more independent

validation samples from each group, which had been collected and

prepared in an identical manner, to test for sampling error.

Expression was normalized to rat peptidylprolylisomerase H

(rtPpih). Fold changes were calculated using the DDCT method

[44] and expressed as fold-change at peak of disease in EAE

compared to the expression levels in healthy control Lewis rats

(Figure 3).

Supporting Information

Figure S1 RNA Virtual Gel Image. Tissue samples were

snap frozen in liquid nitrogen and stored at 280uC prior to total

RNA preparation using the QIAGEN RNeasy Lipid tissue kit.

RNA quality analysis was carried out on the BioRad Experion

automated electrophoresis system. This shows an example of the

virtual gel image, illustrate the high quality of samples used. All

preparations had RQI values of .9.5.

(DOCX)

Figure S2 RNA Electropherogram Profile. Tissue samples

were snap frozen in liquid nitrogen and stored at 280uC prior to

total RNA preparation using the QIAGEN RNeasy Lipid tissue

kit. RNA quality analysis was carried out on the BioRad Experion

automated electrophoresis system. This shows an example of the

electropherogram profiles illustrating the high quality of samples

used. All preparations had RQI values of .9.5.

(DOCX)

Figure S3 Regulation of the Antigen presentation path-
way in MBP-EAE. This figure shows the upregulation of MHC

class I and MHC class II linked pathways of antigen presentation

in MBP-EAE.

(TIF)

Figure S4 Regulation of the T Helper Cell Differentia-
tion in MBP-EAE. This figure shows that there is upregulation

of the pathways of Th0 cell differentiation, especially into Th1 and

Th17 cells in MBP-EAE.

(TIF)

Figure S5 Regulation of Cytotoxic T-lymphocyte medi-
ated apoptosis of target cells in MBP-EAE. This figure

shows that there is upregulation of the pathways involved in T cell

cytotoxicity of target cells in MBP-EAE.

(TIF)

Figure S6 Regulation of Fc gamma –mediated phagocy-
tosis in macrophages and monocytes in MBP-EAE. This

shows that in rats with MBP-EAE there is up-regulation of many

of the genes in the pathways leading to phagosome formation after

Fc gamma binding.

(TIF)

Figure S7 Regulation of Interferon signalling in MBP-
EAE. This shows that there is upregulation of many of the genes

in the JAK/STAT pathway of interferon signalling in rats with

MBP-EAE.

(TIF)

Figure S8 Regulation of Dendritic cell maturation in
MBP-EAE. This figure shows that many of the genes in the

pathway of dendritic cell maturation are upregulated in MBP-

EAE, except IL-12 which is downregulated.

(TIF)

Figure S9 B cell development in MBP-EAE. This shows

that many cell surface receptors involved in the stages of B cell

maturation are up- regulated in MBP-EAE.

(TIF)

Figure S10 Regulation of Trem1 Signalling in MBP-
EAE. This shows that many of the intracellular signalling

molecules involved in signalling by the triggering receptor

expressed on myeloid cells 1 (TREM1) are upregulated in MBP-

EAE. This pathway is involved in adaptive and innate immunity.

(TIF)

Figure S11 Regulation of Communication between
innate and adaptive immune cells in MBP-EAE. This

shows that many signalling molecules involved in this pathway are

upregulated except for IL12 which is down regulated.

(JPG)

Figure S12 Regulation of the Complement pathway in
MBP-EAE. This shows that the classical pathway and the

alternate pathway but not the common terminal pathway are

regulated in MBP-EAE.

(TIF)

Figure S13 Regulation of genes in the pathway entitled
Pathogenesis of Multiple Sclerosis. This is a pathway of

chemokine receptors. The receptors CCR1, CCR5, CXCR3,

CCL5, CXCL9 and CXCL10 are up-regulated in MBP-EAE.

(TIF)

Figure S14 Regulation of Synaptic long term potentia-
tion in MBP-EAE. This shows that this pathway of signalling in

response to glutamate is down-regulated in MBP-EAE.

(TIF)

Figure S15 Regulation of Dopamine-DARPP32 feedback
in cAMP signalling in MBP-EAE. This shows that this

pathway of signalling in response to dopamine is down-regulated

in MBP-EAE.

(TIF)

Figure S16 Regulation of the Amyotrophic Lateral
Sclerosis pathway in MBP-EAE. This pathway of intra-

cellular signalling that leads to cell death and degeneration in

response to glutamate is down-regulated in MBP-EAE.

(TIF)

Figure S17 Regulation of Creb signalling in neurons in
MBP-EAE. This shows that this pathway of intracellular

signalling leading to expression of cAMP response element-

binding (Creb) is down-regulated in MBP-EAE.

(TIF)
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Figure S18 Regulation Endothelin-1 signalling in MBP-
EAE. This shows that this pathway of intracellular signalling in

response to endothelin 1 (ET1) is downregulated in MBP-EAE.

(TIF)

Figure S19 Regulation the Biosynthesis of steroids in
MBP-EAE. This shows that the squalene pathway involved in the

bio-synthesis of steroids is down-regulated in MBP-EAE.

(TIF)

Figure S20 Regulation Taurine/hypotaurine metabo-
lism in MBP-EAE. This shows downregulation of elements of

the pathway that leads to synthesis of taurine and hypotaurine

from cysteine in MBP-EAE.

(TIF)

Table S1

(XLSX)

Table S2

(XLSX)
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