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Abstract

Various optimality principles have been proposed to explain the characteristics of coordinated eye and head movements
during visual orienting behavior. At the same time, researchers have suggested several neural models to underly the
generation of saccades, but these do not include online learning as a mechanism of optimization. Here, we suggest an
open-loop neural controller with a local adaptation mechanism that minimizes a proposed cost function. Simulations show
that the characteristics of coordinated eye and head movements generated by this model match the experimental data in
many aspects, including the relationship between amplitude, duration and peak velocity in head-restrained and the relative
contribution of eye and head to the total gaze shift in head-free conditions. Our model is a first step towards bringing
together an optimality principle and an incremental local learning mechanism into a unified control scheme for coordinated
eye and head movements.
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Introduction

Active perception of the visual world necessitates frequent

redirection of our gaze. Such visual orientation behavior comprises

multi-segment control of different motor systems, i.e. the

coordinated movement of several parts of the body including the

eyes, the head, and the torso. The coordinated movements of the

eyes and the head during fast gaze shifts are called saccadic eye

and head movements and are usually investigated in two

conditions: head-restrained and head-free.

In the head-restrained condition, head movement is limited so

that the gaze shifts rely only on eye movements. These eye

movements, known also as eye-only saccades, possess certain

physical properties. The relationship between the duration, peak

velocity and the amplitude of saccades is known as the main sequence

[1]. This relationship is stereotyped: the duration increases linearly

with the saccadic amplitude, while the peak velocity increases

linearly for low amplitudes and undergoes a soft saturation for

larger amplitudes [2–4]. The velocity profiles of saccadic eye

movements are smooth and symmetric for small amplitudes, while

they become skewed for larger amplitudes [5,6].

In the head-free condition, the head is allowed to accompany

the eye in visual orienting. These movements are usually

composed of two phases: in the first phase, the gaze is rapidly

shifted to the target using both the eyes and the head. Once the

gaze reaches the target, the second phase starts. In the second

phase, the head continues moving in the same direction as in the

first phase, but the eyes move backwards with the same velocity as

the head. As a result, the gaze remains stabilized on the target.

The general belief is that the vestibulo-ocular reflex (VOR) has a

fundamental role in generating the coordination of eye and head

during the second phase (see [7] for a review).

When the head is free to move, the kinematic characteristics of

saccadic eye movements change dramatically compared to the

head-restrained condition. As the gaze shift amplitude increases,

the eye movement amplitude approaches its limits, and the head

contribution becomes more prominent. Therefore, the eye’s

position and velocity is not determined only based on the current

gaze error, but it also depends on concurrent head position and

velocity. Furthermore, the eye’s peak velocity declines in the head-

free condition, its duration increases and its velocity profiles

change [8–14].

Previous Studies
Previous computational studies on saccadic eye and head

movements revolve around two questions. The first question

concerns the optimality principles underlying the kinematic charac-

teristics, and the second one is about the neural architecture that

generates appropriate control signals for driving eye and head

muscles. Researchers dealing with both questions consider linear

eye and head plants, which are equivalent to linear differential

equations describing the mechanical properties of eye and head

motor systems. Such models are considered sufficient for modeling

the oculomotor and the head motor system dynamics [15,16].

Optimality principles. During saccadic eye and head

movements, visual information is not properly transmitted to the

brain either due to motion blur or because of neural suppression

induced by higher regions [17]. Therefore, saccadic gaze shifts
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should be as fast as possible in order to increase the amount of

time the image is stabilized on the retina. This has been a

fundamental assumption of many studies that were aiming at

finding the optimality principles underlying the kinematic

characteristics of saccades.

Early studies proposed that the saccade trajectories are

optimized in such a way that they minimize the time to reach

the target [18]. This assumption, known as the minimum-time

principle, leads to a bang-bang control solution [19], for which the

resulting velocity profiles are not biologically plausible [20].

Therefore, additional assumptions are necessary.

A key assumption suggested by Harris and Wolpert was that

there exists additive white noise in the neural command, whose

instantaneous power (variance) is proportional to that of the

command signal [21]. Due to this assumption, the variance of the

final eye position increases as one tries to decrease the saccadic

duration by recruiting larger command signals. Therefore, in

addition to the saccadic duration, the variance of the eye position

should also be minimized. Because of this property, this principle is

also called the minimum-variance principle. As a result of these two

assumptions, a trade-off emerges between the speed and the

accuracy of saccades, and the optimal solution to this trade-off is a

trajectory that is biologically realistic [22].

Kardamakis and Moschovakis suggested another optimality

principle based on the minimum-effort rule and optimal control

theory [23]. This principle was used to obtain optimal control

signals for both oculomotor and head motor systems in

coordinated eye and head movements. The minimum-effort rule

obliges that the squared sum of the eye and the head torque signals

integrated over the movement period be minimized in order to

obtain the optimal control signal. The optimization process uses

boundary conditions for the gaze position and is only applied to

the first phase of coordinated eye and head movements. In the

head-restrained condition, this method achieves unimodal velocity

profiles with shorter acceleration and longer deceleration phases

compatible with many experimental findings [5,6]. For the head-

free condition, the contribution of eye and head to total gaze shift

obtained by this method is biologically realistic, and the eye-

velocity profiles become double-peaked as in the experiments [24].

Architectures. The functional architectures suggested for the

control of saccadic eye and head movements can be categorized

into two groups: architectures for head-restrained and head-free

control problems. Since the goal of our study is to solve these two

control problems using a single architecture, we review the existing

models based on their structure and the optimization method they

use rather than the control problem they are supposed to solve.

From this perspective, models can be categorized into feedback

models, which use gaze feedback to control saccades, and independent

control schemes which do not need a gaze feedback.

The first gaze feedback model was suggested by Laurutis and

Robinson [25] that was an extension of position control models of

the saccadic system [26,27] to incorporate gaze feedback signals.

This model was thereafter used and extended by others [9,28,29].

The gaze error signal used in feedback models is internally

estimated, such that no visual feedback is necessary. This is mainly

due to two reasons. First, vision is impaired during fast gaze shifts,

and second, there is a retinal processing delay of about 40–50 ms

which can make the controller unstable [30]. Therefore, the gaze

feedback signal can be regarded as an internal feedback. A more

recent model by Chen-Harris and colleagues estimates the gaze

feedback in a more elaborate way [31]. The internal feedback in

this model consists of two forward models: a forward model of the

oculomotor plant that predicts the state of the eye, and a forward

model of the target motion that predicts the state of the target.

This feedback used together with the absolute target position

provides a signal to drive an optimized feedback controller which

is based on the minimum-variance principle of Harris and Wolpert

[22], and requires re-optimization for each saccadic duration.

The independent eye and head control models rely on the

dynamics of their burst generator (BG) units rather than a gaze

feedback in order to generate the control signals [12,32,33]. These

BG units are per se closed loop controllers that use efference copies

of eye and head motor command signals. Although the eye and the

head control circuits have independent dynamics, there are ways

through which they can influence each other. Independent control

models usually assume that the relative contribution of eye and

head components to the gaze shift is known beforehand. However,

a recent neural model suggested by Kardamakis and colleagues

[33] is able to reproduce realistic contribution of eye and head

using the communication between the two circuits, and without

such an assumption. The parameters of this model are either set

according to experimental findings or optimized using a genetic

algorithm.

Our Contribution
The optimality principle studies by Harris and Wolpert [21] and

Kardamakis and Moschovakis [23] have not provided any

incremental learning mechanism for their optimization procedure.

In fact, the optimization procedures used in these studies are based

on Pontryagin’s extremum principle [34], which requires bound-

ary conditions at the initial and the final time of the saccadic

movement, and provides a global analytical solution rather than a

local adaptation mechanism. In the model suggested by Karda-

makis and Moschovakis, the cost was evaluated for several values

of gaze shift duration and the model parameters were eventually

set to satisfy the trade-off between the effort and the duration. It

may be speculated that such a solution can be a result of evolution,

nevertheless, numerous experimental results indicate that saccadic

eye and head movements are constantly adapted [35–37].

The neural control architectures that have been proposed to

generate the eye and the head control signals do not use any

optimality criteria to tune their parameters. The parameters of

such models are usually hand-tuned or adjusted by a global

optimization algorithm in a way that the model’s response fits to

the experimental data. The only exception we found is the model

Author Summary

Human beings and many other species redirect their gaze
towards targets of interest through rapid gaze shifts
known as saccades. These are made approximately three
to four times every second, and larger saccades result from
fast and concurrent movement of the animal’s eyes and
head. Experimental studies have revealed that during
saccades, the motor system follows certain principles such
as respecting a specific relationship between the relative
contribution of eye and head motor systems to total gaze
shift. Various researchers have hypothesized that these
principles are implications of some optimality criteria in
the brain, but it remains unclear how the brain can learn
such an optimal behavior. We propose a new model that
uses a plausible learning mechanism to satisfy an
optimality criterion. We show that after learning, the
model is able to reproduce motor behavior with biolog-
ically plausible properties. In addition, it predicts the
nature of the learning signals. Further experimental
research is necessary to test the validity of our model.

Learning the Optimal Control of Gaze Shifts
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by Chen-Herris and colleagues [31] that relies on its internal

feedback process to generate neural command signals.

As an alternative control scheme, we introduce an open-loop

neural architecture. We try to obtain an adaptation mechanism

that on the one hand can be implemented by the brain circuitry

(see Discussion), and on the other hand minimizes a cost

function. To this end, we suggest a cost function that does not

directly depend on the saccadic duration, and therefore allows

for a gradient descent based solution without any need to define

boundary conditions. The control pathway of our model is

feedforward, and is constantly calibrated by an adaptation

mechanism that implicitly evaluates the optimality of the

controller with respect to the cost function and induces

parameter changes via a local learning rule. Therefore, our

model can be regarded as a first step towards bringing together

an optimality principle and an incremental local learning

mechanism into a unified control scheme. It extends our

previous model of eye-only saccade generation [38] to coordi-

nated eye and head movements.

Methods

The model architecture consists of two pathways: feedforward

control and adaptation. The feedforward control pathway comprises

a spatiotemporal map that performs spatial-to-temporal transforma-

tion as shown in Figure 1. The adaptation pathway is based on the

learning rules derived from a cost function (see Adaptation).

Spatial-to-Temporal Transformation
Saccades are produced by a precisely timed pattern of activity

within the motor neurons innervating the eye and the head muscle

systems. However, the desired gaze shift is represented spatially in

areas such as the superior colliculus [39,40]. This is called the

spatial-to-temporal transformation problem (STTP) [41].

Here, we suggest a spatiotemporal map to perform such a

transformation. This map comprises several columns (delay lines),

each one including a number of neurons as shown in Figure 1.

There is one column per oculocentric position of the target, i.e. the

desired gaze shift amplitude. Only one visual dimension (e.g. the

horizontal position) is modeled. The activity of the neurons in the

columns is only dependent on the desired gaze shift amplitude and

the progress of time. The spatial-to-temporal transformation is

accomplished when these activities are integrated by two read-out

neurons (gray units in Figure 1) to create the neural control signals

that drive the eye and the head plants.

When an object triggers the initiation of a saccade, a single

column corresponding to the desired gaze shift amplitude is

activated. The activation of a column means that a wave of activity

propagates through the neurons of that column, starting from the

first neuron. The firing rate of each neuron changes as a Gaussian

function. Given column j is activated at time t~0, this

propagation can be formulated as:

sij(t)~A exp {
(i{

t

Dt
)2

2s2

0
B@

1
CA, ð1Þ

where sij(t) represents the instantaneous firing rate of the neuron i

in column j, Dt is the sampling period, s2 is the variance, and A

scales the height of the activity peak.

The two linear read-out neurons integrate the activity of the

spatiotemporal map by means of weighted connections. This

linear combination forms the neural command signals, ue(t) and

uh(t), needed to drive the eye and head plants:

ue(t)~
XN

j~1

XM
i~1

we
ijsij(t), ð2Þ

Figure 1. Model Architecture. The input, left, consists of one column of delay units per oculocentric position of the target. The read-out neurons
(gray units; one for eye and one for head control) are linear and each weight parameter wij is adapted locally by the corresponding adaptation unit.
The solid lines indicate the control signal pathway and the dashed lines represent the adaptation signal pathway.
doi:10.1371/journal.pcbi.1002253.g001

Learning the Optimal Control of Gaze Shifts
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uh(t)~
XN

j~1

XM
i~1

wh
ijsij(t): ð3Þ

we
ij and wh

ij represent the weighted connections between neuron

i in column j and the eye and head read-out neurons, respectively.

N is the total number of columns and M is the number of neurons

in each column. Since we allow the neural command signals, ue(t)
and uh(t), to become negative, we consider them as the difference

between the firing rates of the agonist and the antagonist

motoneurons [42] driving each plant.

The response of the eye plant is the eye position in head

coordinates, re(t), and the response of the head plant is the head

position in body coordinates, rh(t). The details of these plant

models as well as their corresponding responses are given in Text

S1.

Adaptation
The adaptation mechanism modifies the connection weights of

the neural controller through several trials, such that it approaches

an optimal behavior. Since the optimal behavior is determined by

a cost function, adaptation implies the minimization of that cost

function.

Before introducing the cost function, let us define the gaze error

as:

rg(t)~ro{re(t){rh(t), ð4Þ

where ro is the target object position in body coordinates, and re(t)
and rh(t) as defined before. For simplicity, we have assumed that

the axes of eye and head rotation are perfectly aligned.

We define a cost function that addresses the following

objectives:

1. The gaze should reach the target as soon as possible and then

stand still on the target position. Therefore, the cost function

should depend on the absolute value of the gaze error, jrg(t)j.
This dependency can be established via any arbitrary function

of jrg(t)j, three examples shown in Figure 2. Convex functions

such as a quadratic function do not seem a good choice since

they do not penalize small gaze errors. We will proceed with

the absolute value function because it results in more

compatibility with neurophysiological observations, as we will

see in the Discussion.

2. The power of the neural control signal should be constrained.

This assumption may be viewed as a regularization [43]. It also

addresses the problem of signal-dependent noise [21], as it

reduces the variability of the neural control signal by

preventing its power from becoming too large. Since the

neural control signal is linearly dependent on the weight values,

the cost function should depend on the absolute values of the

weight parameters. Thus, large values of these parameters will

be penalized regardless of their sign.

Accounting for these objectives, we formulate the cost function

as:

E~

ðT

0

jrg(t)jdtz
XN

j~1

XM
i~1

(aejwe
ij j

n
zahjwh

ij j
n
), ð5Þ

The time integral starts at saccade onset t~0, and T has a

sufficiently large value so that the integral covers the whole

movement duration. ae and ah are positive coefficients determin-

ing the contribution of the eye and head weight limiting terms to

the total cost, respectively. We set n~4 since this value leads to the

results which have the most similarity to the experimental data.

It is worth noting that the integration time T also covers part of

the fixation period. This property of the proposed cost function

facilitates the derivation of weight adaptation rules in case of

delayed visual error, as studied on humans [44] and on macaque

monkeys [45]. These studies show that a delayed visual error

signal, up to several hundred milliseconds, is still able to induce

saccadic adaptation.

The adaptable parameters of our model are the weights

projecting from the spatiotemporal map to the two read-out

neurons. We use a gradient descent method for minimizing the

cost function. Using this method, the weight update rules are

obtained as (see Text S1):

we
ij/we

ijzde
ij

ðT

0

sgn(rg(t))fe
ij(t)dt{4de

ijae(we
ij)

3, ð6Þ

wh
ij/wh

ijzdh
ij

ðT

0

sgn(rg(t))fh
ij(t)dt{4dh

ijah(wh
ij)

3, ð7Þ

where de
ij and dh

ij are adaptation rates, sgn(x) is the signum

function, and:

Figure 2. The first term of the cost function as a function of jrg(t)j. Three example functions (quadratic, absolute value and square root) are
shown here.
doi:10.1371/journal.pcbi.1002253.g002
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fe
ij(t)~

ðt

0

sij(t)he(t{t)dt, ð8Þ

fh
ij(t)~

ðt

0

sij(t)hh(t{t)dt: ð9Þ

The functions he(t) and hh(t) represent the impulse responses of

eye and head plants, respectively.

The block diagram representation of the adaptation mechanism

is shown in Figure 1 (gray area). This representation is inspired by

Equations 6–9 in the following way: the signals fe
ij(t) and fh

ij(t) can

be regarded as the responses of the forward models of the eye and the

head plants, respectively. These forward models basically have the

same impulse response as the eye and head plants while receiving a

copy of the neural activity in the columns as input. The responses

of these forward models are multiplied by the sign of the gaze error

and then integrated over T (see Equations 6 and 7). The resulting

signals act on the same connection of the neuron that has

stimulated the adaptation units. This influence is shown by a

dashed arrow in Figure 1.

Results

We consider two conditions: the head-restrained condition,

where we set the head plant gain gh (see Text S1) to zero; and the

head-free condition where we set gh to its normal value, 1:719. In

biology, it is hypothesized that a neural gate prevents a common

gaze shift command from reaching the neck circuitry when head-

restrained saccades are desired [46].

For each condition, the learning procedure continues until the

model reached a stable response. The simulation time step was

1 ms and s was set to 0.002.

We used ae and ah as the free parameters of our model to find

the best match between the model behavior and experimental

data. To this end, we used a genetic algorithm (GA) as described in

Text S1. For the head-restrained condition, the GA fitness

function was defined as the sum of squared errors (SSE) between

the main sequence plots of the model and of the experiments [4].

The highest fitness value was found for ae~0:014. One should

note that the value of ah has no effect in the head-restrained

condition since gh~0 in this case. For the head-free condition, the

fitness function was set as the SSE between the relative eye/head

contribution of the simulated and of the experimental results, with

eye position initialized at zero. The best parameters found in this

case were ae~1:0 and ah~0:014.

Head-Restrained Condition
With the best model parameters found by the GA, we simulated

the learning procedure (Equation 6) for different target object

positions. The integration time was set to T~300 ms, which was

enough for learning saccadic eye movements for all amplitudes.

We compared the simulation results to the experimental data

obtained by Harwood and colleagues on human subjects

performing horizontal eye movements [4]. This comparison was

made between the main sequence plots, as shown in Figure 3.

The resulting neural control signals and their corresponding

plant responses for three target object positions, 100, 200, and 300,
are depicted in Figure 4. These signals comprise two main phases:

the saccadic phase during which the control signal is strong; and

the fixation phase when it has a roughly constant but slightly

oscillating positive value. The mean value of the neural control

signal in the fixation period is proportional to the target position,

and the small oscillations lead to slight eye drifts that are negligible

because of their low contribution to the cost function. In fact, the

eye plant filters out the high frequency inputs so that the eyes do

not follow these oscillations. The decrease of the firing rate at the

end of the plot is a boundary effect. No matter how long the

integration time T is, this effect is always observed at the final

time.

The general form of the optimized neural control signals shown

in Figure 4 resembles the firing patterns of abducens nucleus

Figure 3. Comparing the main sequence plots of the proposed
model to experimental data, in head-restrained condition. (A)
Peak velocity and (B) duration of saccades versus their amplitudes. The
solid lines represent the model results after learning, and the crosses
are experimental data taken from an experiment on human subjects [4].
doi:10.1371/journal.pcbi.1002253.g003

Learning the Optimal Control of Gaze Shifts
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motoneurons in monkey responsible for saccadic eye movements,

shown in Figure 5: a fast increase in the firing rate is followed by a

slow decrease (the burst phase), then follows an oscillatory steady

state that maintains the fixation (the tonic phase). During fixation,

in both model and experimental data, the sustained tonic firing

rate is proportional to the eye position. However, one should note

that the firing rate patterns shown in Figure 4 are differential, i.e.

they are obtained as the difference between the activity of agonist

and antagonist motor neurons, while the ones shown in Figure 5

are not.

Without changing the model parameters we tested if the model

is capable of reproducing realistic velocity profiles. For this, we

simulated the learning process for the amplitudes ranging from 100

to 800. The velocity profiles corresponding to different saccadic

amplitudes are shown in Figure 6. For small amplitudes, the

profiles are smooth and almost symmetric, while for larger

amplitudes they become skewed. The main reason for the former

symmetry is that the effect of weight updating mechanisms

(Equations 6 and 7) on the saccadic velocity is symmetric when the

second term of the cost function (Equation 5) is small enough. This

effect becomes biased against large weights when the second

weight regularization term grows as a result of an increase in target

eccentricity. The same trend is observed in experimental results,

an example is presented in a study by Collewijn and colleagues [6]

(see Figure 2 of this paper). It is worth noting that to make these

large eye-only saccades possible in such experiments, for each

saccadic amplitude A the saccade is made from 2A/2 to +A/2

relative to the central fixation point on the horizontal meridian.

For instance, a 800 saccade is made by moving the eyes from {400

to 400 in head coordinates.

Head-Free Condition
For the head-free condition, we again used the parameter values

obtained by the GA and compared our results to experimental

data from a study on rhesus monkeys [10]. The integration time T
was set to 2 seconds for allowing the model to learn slow head

movements. We let the model learn the gaze shifts for object

positions ranging from 100 to 900 with a step size of 100, and for

different initial eye positions.

Experimental studies have revealed that the relative contribu-

tion of eye and head to total gaze shift varies depending on the

gaze shift amplitude [10]. To see if our model is able to reproduce

these observations, we have defined two quantities in compliance

with the mentioned studies: first, the eye contribution to the gaze shift,

which is defined as the amplitude of the eye movement that occurs

between the eye movement onset and gaze movement end.

Second, the head contribution to the gaze shift that indicates the head

movement amplitude within this period. These two quantities are

sketched in Figure 7 for object positions ranging from 100 to 900

and initial eye position equal to zero. In both model and

experimental data, the head contribution keeps increasing while

the eye contribution undergoes a soft saturation as a function of

Figure 4. Model behavior after learning for saccades to targets
at 100, 200, and 300 in head-restrained condition. (A) Optimized
neural command signals of the eye defined as the difference between
agonist and antagonist neural commands. (B) Eye position (eccentricity)
in head coordinates. Target positions are shown by dashed lines.
doi:10.1371/journal.pcbi.1002253.g004

Figure 5. Experimental data from concurrent recording of
motor neurons activities and eye position during head-
restrained gaze shifts. (A) Firing pattern of an abducens nucleus
(ABN) motor neuron during saccades with different amplitudes, coded
by different colors. (B) The resulting change in the eye position. Both
neural activity and eye position signals are vertically shifted such that
they have zero initial values. Dashed lines show target (final) eye
positions. Data are obtained from an experiment on rhesus monkeys
[70], and are provided by M. Van Horn and K. Cullen.
doi:10.1371/journal.pcbi.1002253.g005

Learning the Optimal Control of Gaze Shifts
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gaze shift amplitude. This behavior is also evident in the eye and

head velocity profiles in Figure 8. While the head peak velocity

increases proportionally with the gaze shift amplitude, the eye

peak velocity saturates for very large gaze shifts (rgazew500).

The two phases of coordinated eye and head movements, i.e.

the rapid gaze shift phase and the VOR-like behavior, are evident

in the position plots shown in Figure 9. These two phases can also

be observed in the eye velocity profiles (Figure 8A), where the eye

velocity is positive during the first phase and negative during the

second.

According to our model, the main reason for the observed

increase of the head contribution compared to that of the eye is the

existence of slower poles in the head plant that require more time

to produce a considerable response. For very low gaze shift

amplitudes (rgazeƒ200) the eyes rapidly catch the target before the

head plant accelerates; therefore the head contribution is almost

zero. For larger gaze shift amplitudes, the head has enough time to

accelerate since the eye plant saturates due to the cost on its neural

command signal. Thus, the increase in the head contribution

gradually dominates the increase of the eye contribution, leading

to the results shown in Figure 7. Compared to the head-restrained

condition, the gaze shift duration is longer for the same gaze shift

amplitudes. This difference increases almost linearly by increasing

the amplitude (Figure 10; also compare Figure 8C with Figure 6),

which is compatible with experimental results [47].

Experimental studies have also shown that the relative

contribution of eye and head to total gaze shift depends on the

initial eye position in head coordinates [10,29,30,48]. In fact, gaze

shifts with identical amplitudes can be constructed of eye and head

movements having a variety of amplitudes. To check for the ability

of our model to reproduce this behavior with the same set of free

parameter values, we ran a second set of simulations. In these

simulations, three gaze shift amplitudes (250, 450, and 700) were

learned for different initial eye positions ({300, {150, 00 and 150).
We compared the results of our simulation to experimental data

obtained from a study on rhesus monkeys [10] in Figure 11. In

both model and experimental results, when the eyes are initially

deviated away from the movement direction (negative initial eye

positions), the head contributes less - and consequently the eyes

contribute more - compared to the situation where the initial eye

position is deviated in the direction of the gaze shift (positive initial

eye positions). In terms of our model, this behavior can be

explained by looking at the neural command signals that are

necessary in each situation: if we consider no contribution from the

head, the final eye position will only depend on the initial eye

position, such that the eye movements starting from more positive

initial positions end up with higher final positions. This requires an

overall larger neural command signal compared to negative initial

eye positions, and according to the proposed cost function, larger

command signals impose higher costs. To decrease this cost, the

head should contribute more when the initial eye position is more

positive.

Discussion

Using the architecture shown in Figure 1 and considering a

simple cost function defined by Equation 5, we were able to

Figure 6. Adapted eye velocity profiles during the head-
restrained condition for target positions from 50 to 800. For
comparison to experimental results, see for example Figure 2 of [6].
doi:10.1371/journal.pcbi.1002253.g006

Figure 7. Relative contribution of eye and head to total gaze
shift for different gaze shift amplitudes. (A) Eye contribution
calculated as the relative displacement of the eye from the beginning
until the end of gaze shift. (B) Head contribution calculated in the same
way. Dots are experimental data from a study on rhesus monkeys
making horizontal gaze shifts [10]; and green circles are model
simulation results.
doi:10.1371/journal.pcbi.1002253.g007
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reproduce the fundamental characteristics of coordinated eye and

head movements in both head-restrained and head-free condi-

tions. The proposed optimality principle has some similarities, as

well as differences, to existing principles [22,23]. A point-by-point

comparison between our model and other principles including the

minimum-time, minimum-variance, and minimum-effort is given

in Table 1.

A substantial difference of the new cost function from previous

ones is that it does not directly penalize the gaze shift duration.

Instead, it punishes the total gaze error integrated over an

arbitrary time interval (T) that is large enough to encompass the

gaze shift period. This has two benefits: first, it allows for the

application of the gradient descent method, since the total gaze

error can be expressed directly in terms of an unknown neural

command signal (see Text S1). This is not possible for the other

principles due to the fact that there exists no closed-form

expression of the gaze shift duration in terms of the neural

command. The incorporation of gradient descent into optimiza-

tion means that the optimization process turns into an incremental

learning process, which can be regarded as a step forward in the

direction of a biologically realistic implementation.

The second advantage of the arbitrary integration time in

Equation 5 is that it also covers part of the post-saccadic response.

This implies that our model is also able to generate the motor

commands needed immediately after the gaze shift, whereas the

previous models have only attempted to explain the gaze shift

phase. In the head-restrained condition, this is just before the

visual feedback from the target is re-established to keep the eye

position still on the target. For the head-free condition, the model

is able to reproduce a VOR-like behavior, where the eyes move

back toward their central position in head and at the same time

the head continues moving such that the gaze remains stabilized

on the target.

As pointed out in Table 1, the proposed optimality principle,

along with minimum-effort, is able to reproduce not only the main

sequence behavior in the head-restrained condition, but also the

coordination of eye and head during head-free gaze shifts, whereas

Figure 8. Velocity profiles generated by the proposed model,
for different gaze shift amplitudes in head-free condition. (A)
Eye, (B) head, and (C) gaze velocity profiles. The color codes for different
gaze shift amplitudes in degrees (see the legends).
doi:10.1371/journal.pcbi.1002253.g008

Figure 9. Eye, head and gaze positions for a 800 gaze shift. The two phases of coordinated eye and head movements, rapid gaze shift and
VOR-like behavior, are evident.
doi:10.1371/journal.pcbi.1002253.g009

Learning the Optimal Control of Gaze Shifts

PLoS Computational Biology | www.ploscompbiol.org 8 November 2011 | Volume 7 | Issue 11 | e1002253



minimum-variance is not. Nevertheless, the minimum-variance

principle has been successfully generalized to other motor control

tasks such as arm movements [21]. Apart from minimum-time, all

of the models are able to generate biologically realistic velocity

profiles for eye-only saccades, but only the minimum-effort model

is capable of reproducing double-peaked eye-velocity profiles [23]

that are observed experimentally during head-free gaze shifts [24].

In the simulation results, the value of ae in the head-free

condition (1:0) is considerably larger than in the head-restrained

condition (0:014). This implies that the resulting eye controller

weights we
ij and consequently the average amplitude of the eye

command signal ue(t) should be smaller in the head-free condition.

This effect might be related to the hypothesis that the head

velocity signal inhibits the gain of the saccadic BG units [12].

The learning mechanism introduced by Equations 6 and 7

necessitates the existence of eye and head internal models that

provide fe
ij(t) and fh

ij(t). These forward models respond to the

activity of individual neurons in the spatiotemporal map. In

addition, since vision is impaired during saccades, there should

exist another internal forward model which provides the sign of

the gaze error to the adaptation mechanism (see the adaptation

unit in Figure 1) using efference copies of the current neural

control signals, ue(t) and uh(t), as input.

The cerebellum is widely regarded as a neural substrate where

internal models of the motor system are located (see [49] for a

review), and the most convincing neurophysiological data for

internal models has been obtained for eye movements [50].

Bastian suggests that the cerebellum performs feedforward

correction on the movement based on the error assigned to the

previous movement [51]. Interestingly, an experimental study by

Soetedjo and Fuchs indicates that the complex spike activity of

Purkinje cells (P-cells) in the vermis of the oculomotor cerebellum

signals the sign (direction) but not the magnitude of the gaze error

during saccade adaptation [52], a finding which is consistent with

the adaptation mechanisms of our model. Furthermore, several

studies have revealed that cerebellar lesions permanently annihi-

late the adaptive capabilities of saccadic eye movements [36,53–

55], which suggest that the saccadic system is constantly calibrated

Figure 10. Gaze shift duration in the proposed model, for
head-restrained compared to head-free conditions. The dashed
line shows the head restrained and the solid line the head-free
condition. The duration is in general higher in the head-free condition,
and the difference increases by increasing the gaze shift amplitude.
Circles show sampled data, and the lines are fitted by linear regression
using the least squares approach. The correlation coefficients (r) and the
slopes (s) are r~0:991 and s~0:007 for the solid line and r~0:998 and
s~0:003 for the dashed line.
doi:10.1371/journal.pcbi.1002253.g010

Figure 11. Eye and head contribution to the gaze shift as a
function of initial eye position. (A) Eye and (B) head contribution
obtained for the gaze shift amplitudes of 250 (triangles), 450 (circles) and
700 (squares). Main plots show model results after learning, and insets
illustrate the mean value of experimental data extracted from a study on
rhesus monkeys [10]. The linear fits conducted both on the model and on
the experimental data are obtained by linear regression using the least
squares approach. The correlation coefficient (r) and the slope (s) of each
line is as follows. For the model data, Panel A: 250 : r~{0:93, s~{0:19;
450 : r~{0:94, s~{0:50; 700 : r~{0:99, s~{0:78. Panel B: 250 : r~
0:96, s~0:08; 450 : r~0:95, s~0:43; 700 : r~0:98, s~0:54. For the ex-
perimental data, Panel A: 250 : r~{0:56, s~{0:06; 450 : r~{0:88, s~
{0:37; 700 : r~{0:97, s~{0:51. Panel B: 250 : r~0:44, s~0:04; 450 : r
~0:79, s~0:34; 700 : r~0:94, s~0:53.
doi:10.1371/journal.pcbi.1002253.g011
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by the cerebellum. Specifically, the study of Buettner and Straube

showed that bilateral lesions in the cerebellar vermis lead to

hypometric saccades [54]. This effect can be reproduced in our

model by eliminating the adaptation signal (the first term in

Equation 6). In such a situation, the weight decay term will

decrease the weight values, leading to saccades that are smaller

than the desired gaze shift.

Based on the mentioned studies about the cerebellum, we

speculate that the adaptation signals affecting the feedforward

controller are likely to be produced by the cerebellar vermis. This

assumption, however, requires several parallel implementations of

the eye and head forward models for each weighted connection in

the feedforward control pathway. The existence of several parallel

microzones in the cerebellum that receive inputs via different sets

of mossy fibers and project their outputs via distinct P-cells [56]

offers a possible neural basis for that, but further investigations on

the exact functionality of these microzones are necessary.

So far we speculated on possible neural substrates responsible

for the adaptation. Now we look for possible neural substrates that

are maintaining the open-loop (feedforward) control of saccadic

gaze shifts. Takemura and colleagues analyzed the relationship

between the firing patterns of the P-cells in the ventral

paraflocculus (VPFL) area of the cerebellum and the following

ocular responses [57]. They used a second-order linear regression

method to reconstruct these signals based on three aspects of the

eye movement: position, velocity and acceleration. This second-

order linear method was able to reproduce temporal firing

patterns of VPFL neurons. When a single set of coefficients was

used for different visual stimuli in order to reconstruct the firing

pattern of the cells in the VPFL, the best fits were found for P-cells

in this area. This observation implies that there is a linear

relationship between the firing pattern of P-cells in the cerebellar

VPFL and the eye kinematics. Hence, the cerebellar VPFL is a

possible candidate for the neural controller of our model. More

specifically, we can consider the neural delay line structure as a

model of the granular layer and the read-out neuron as a P-cell, in

accordance with the cerebellar models which assume the granular

layer as a basis for the spatiotemporal representation of the input

signals and the P-cell layer as a layer that receives weighted

projections from the granular layer [58,59].

Another possible candidate for the open-loop neural controller

is the superior colliculus (SC). It has been assumed that the caudo-

rostral spread of activation emerging among the build-up cells of

the SC is caused by an internal feedback signal during saccadic eye

movements [28,60,61]. One of the most important predictions of

these models is that interrupting this spread should delay the

arrival of the activity at the rostral SC, and the eye should reach

the target with delay. However, a lesion experiment performed on

the SC does not support this idea: Aizawa and Wurtz observed

that instead of delaying the reach time, the lesion results in a

curved trajectory that does not end at the target position [62].

Motivated by this observation, Nakahara and colleagues suggested

a computational model of the SC in which the spread of activity is

a mere epiphenomenon of the asymmetric connections within the

SC [63]. This suggestion supports our assumption that the neural

activity propagation in the delay lines is a self-reliant process which

does not depend on any external feedback, and makes the SC a

strong candidate for the spatiotemporal map in our model.

Furthermore, experiments have revealed that within the projec-

tions from the SC to BG neurons, stronger connections are

correlated with larger saccade amplitudes [64]. This supports the

assumption that the spatiotemporal transformation in the saccadic

systems relies on the SC-BG projections. Nevertheless, in a model

of the saccade generating system suggested by Optican and Quaia,

the neuronal activity does not spread on the SC. Instead, together

with a saccade velocity feedback signal, it causes a wave of activity

on the cerebellar fastigial nucleus (FOR) that drives the BG

neurons [65,66].

When comparing model simulation results to experimental

data, the reader should note that part of the data is obtained from

monkeys while the other part is captured from human subjects (see

the figure captions). This discrepancy is primarily due to the fact

that appropriate data were not available for either monkeys or

human subjects in order to make precise comparisons between the

model and the primates behavior. In fact, the monkeys gaze shift

behavior is very similar to that of humans, and there are only slight

differences which are due to different mechanical properties of the

oculomotor system between the two species [67]. These differenc-

es, however, are negligible in our study as they do not have a

severe impact on the proposed computational principles.

The aim of this study was to keep the proposed computational

model as simple as possible, and to extend it only if there was some

aspect which could not be addressed by the simple model.

Therefore, the brainstem BGs and the motoneurons are not

distinguished in our model, and the read-out neurons in Figure 1

are a simplified representation of the brainstem-motoneuron

circuitry. Figure 12 illustrates a summary of our speculation on

possible neural substrates responsible for the control and the

learning of saccades. Indeed, more experimental investigations are

needed to clarify the contribution of the cerebellum or the SC to

Table 1. Comparing the proposed model to other models in various aspects.

Feature Minimum-Time [18] Minimum-Variance [21] Minimum-Effort [23] Our Model

Main Sequence 3 3 3 3

Realistic Velocity Profiles in Head-Fixed Condition 7 3 3 3

Eye Fixation in Head-Fixed Condition 7 3 7 3

Eye-Head Coordination 7 7 3 3

Neural Implementation 7 7 3 3

VOR-like behavior in Head-Free Condition 7 7 7 3

No Boundary Conditions 7 7 7 3

Incremental Learning 7 7 7 3

Generalized to other tasks 3 3 7 7

Double-Peaked Eye Velocity Profiles in Head-Free Condition 7 7 3 7

doi:10.1371/journal.pcbi.1002253.t001
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the open-loop control of saccadic eye movements. As for

adaptation, the signals produced by the adaptation unit of our

model should be compared to signals that are transmitted from the

cerebellar vermis to the brainstem when saccades are executed.

Future Work
The present model only addresses the generation of saccadic

gaze shifts along one spatial axis, requiring one column (delay line)

for every target position along this axis. A naı̈ve approach to

generalize the model would be to introduce one column for every

oculocentric position. However, this would require a very large

quantity of neurons. As an alternative approach, one can

introduce two separate 1-D controllers for the horizontal and

vertical components of a gaze shift. Such an approach has been

successfully implemented in [68]. Another open issue is the neural

implementation of the forward models used by the neural

controller, and a model that describes how the parameters of

such forward models are adapted. To this end, one could use the

temporal sequence learning approach [69] to perform forward

model learning. Finally, the proposed open-loop controller can be

generalized to involve other ballistic motor control tasks beyond

coordinated eye and head movements, by finding appropriate cost

functions that underly those tasks.

Supporting Information

Text S1 Text S1 supplies detailed information on Eye and Head

Plant Models, linear models of the eye and head dynamics used

throughout this study; Gradient Descent Optimization, the optimization

method used to derive the learning rules (Equations 6–9); Adaptive

Learning Rate Method, a method for accelerating the learning

procedure; and Implementation, describing the genetic algorithm

method used for optimizing the free parameters of the proposed

model.
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