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Abstract

Left-sided congenital heart disease (CHD) encompasses a spectrum of malformations that range from bicuspid aortic valve
to hypoplastic left heart syndrome. It contributes significantly to infant mortality and has serious implications in adult
cardiology. Although left-sided CHD is known to be highly heritable, the underlying genetic determinants are largely
unidentified. In this study, we sought to determine the impact of structural genomic variation on left-sided CHD and
compared multiplex families (464 individuals with 174 affecteds (37.5%) in 59 multiplex families and 8 trios) to 1,582 well-
phenotyped controls. 73 unique inherited or de novo CNVs in 54 individuals were identified in the left-sided CHD cohort.
After stringent filtering, our gene inventory reveals 25 new candidates for LS-CHD pathogenesis, such as SMC1A, MFAP4, and
CTHRC1, and overlaps with several known syndromic loci. Conservative estimation examining the overlap of the prioritized
gene content with CNVs present only in affected individuals in our cohort implies a strong effect for unique CNVs in at least
10% of left-sided CHD cases. Enrichment testing of gene content in all identified CNVs showed a significant association with
angiogenesis. In this first family-based CNV study of left-sided CHD, we found that both co-segregating and de novo events
associate with disease in a complex fashion at structural genomic level. Often viewed as an anatomically circumscript
disease, a subset of left-sided CHD may in fact reflect more general genetic perturbations of angiogenesis and/or vascular
biology.
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Introduction

Left-sided congenital heart disease (LS-CHD) is one of the most

prevalent and severe cardiac malformations. The spectrum

includes bicuspid aortic valve (BAV), aortic valve stenosis (AS),

coarctation of the aorta (CoA) and hypoplastic left heart syndrome

(HLHS). Several observations, such as familial clustering as well as

statistical evidence from heritability analyses, suggest that LS-

CHD is strongly determined by genetic factors [1–3]. Linkage

analyses have revealed several significant loci in BAV, HLHS and

other forms of LS-CHD, as well as interrelatedness of subsets of

BAV and HLHS [4–6]. In human and mouse models, mutations

in key cardiac regulators (e.g, NOTCH1, NKX2–5, GATA5) can

cause LS-CHD [7–9]. Genotype-phenotype correlations have

been established for syndromic conditions, often with highly

variable expressivity including LS-CHD as a feature, such as de

Lange, Holt-Oram and Jacobsen syndromes [10,11]. Recently,

structural genomic variants have been implicated in the patho-
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genesis of congenital heart disease, but the extent to which copy

number variants (CNVs) contribute to LS-CHD and its heritability

has not yet been examined in detail [12,13]. We sought to further

delineate the role of such variants and hypothesized that multiplex

families enriched in LS-CHD phenotypes exhibit rare, causative

CNVs not detectable by linkage analysis. The cohort was

assembled almost exclusively within the French-Canadian popu-

lation, which is characterized by a marked founder effect and has

previously led to the identification of numerous disease genes [14].

We surveyed 464 genomes/individuals in 59 multiplex families

and 8 trios of a pedigree-based LS-CHD cohort from Quebec

using the Affymetrix Genome-Wide Human SNP Array 6.0 array

[15]. We compared our results to those from a large control cohort

at the University of Ottawa Heart Institute (UOHI, N = 1582)

which had complete cardiovascular phenotyping [16].

Here, we report the results of the first family-based study of the

role of CNVs in LS-CHD and identify both cosegregating and de

novo CNVs enriched in angiogenesis with 25 novel candidate genes

that account for up to 10% of disease in our cohort.

Results

Cohort description
We accessed a biobank of patients and families with congenital

heart disease, centered on the recruitment of French-Canadian

multiplex families with LS-CHD [15]. From a total of 464 samples

in 67 families genotyped on the Affymetrix 6.0 platform, 174

(37.5%) members were affected with LS-CHD and 290 (62.5%)

were confirmed unaffected. A summary by lesion is provided in

Table 1 (detailed in Table S1). In 59/67 (83%) families, multiple

members were affected with cardiac conditions. In eight families,

only one member was affected. In multiplex families, the following

relationships between pairs of affecteds were observed: parent-

offspring N = 71, sibships/half-sibships N = 30, more distant

relationships (grand-parent-grand-child, avuncular, cousins)

N = 73. Diagnoses were concordant in 13 multiplex families,

discordant in 27, and both concordant and discordant in 17. The

median number of affected individuals in multiplex families was

two, the maximum nine. A summary overview of the workflow is

given in Figure 1.

Measuring the CNV burden and disease association
We compared affected and unaffected individuals with respect

to number and size of CNVs, type of CNV (deletion or

duplication) and number of genes intersected. Among the LS-

CHD cohort, 6,956 autosomal CNVs were detected, amounting to

an average of 14.97 autosomal CNVs per individual. We did not

detect any statistically significant differences between affected and

unaffected individuals in the LS-CHD cohort for overall CNV

burden, CNV size, CNV type and number of genes intersected

(Table S2).

To search for enrichment of disease associated CNVs within the

identified CNVs of the LS-CHD cohort, we first compared

affected individuals to unaffected ones using a logistic regression of

three different scenarios, which were adjusted for family structure:

1) CNV duplication versus normal CNV state; 2) CNV deletions

versus normal CNV state; 3) both CNV duplications or deletions

versus normal CNV state. This approach identified 6 enriched

genomic loci (pools) of overlapping CNVs (Table S3). After

comparison to the well-phenotyped OHI control cohort and

public databases, only three pools remained (Figure S4, Table S4),

all of which were overlapping segmental duplications.

Next, we evaluated 147 CNVs found to be present only in

affected individuals of the LS-CHD cohort. After identical

comparisons with controls (Figure S4), 111 unique CNVs were

identified which were present only in affecteds. Of the 111 unique

CNVs, 73 CNVs remained unique (Table S4 and Figure S5) after

accounting for the removal of CNVs based on segmental

duplications, 37 as common variants and eight as false negative

and positive CNV calls. We found 6/73 of the CNVs to be de novo

occurrences in the pedigrees, 24/73 were inherited. For the

remaining 43/73 CNVs, ancestral information was not available

(minimum estimated CNV de novo transmission rate of the affected

individuals in 53 trios 0.023 and 41 unaffected trios 0.015). Both

gains (n = 38) and losses (n = 35) were identified (Table S5).

Gene inventory and prioritization
In order to describe a role for the genes intersecting within these

73 CNVs in cardiac development, we used PLINK to test for

pathway enrichment analysis [17]. Using a rigorous algorithm for

pathway enrichment analysis, we found that genes involved in

angiogenesis for all identified CNVs, but not other examined gene

sets, were significantly enriched in CNVs of affected individuals

(genic CNVs p = 0.00867, all CNVs p = 0.0076) (Tables S6 and

Author Summary

Congenital heart disease (CHD) is the leading malforma-
tion among all newborns, and one of the leading causes of
morbidity and mortality in Western countries. Left-sided
CHD (LS-CHD) encompasses a spectrum ranging from
bicuspid aortic valve to aortic stenosis and hypoplastic left
heart syndrome with familial clustering. To date, the
genetic causes for LS-CHD remain unknown in the majority
of patients. To determine the impact of structural genomic
variation in multiplex families with LS-CHD, we searched
for unique or rare copy number variants present only in
affected members of a multiplex family cohort (N
total = 464, N affected members = 174 (37.5%)) and absent
from 1,582 controls free from LS-CHD. A stringent filter
based on in silico prioritization and gene expression
analysis during development allowed us to identify genes
associated with LS-CHD. Our study revealed 25 new
candidate genes for LS-CHD, such as SMC1A, MFAP4, and
CTHRC1, and overlap with known syndromic loci. We
estimate that unique copy number variants contribute to
at least 10% of left-sided CHD cases, with a gene content
suggesting broader perturbations of angiogenesis at the
base of LS-CHD.

Table 1. Overview over lesions.

Isolated aortic stenosis 19 (10.9)

Isolated aortic root or ascending aorta dilation 20 (11.5)

Isolated BAV 17 (9.7)

Isolated mitral valve defect 13 (7.5)

Isolated CoA 5 (2.8)

More than one LS-CHD lesion 41 (23.6)

LS-CHD lesion and additional CVM 59* (33.9)

Total 174

Distribution of isolated and combined LS-CHD phenotypes. Percents are relative
to the total of 174 individuals with cardiovascular malformation.
*This number includes one case with hypoplastic left heart syndrome.
doi:10.1371/journal.pgen.1002903.t001

Copy Number Variants Cause Aortic Valve Disease
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S7). We next analyzed the gene content of the CNVs by three

different approaches in order to evaluate a possible role in

cardiovascular biology:

a.) We conducted in silico prediction of gene functionality based

on a training set of genes involved in angiogenesis [18]. Our

gene set showed three exact matches with the training dataset

(MAPK7, ADORA2B and ANG). We identified 26 genes which

were significantly enriched (p,0.05) in the LS-CHD cohort

(Table S8).

b.) We used serial analysis of gene expression (SAGE) libraries of

embryonic mouse heart libraries to search for genes with at

least 3-fold higher expression in the developing outflow tract

versus the atria and ventricles at E10.5 [19,20]. In 8 affected

individuals, unique CNVs intersected 16 such genes (Table

S9).

c.) We mined public databases for cardiac-specific function and/

or expression patterns of identified genes. Visual inspection of

in situ expression profiles in the developing mouse identified 19

genes with a strong expression level either in the valves or the

heart (Table 2) [20,21].

Using these three criteria, we identified 25 potential candidates

for LS-CHD present in at least two of the three prioritization

methods (Table 2). One example is CTHRC1, a Wnt cofactor that

selectively activates the Wnt/PCP pathway. This gene showed a

28-fold higher expression in the outflow tract versus the cardiac

chambers and was specifically expressed within developing valves

(Figure 2) [22,23]. Another example, MFAP4, is located within the

Smith-Magenis/Potocki-Lupski syndrome region, thought to be

an elastin-binding matrix protein involved in cell adhesion and

highly expressed in developing valves and great vessels (Figure 2)

[24]. Comparing our results with loci suggested by previous

studies, we find that only the locus on 10q22 containing

PLA2G12A overlaps with a locus identified in a linkage scan for

hypoplastic left heart syndrome [6]. This gene encodes a secreted

phospholipase A(2), is abundantly expressed in the heart and

inhibits the BMP-pathway through binding to SMAD-complexes

[25].

Overlap with syndromic loci
Since numerous genetic syndromes are associated with LS-

CHD, we searched for overlap between the 25 prioritzed

candidates and known loci of such syndromes (Figure 1) [26]. Four

regions were thus identified: X-linked Cornelia de

Lange (Xp11.22), Ellis-van-Creveld/Witkop/Wolfram syndrome

(4p16.1) and Potocki-Lupski syndrome (17p11.2). In addition, we

Figure 1. Summary overview of the workflow for CNV detection. Flowchart of sample analysis from recruitment to prioritization.
doi:10.1371/journal.pgen.1002903.g001

Copy Number Variants Cause Aortic Valve Disease
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also identified a de novo gain at the previously identified 1q21 locus

[27].

In family 5, we observed a gain at Xp11.22, encompassing

SMC1A, RIBC1, IQSEC2 and HSD17B10. FISH analysis revealed a

46, ins(X;9)(p11.22;q12) karyotype in the father (Figure 3 and

Figure 4). Mutations in SMC1A cause the X-linked form of

Cornelia de Lange syndrome, in which approximately 25% of

patients have CHD, including LS-CHD [28]. In family 43, we

detected a duplication on chromosome 4p16.2-16.1 (3817 kb)

encompassing 34 genes, including MSX1, EVC and EVC2. The

mother was the only individual exhibiting this CNV, all of her 3

children were healthy (Figure 3 and Figure 5). The observed

phenotype of aortic valve dysplasia differs from the described

cardiac features of Ellis van Creveld syndrome, and no phenotypic

overlap with Witkop/orofacial clefting syndromes was apparent

[29,30]. Interestingly, valvular involvement was described in

multiple individuals with Wolfram syndrome [30]. In family 8,

we detected an affected individual with a 4801 kb gain on

chr17p12-p11.2 matching the previously described Potocki-Lupski

locus [31]. Cardiac anomalies were present in 26% of the cases

with Potocki-Lupski Syndrome, including dilated aortic root, VSD

and bicuspid valve, which were all observed in our case [32]. A de

novo gain at the previously described 1q21.1 locus was found in an

individual with BAV, coarctation and ventricular septal defect in

family 54 [27]. Taken together, the inventory of the CNV regions

overlapping with known syndromic regions reinforces the func-

tional candidacy of the genes identified.

Transmission patterns
We next sought to determine whether segregation patterns of

CNVs containing the most highly prioritized 25 genes would

provide additional support for causality (Figure 1). We found that

five unique exon-overlapping CNVs segregated with an LS-CHD

phenotype in five different families (Figure 3).

In family 5, the ins(X;9)(p11.22;q12) was passed on from the

affected father to one affected child, but not to a second affected

child. Within this family, the severely affected child received

another unique variant from the mother, leading to a gain of the

PXDNL locus on chromosome 8. This gain was also found in the

maternal uncle of the index case known to have BAV. PXDNL/

VPO2, could not undergo the full prioritization workflow, since it is

a human-specific gene; high cardiovascular expression has been

described for this gene (Figure 3A) [33]. In family 54, we found an

inherited loss at the LIMS1 locus; targeted mouse models of LIMS1

exhibit cardiovascular phenotypes (Figure 3B) [34]. In addition,

this family also shows cosegregation of a rare gain on chromosome

3 (encompassing PARP14, HSPBAP1, DIRC2, SEMA5), however,

none of the genes contained within this CNV was prioritized in

Table 2. Identified candidate genes.

Gene name Endeavour SAGE enrichment Eurexpress/Genepaint Transmission pattern Genomic location

ANG/RNASE4 0.000376 nd + Inherited (244, 245) Chr14q11.2

MAPK7 0.000122 8.15 2 De novo (607) Chr17p11.2

NCOR1 0.000937 nd + De novo (607) Chr17p11.2

ADORA2B 0.00379 nd + De novo (607) Chr17p11.2

MFAP4 0.00288 11.64 + De novo (607) Chr17p11.2

COPS3 0.00379 nd + De novo (607) Chr17p11.2

FLII 0.00187 nd + De novo (607) Chr17p11.2

MSX1 0.0049 7.36 N/A De novo (599) Chr4p16

SREBF1 0.00786 nd + De novo (607) Chr17p11.2

SMC1A 0.00906 nd + Inherited (17, 20) ChrXp11.22

LIMS1 0.00496 nd + Inherited (389, 390) Chr2q12

CACNA1C 0.00734 nd + n/a(84) Chr12p13

CRMP1 0.0156 10.96 2 De novo (599) Chr4p16

RASD1 0.0107 12.83 2 De novo (607) Chr17p11.2

ERCC5 0.0139 5.65 2 Inherited (92,96) Chr13q33

ULK2 0.0287 nd + De novo (607) Chr17p11.2

PLA2G12A 0.0409 3.61 2 n/a(717) Chr10q22

NGEF 0.0454 nd + Inherited (106, 107) Chr2q37

GRPEL1 0.11 3.10 + de novo (599) Chr4p16

PRPSAP2 0.34 3.49 + De novo (607) Chr17p11.2

MTHFD2 0.84 6.14 + de novo (834) Chr2p13

EVC2 0.74 6.19 + De novo (599) Chr4p16

CTHRC1 0.17 27.85 + De novo (243) Chr8q22

ITGA10 0.00348 nd + De novo (390) Chr1q21

HSD17B10 0.0281 nd + Inherited (17, 20) chrXp11.22

Compilation of the 25 LS-CHD candidate genes fulfilling all selection criteria. From left to right: gene name; ENDEAVOUR in silico prioritization; fold overexpression in
SAGE experiments outflow tract versus atria/ventricles; in situ hybridization in mouse hearts at embryonic day E10.5; transmission pattern (individual IDs); genomic
location.
doi:10.1371/journal.pgen.1002903.t002

Copy Number Variants Cause Aortic Valve Disease
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our workflow. In families 18, 21 and 39, a single instance each of

vertical transmission of a rare, prioritized CNV was observed

(Figure 3D, 3E, 3F). Taken together, 4/5 families with transmis-

sion of a prioritized CNV showed discordant phenotypes, only

family 21 exhibited concordant phenotypes in both affecteds

(Figure 3E). A total of 12 patients in 5 families thus show

segregation of a rare, prioritized CNV with LS-CHD. In a further

five patients, occurrence of such CNVs was either de novo or could

not be evaluated further due to lack of ascertainment of ancestors

(Table 2). Taken together, CNVs fulfilling all selection criteria

were observed in 17/174 affecteds, suggestive of a disease-causing

contribution in 10% of our population.

Discussion

Previous studies have provided evidence for an important role of

CNVs in the pathogenesis of several developmental conditions,

including congenital heart disease. These studies have predomi-

nantly relied on identification of de novo CNVs in sporadic cases.

Here, we present the first family-based CNV study in LS-CHD, a

disorder characterized by familial clustering, reduced penetrance

and variable expressivity.

Based on a carefully phenotyped cohort recruited from the

French-Canadian founder population and a large number of

controls with cardiac evaluation, our findings provide several lines

of evidence for a strong association of novel CNVs with LS-CHD.

Four plausible syndromic regions and 25 candidate genes either

known to be involved in congenital heart pathogenesis or highly

likely to impact the risk for LS-CHD were identified.

The use of a family-based cohort allowed us to make use of

segregation patterns to strengthen the association between rare

CNVs and LS-CHD. In our cohort enriched for multiplex

families, CNVs can occur both on an inherited and on a de novo

basis, mostly with intrafamilial phenotypic variability of LS-CHD.

This is compatible with a model in which structural genomic

variation contributes to both heritability and variable expressivity

of this trait. Interestingly, the vast majority of causative CNVs

identified in our study qualify as private in nature, despite our

intentional selection bias towards multiplex families within a

founder population.

In our studies, we used a sequential filtering approach to

increase the biological plausibility of identified LS-CHD candidate

genes. Several lines of evidence support enrichment for genes

involved in angiogenesis in this disease spectrum. We identified a

significant enrichment for genes implicated in angiogenesis,

pointing to a role of disturbances in endothelial development in

disease pathogenesis. In silico analyses, SAGE libraries and mining

of public databases identified several known and novel cardiac-

specific candidate genes. The in situ expression patterns of

CTHRC1 and MFAP4 are striking examples for enrichment in

developing valve structures and endothelium. Interestingly, both of

these genes act in known pathways of valvulogenesis and are copy-

number gains, suggesting that mechanisms other than haploinsuf-

Figure 2. mRNA expression profile of CTHRC1 and MFAP4 in embryonic mouse heart. (a, b). In situ hybridizations for MFAP4 of a sagittal
section of a wild-type stage E 14.5 mouse heart (c, d) In situ hybridizations for CTHRC1 of a sagittal section of a wild-type stage E 14.5 mouse heart.
Both assays show a strong expression in the pulmonary valve (arrows) and aortic/mitral valve (arrowheads). Unlike CTHRC1 which is more restricted to
the valves and only weakly expressed in the endothelium of the aorta, MFAP4 shows a strong expression in the pulmonary artery and ascending aorta
(asterisks). Pictures are taken from Eurexpress (www.eurexpress.org).
doi:10.1371/journal.pgen.1002903.g002

Copy Number Variants Cause Aortic Valve Disease
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ficiency may contribute to disease pathogenesis in these two

examples. Moreover, CTHRC1 was found to be significantly

overexpressed in calcific aortic stenosis, underscoring that hits to

developmental genes may predispose to both early and adult onset

valve disease [35].

This evidence is further corroborated by the identification of a

novel role for known syndromic loci in LS-CHD. Overall, CNVs

intersecting with four known syndromic loci were identified, and

for all loci, cardiovascular phenotypes were reported. Our study

widens the genotype-phenotype correlations in these syndromes; of

note, none of the patients had been a priori suspected to manifest

the associated clinical phenotypes. We suspect that for these loci,

the gene dosage – phenotype correlations are not perfect, and that

they represent predisposing loci which require further hits for full

penetrance of specific clinical features. Taking family 54 as an

example, the most severely affected individual showed three

unique CNVs, two inherited (one gain, one loss) from the affected

father, plus a de novo gain overlapping the previously described

1q21 locus (Figure 3). One of the inherited CNVs intersected with

LIMS1, which plays an essential role in outflow tract development

through TGF-b signalling. Interestingly, the clinical phenotypes

within this family partially overlapped, strengthening the idea that

multiple hits explain reduced penetrance or variable expressivity.

Based on this observation, we speculate that other CNVs may also

buffer phenotypes; i.e., two antagonistic hits within a single

cascade may render cardiac development tolerant against pertur-

bations in an epistatic fashion. Such a model would also be

consistent with insight from animal studies in which modifier genes

can govern normal or abnormal cardiac development on certain

backgrounds [36]. As another example, endothelial-specific

knockout of GATA5 in mice leads to BAV in only 20% of the

offspring, compatible with the reduced penetrance even of strong

alterations of gene dosage [9]. Other mouse models - examples

include mice haploinsufficient for eNOS, Nkx2.5 and Tbx5 - also

display reduced penetrance of CHD traits, with complex gene-

dosage effects of interacting alleles [8,37,38]. Of note, our study

was designed to identify CNVs which would not be detectable by

linkage analysis, using an algorithm that prevented the discovery

of incompletely penetrant alleles since CNVs seen in unaffected

family members or the well-phenotyped control cohort were

Figure 3. Selected segregation patterns of CNVs in LS-CHD pedigrees. See legend at the bottom of the figure for explanation of symbols.
DNA numbers refer to Tables S1, S2, S3, S4, S5, S6, S7, S8, S9 for affected individuals in whom rare CNVs were identified. A.) In family 5, we identified a
maternally inherited gain overlapping PXDNL and a paternally inherited insertion der(9)ins(X;9)(p11.22;q12) overlapping the Cornelia de Lange
syndrome gene SMC1A in the severely affected propositus.(NB: Individual 2126 was not initially genotyped on the Affymetrix 6.0 panel and is
therefore not described). B.) The severely affected propositus in family 54 showed three different rare CNVs: a paternally inherited gain overlapping
SEMA5B, HSPBAP1, DIRC2 and PARP14, a paternally inherited loss of LIMS1, and a de novo partial duplication on chromosome1q21.1. C.) De novo
occurrence and non-transmission of a large CNV gain (3817 kb) on chr4p16 overlapping the Ellis van Creveld region on chromosome 4. D.), E.) F.)
Segregation of prioritized CNVs with disease in families 18, 21 and 39.
doi:10.1371/journal.pgen.1002903.g003

Copy Number Variants Cause Aortic Valve Disease
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excluded. Two limitations of our study need to be kept in mind:

first, our results do not exclude the possibility that additional,

incompletely penetrant CNVs play a role in LS-CHD; second, our

design could have missed CNVs containing important non-coding

sequences such as regulatory elements since we required further

validation through expression studies. Further studies with much

larger cohorts are warranted to dispose of sufficient power for the

detection of incompletely penetrant alleles, rare double hits and

gene deserts [39].

Strengths of our study comprise the stringent, uniform CNV

analysis workflow for both the LS-CHD as well as the control

cohort, which yielded similar results in respect to reported de novo

CNV transmission rates [40]. Importantly, we used a rigorous

approach limited to CNVs which were unique or statistically

enriched in our cases. All controls had adequate cardiac screening

to account for mild phenotypes not detectable by conventional

clinical examination. Furthermore, the founder character of our

cohort theoretically facilitates detection of recurrent hits; never-

theless, this was not the case with our current sample size. On the

other hand, several limitations of our study should be noted. At

this point, it is unknown whether a cohort enriched for multiplex

families with LS-CHD is in itself genetically distinct from a normal

population sample. Due to the high stringency of our filtering

mechanism, our design precludes the discovery of CNVs with

incomplete penetrance and may underestimate the true impact of

CNVs on LS-CHD. Furthermore, we recognize that adequate

CNV boundary calling remains an issue which will best be

resolved using NextGeneration sequencing in future studies.

Taken together, our study suggests that unique CNVs

contribute significantly to LS-CHD, and that the majority of

genetic events are of private nature. CNVs were found to

contribute to 10% of our LS-CHD cases after statistical, biological

and genetic validation. Combinatorial interactions between several

different genetic factors disturbing key developmental events in left

ventricular outflow tract development - such as angiogenesis – may

modify the risk for LS-CHD, with important implications for an

oligogenic origin for the entire spectrum of LS-CHD.

Future work should aim at more precisely defining gene

inventories in larger cohorts and at replication of combinatorial

hits in animal models. Insight gained from these studies will assist

in identifying the underlying pathophysiological mechanisms of

LS-CHD and help clarify the diversity of outcomes in individual

patients despite similar morphologies.

Materials and Methods

Ethics statement
The ethics committees of Sainte Justine Hospital Research

Center, University of Montreal, Centre Hospitalier Universitaire

de Québec, Université de Laval, and University of Ottawa

approved the study protocol and all participants gave their

informed consent. The study was in accordance with the principles

of the current version of the declaration of Helsinki.

Figure 4. Karyotype der(9)ins(X;9)(p11.22;q12) in family 5. (a,b) FISH was performed on metaphase chromosomes obtained from peripheral
blood with a labeled BAC clone that mapped within the detected copy gain (RP11-52N6, red) and a control probe mapped to the Xp/Yp
pseudoautosomal region of the sex chromosomes (DXYS129 & DXYS153, green). Green dots show the control probe hybridized to the p arm of
chromosomes X and Y. Red dots show the RP11-52N6 BAC clone hybridized on chromosome X (white arrow heads) and in the heterochromatin of
chromosome 9 (white arrows). A star shows the normal chromosome 9. These results show that the copy gain is due to a der(9)ins(X;9)(p11.22;q12) in
both the father (a) and his son (b). (c). Chromosomal region of the insertion (X;9)(p11.22;q12) in the father and the son of family 5. Four RefSeq genes
are identified within this region IQSEC2, RIBC2, HSD17B10 and the Cornelia de Lange gene SMC1A. One larger and one smaller CNV have been
detected in the DGV database in this region.
doi:10.1371/journal.pgen.1002903.g004
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Figure 5. dup(4)(p16.1) in family 43. FISH was performed on metaphase chromosomes and nuclei obtained from peripheral blood with a labeled
BAC clone mapped within the detected copy gain (RP11-89K12, green) and a control probe mapped to 4p14 (RP11-332F10, red). (a) Two series of
adjacent green dots show the extra copy of the duplicated segment on chromosome 4. (b) The nucleus view with the three green dots showing three
copies of the region overlapping the Ellis van Creveld genes on chromosome 4 (c) Log 2 ratio for the large gain in Family 43 on chromosome 4. In
general, dots are scattered around 0 along the x-axis for, whereas the identified gain leads to a clear upward shift (d) Heatmap of the identified gain
on chromosome 4, each line refers to one individual. An orange row indicates two copies of the region whereas an extra copy leads to a gain in the
intensity (yellow line for the individual in family 43).
doi:10.1371/journal.pgen.1002903.g005
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LS-CHD cohort
We accessed a biobank of patients and families with congenital

heart disease, centered on the recruitment of French-Canadian

multiplex families with LS-CHD [15]. A detailed family history

(minimum three generations) was obtained from each proband,

and all participants provided informed consent. We used a

sequential sampling strategy described previously [1]. The

cohort was assembled almost exclusively within the French-

Canadian population, which is characterized by a marked

founder effect and has previously led to the identification of

numerous disease genes [14]. We surveyed 464 genomes/

individuals in 59 multiplex families and 8 trios of a pedigree-

based LS-CHD cohort from Quebec using the Affymetrix

Genome-Wide Human SNP Array 6.0 array. The average age

was 28 years. A total of 65 French-Canadian families and 2

additional Caucasian families were included in the study. None

of the pedigrees had inbreeding or marriage loops. The gender

distribution was in favor of males (females N = 223 (48%), males

N = 241 (52%)). Index cases with recognizable syndromes,

developmental delays and known cytogenetic abnormalities were

excluded from the study.

All participants were evaluated by clinical examination,

standard 12 lead electrocardiography as well as two-dimensional

echocardiography. In 15/464 cases, echocardiography was

unavailable. For 6 of these 15 cases, we instead relied on either

magnetic resonance imaging, cardiac catheterization or surgical

reports to determine phenotype status. For the remaining 9/15

cases, no morphological characterization was available. Standard-

ized two-dimensional and Doppler transthoracic echocardiograms

were obtained on all participants through commercially available

systems (Hewlett-Packard [Mississauga, Ontario] Sonos 5500,

Philips iE33 [Andover, Massachusetts], GE Vivid 7 or Vivid I

[Mississauga, Ontario]) according to previously published proto-

cols [1]. Additional anatomic or hemodynamic abnormalities were

also recorded. Aortic root dilation was defined as a deviation

above a Z score of 2 according to previously published normal

values for children or adults [41,42].

LS-CHD phenotypes were defined as bicuspid aortic valve or

other aortic valve disease, coarctation or hypoplastic left heart

syndrome. Other cardiovascular phenotypes included dilation of

the aortic root/ascending aorta, other cardiovascular malforma-

tions, as well as abnormal electrocardiogram/documented ar-

rhythmia. An overview of phenotypes in patients subsequently

identified to carry a disease-causing CNV is given in Table S2.

Control cohort
We accessed genotyping data of a previously described cohort

with coronary artery disease and myocardial infarction, the

Ottawa Heart Institute cohort, for control purposes [16]. A total

of 1582 well-phenotyped controls were used after exclusion of

those with LS-CHD, including BAV. Most importantly, subclin-

ical disease, such as asymptomatic bicuspid aortic valve, thus had

very little likelihood to escape detection. Moreover, the UOHI

cohort was genotyped on the same Affymetrix Genome-Wide

Human SNP Array 6.0 platform, with an identical data analysis

workflow for CNV detection. The UOHI cohort was matched

with respect to gender, but not age. All individuals (cases and

controls) in this cohort were used as controls for the detection of

rare copy number variants (CNV) and were subjected to the same

CNV detection workflow as the LS-CHD cohort. According to

2006 census data, 16% of the population in the Ottawa area, or an

estimated 253 individuals in our dataset, are of French-Canadian

descent [43].

Command Console 2.1 and Genotyping Console 3.0.2
quality control

A detailed overview of individual steps in the genotyping and

quality control workflow is given in Figure S1. LS-CHD families

and control samples were genotyped at the McGill University–

Génome Québec Innovation Centre on the Affymetrix Human

Genome-Wide SNP Array 6.0. DNA samples from peripheral

blood were isolated with standard procedures and master DNA

plates were prepared. Following DNA quality determination and

sample preparationat the genome facility, cel files were created

using AffymetrixGeneChip Command Console software 2.1 and

Genotyping Console 3.0.2 (GTC, Affymetrix, Santa Clara, CA,

USA) according to the manufacturer’s protocol.

Exclusion of samples for CNV detection QC issues
We used GTC 3.0.2 with a setting of 10 kb and 5 consecutive

markers to detect CNVs. We excluded 11 samples that had

excessive CNV calls per sample (defined as three standard

deviations above the observed mean (49.62 calls per sample,

standard deviation 18.14)). The remaining 464 individual samples

from 67 families were used for subsequent CNV detection.

Admixture tests
In order to test for the familiarity within the LS-cohort samples

we used Principal Component Analysis (PCA, see Figure S2) [44].

In short, a k-means procedure with 270 samples was used to get

the centers of the JPT+CHB, CEU and YRI samples. We

projected the first two axes onto the axes running between CEU-

JPT+CHB and CEU- YRI centers and formed an oval in the

projected space whose major axes were 10 times the length of the

standard deviation of CEU cluster along that axis. Samples falling

outside the oval were removed. A visual depiction of this process is

represented in Figure S3. The returned samples are most likely

family derived without a clear European axis. The first and the

second component of the PCA were used in the regression analysis

to adjust for family structure in the identification of enriched CNV

regions.

CNV identification, validation, and assessment
The analysis was performed using a stringent quality control

and copy number detection workflow with a merge procedure

relying on two different algorithms for both cohorts (Birdsuite

1.5.5 and GTC 3.0.2) (Figures S1, S4 and S5). Variants meeting

the following criteria were retained: 1.) CNVs $20 kb, 2.) CNVs

either unique or statistically enriched after accounting for

relatedness in affected versus unaffected individuals of the LS-

CHD and versus the UOHI cohort; 3.) We excluded common

CNVs found in the Database of Genomic Variants [45] (DGV

Freeze November 2010) 4.) CNVs had to show no more than 50%

overlap with known segmental duplications and had to be

confirmed by visual inspection. We further prioritized CNVs

based on biological plausibility (i.e. expression and pathway

analysis) and based on familial segregation with disease (Figure 1).

Figures S4 and S5 gives an overview over the workflow used for

CNV identification and validation, as outlined in detail below.

CNV detection workflow and validation
We used a merge procedure of two algorithms to detect CNVs:

a) GTC 3.0.2 (Affymetrix) with a setting of minimally 5

consecutive markers/10 kb and b) Birdsuite 1.5.5 (Broad Institute)

using default settings (see Birdsuite website for detailed descrip-

tion). Both programs use SNP and copy number probes on the

Affymetrix 6.0 array to detect CNVs. CNVs call from GTC 3.0.2

Copy Number Variants Cause Aortic Valve Disease
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and Birdsuite 1.5.5 were merged using a Python script developed

in-house, keeping the outer boundaries for the individual CNV

calls. We used a script developed in house to convert Birdsuite’s

total number of copies on both homologous chromosomes into

values for gains and losses to accurately compare to the output of

GTC. For common and known CNPs (results from the Canary

algorithm), the mean number of copies (rounded to the closest

integer) of each CNP has been computed on all individuals (for the

reason that ‘‘normal’’ state of a CNP might not be two in a given

population). These integers for each CNP call were then compared

to gains and losses called by GTC. For rare or de novo CNVs

(results from Birdseye), each value has been compared to the

‘‘normal’’ state of two. Finally, we computed the percentage of

overlap for each CN segments found between GTC and Birdsuite

(with a confidence threshold of 10.0).

Initial validation focused on de novo calls of the autosomes by

visual inspection of the Heatmap and the log2 ratios on GTC 3.02.

This showed that the use of 50–100% overlap of the two outputs

with a size of .20 kb and a minimum of 5 consecutive probes in

the interval was the most reliable method in our hands to detect

true CNV calls on the autosomes. In addition, we randomly

selected 300 CNV calls from the LS-CHD cohort and examined

Heatmap intensities and log2 ratios to determine the presence of

the CNV. This gave a validation rate of .95%. Therefore we used

all CNVs identified in the 50–100% overlapping scenario for

subsequent analysis. Sex-chromosomal and autosomal CNVs were

analyzed independently (see section below). CNV locations and all

genomic coordinates given in this paper are based on the March

2006 Human reference sequence (NCBI build 36.1).

Analysis of identified autosomal CNVs
Plink 1.07 was used to generate pools of overlapping CNVs (–

segment-group). These CNV pools were then tested with SAS 9.2

for statistical evidence of enrichment in affected samples compared

to unaffected samples of the LS-CHD cohort. Three different

association models within our pools of overlapping CNVs were

evaluated: 1) Affected versus unaffected individuals were tested for

enriched CNV duplications in comparison to the normal CN state,

2) Similarly for deletions, 3) Similarly for the presence of a

duplication or a deletion. We fitted a logistic regression model in

SAS 9.2 using PROC GLIMMIX conditional on pedigree

membership for each CNV using family as a random effect and

the number of copies of CNVs as a fixed effect. The following

thresholds were used: a p-value less than 0.05 and those significant

after Bonferroni correction (9.346E-5 = 0.05/535). A minority of

tests did not converge and were tested using a one-sided Fisher

exact test.

The identified CNVs enriched in affected individuals along with

CNVs found to be uniquely present in affected individuals were

then grouped and compared to CNVs from the UOHI cohort. We

used Plink 1.07 (–segment-group) to search for overlapping CNVs

and tested for enrichment in LS-CHD affected compared to

UOHI samples by using a logistic regression model for each CNV

adjusted for the first two PCA components to adjust for ethnicity

and relatedness. We selected CNVs with a p-value less than 0.05

and those significant after Bonferroni correction (5.56E-3 = 0.05/

9).

Plink 1.07 was used to generate a map file (–cnv-make-map).

Positions unique to affected individuals of the LS-CHD cohort in

the map file were selected and the referring CNV was evaluated

with an in house developed Python script for overlap with all

identified CNVs of the LS-CHD cohort. Previous studies have

highlighted the inaccuracies in determining CNV boundaries

using array technologies; these can ideally be addressed in detail

by next generation sequencing methods [46,47]. We therefore

examined the boundary calling of inherited CNVs to determine

the minimal overlap of seemingly identical CNVs. Identical CNVs

based on heatmap calls can vary up to 50% in their overlap when

comparing our two-algorithm merge. CNVs overlapping 50% or

less with any other CNV in the unaffected individuals of the LS-

CHD cohort were regarded as unique compared to the LS-CHD

affected individuals. Identified unique CNVs of the LS-CHD

cohort were evaluated for 50% overlap with the UOHI-cohort to

find CNVs unique to the affected of the LS-CHD cohort and

absent from the UOHI cohort. Only CNVs of the affected

individuals of the LS-CHD cohort not overlapping with any CNV

of the unaffected of the LS-CHD cohort and the UOHI cohort

were regarded as unique and were retained for analysis.

Analysis of sex-chromosomal CNVs
We found a high number of false positive CNV calls (75%) and

inaccuracies in calling CNVs on the sex-chromosomes, and opted

to visually inspect all CNVs identified in both algorithms in the

LS-CHD cohort on heatmaps and log2 ratios using GTC 3.0.2.

We used Plink 1.07 (–unique) to select CNVs unique to the

affected individuals of the LS-CHD cohort and absent from the

unaffected of the LS-cohort and the UOHI-cohort.

Final verification and validation of identified CNVs
Autosomal and sex-chromosomal CNVs found to be uniquely

present in LS-CHD affected individuals and autosomal CNVs

found to be statistically enriched in LS-CHD affected individuals

were considered for further verification (n = 111 unique CNVs and

n = 3 enriched CNV regions. We developed a python script to

exclude CNVs which were overlapping 50% or more with

segmental duplications (UCSC segmental duplications download-

ed in January 2011). To account for CNPs and common CNVs we

excluded CNVs present with a frequency of more than 0.01%

using PLINK 1.07, which roughly corresponds to one CNV in

public databases overlapping by 50% or more with our CNVs

(DGV database download on November 2010). We examined the

position of all identified CNVs in heatmaps and log2 ratios, and

CNVs with a minimum overlap of 50% in affected family

members were regarded as identical CNVs. CNVs present in

unaffected family members were removed (n = 8).

We further validated CNV calls made in our in silico workflow

by using fluorescence in situ hybridization (FiSH, for microdele-

tions.100 kb and duplications .1000 kb) and qPCR. CNV calls

were tested in parents and related affected individuals in the same

family and more than two independent healthy controls. For a

total of 27 calls in 134 individuals, we obtained a confirmation rate

of 100% for selected CNVs identified with our strategy (Table S5).

QPCR validation
The copy number changes identified in silico were validated

using TaqManGene Copy Number Assays (ABI, Streetsville, ON,

Canada) (Table S5). Primers and probes were designed on NCBI

genomic sequence (Build36) using the GeneAssist Copy Number

Assay Workflow Builder (http://www5.appliedbiosystems.com/

tools/cnv/). Each assay was run on quadruplicate samples of

genomic DNA. The probe of interest targeting the identified CNV

was a FAM dye-based assay; an internal VIC dye-based assay for

RNase P was the reference probe. In brief, 10 ng of gDNA,

1xTaqMan probe/primer of the region of interest and 1xTaqMan

probe/primer of the internal control in 1xTaqMan Universal

Master Mix in a 10 ml reaction was used. The reaction was

amplified on the Applied Biosystems7900HT SDS instrument for

2 min at 50uC, 10 min at 95uC, followed by 40 cycles of 15 sec at
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95uC and 60 sec at 60uC. Real-time data were collected by the

SDS 1.3.2 software. The relative quantification of the test

sequence versus the reference gene known to have two copies

for autosomal regions was utilized to determine the changes in

copy number at the location. Further evaluation of the data and

quality checking was done with the SDS 1.3.2 software. Data was

then exported as a text file to evaluate for copy number changes in

the CopyCaller software according to the manufacturer’s guide-

lines.

Fluorescence in situ hybridization
Metaphase chromosome spreads were prepared from peripheral

blood samples following standard cytogenetic protocols. FISH

experiments were performed using commercial probes (Cytocell,

Cambridge, UK; Abbott Molecular, Des Plaines, IL, USA), or

labeled BAC clones from the RP11 library (Centre for Applied

Genomics, Hospital for Sick Children, Toronto, ON, Canada),

selected according to their mapped position on the Human March

2006 Assembly (hg18) using the University of California at Santa

Cruz Genome Browser (Table S5). Slides were pretreated with 26
SSC, dehydrated in ethanol, and left to dry. Chromosomes were

denatured in a 70% formamide/26SSC solution and probes were

incubated at 75uC and 37uC before being applied to the slides.

Slides were then placed at 37uC overnight for hybridization. Post-

hybridization washes were performed in 0.46SSC, 26SCC and

PBS, and slides were counterstained with DAPI. Chromosomes

and probes signals were visualized with a fluorescence microscope

(Zeiss, Toronto, ON, Canada) equipped with specific filters. Ten

metaphases were scored for each individual, and additional nuclei

were examined to confirm duplications. Images were captured and

recorded with CytoVision (Genetix, San Jose, CA, USA).

Gene sets for comparison
Using the key words: ‘Angiogenesis, left ventricular, valve and

aortic valve, chondrocyte development and bone development’

gene subsets were downloaded (Table S6) from the Ingenuity

application in August 2010. An additional geneset was used from a

published list of genes derived from targeted mouse models with

cardiac phenotypes [48]. Our list of CNVs intersecting genes from

the affected and unaffected individuals was downloaded using a

Perl script accessing the Biomart interface at Ensembl (www.

ensembl.org).

Gene enrichment
To test for gene enrichment within the identified CNVs we used

an empirical significance test based on a regression framework (-

cnv-enrichment-test) implemented in PLINK 1.07. For compar-

ison we downloaded the glist-hg18 from the PLINK website.

Enrichment tests were done with respect to all CNVs and all genic

CNVs for the above mentioned gene subsets to identify a causal

relationship within the total number of identified CNVs in the

merge procedure (Table S7) [17].

Endeavour
In order to prioritize candidate genes for LS-CHD pathogenesis

we used the public Endeavour server [18]. The training dataset

used was the angiogenesis gene set derived from Inguinity (above),

since the gene content of the identified CNVs showed the best

match in enrichment testing. We note that the training dataset was

significantly enriched in the genes we found to be enriched in the

affected versus the unaffected individuals of the LS-CHD cohort.

Endeavour generates distinct prioritizations and fuses them into a

global ranking using order statistics. We selected the intersecting

genes of all our rare CNVs in the affected and unaffected

individuals and obtained a prioritization list. Genes passing a

threshold of p,0.05 were considered to play a role in disease

pathogenesis (Table S8).

SAGE (Serial Analysis of Gene Expression)
Sage heart libraries were collected from C57BL/6J mice at E

10.5. Related procedures and further analysis for SAGE libraries

were described in detail in [20,49]. Mouse homologs for the

human genes identified to interest with the CNVs of the affected

and unaffected individuals were obtained from Biomart. To filter

for genes with higher expression in the outflow tract (OT), we set a

threshold of 3-fold higher tag counts in the OT versus the atria

and ventricles. These genes were selected as possible candidate

genes for further analysis (Table S9).

Eurexpress/Genepaint
The presence of two large databases for in situ expression in

mice enabled us to search for specific expression patterns of

candidate genes in endothelium, heart and valves [19,21]. Using

Eurexpress and Genepaint databases, we identified available in situ

slides of developing mouse embryos at ED 14.5 and visually

inspected all available candidate genes. Genes with an elevated

expression in the developing heart, valves or vessels were thus

identified (Table 2).

Supporting Information

Figure S1 Flowchart for quality control Affymetrix .cel files.

(EPS)

Figure S2 Principal components analysis (PCA). Principal

components were calculated for all unduplicated samples using

autosomal SNPs. Comparison of LS-CHD cohort showed a cluster

among the CEU samples. The control cohort was also scattered

around the CEU samples. With some samples of both cohorts

either along the axis of the YRI or JPY+CHB samples.

(TIF)

Figure S3 PCA k-means procedure. We used a k-means

procedure to remove outliers. Outlier are marked as red crosses

and have not been used in the downstream analysis.

(TIF)

Figure S4 CNV identification workflow. The combination of

Birdsuite 1.5.5 and GTC 3.0.2 revealed a total of 7087 CNV calls

in the merge procedure of the LS-CHD cohort and 20708 in

OHI-cohort.

(EPS)

Figure S5 CNV identification workflow. Hierarchical logistic

regression together with principal component analysis(PCA) and

selection of unique CNV calls in the affected identified 3 enriched

pools of CNVs and 110 autosomal and sex-chromosomal CNVs.

27 CNVs calls have been independently verified either by QPCR

or by Fish. 73 Unique calls in the affected of the LS-CHD cohort

were identified after removal of overlap with common CNVs and

segmental duplications. None of the enriched CNV pools was

considered for further analysis, since all three overlapped

segmental duplications.

(EPS)

Table S1 Clinical characteristics of all affected individuals in the

LS-CHD cohort with a rare CNV. Abnormal echocardiographic

or electrocardiographic results are recorded.

(XLSX)
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Table S2 CNV burden and de novo transmission rate. The

CNV burden (number of autosomal CNVs, number of segments/

sample, average segment size, and number of genes spanned by

CNV) is given for affecteds and unaffecteds. De novo CNVs were

determined within all available trios of examined families.

(XLSX)

Table S3 CNV Regions enriched in LS-CHD cohort. A fitted

logistic regression model in SAS 9.2 using PROC GLIMMIX

conditional on pedigree membership for each CNV with family as

a random effect and the number of copies of CNVs as a fixed

effect was used. P-values less than 0.05 and those significant after

Bonferroni correction were taken.

(XLSX)

Table S4 CNV Regions enriched after adjusting for family

structure and comparison with OHI cohort. The first and the

second component of the PCA were used in the regression analysis

to adjust for family structure in the identification of enriched CNV

regions.

(XLSX)

Table S5 Full list of unique inherited and de novo CNV

identified in affected individuals with LS-CHD using stringent

selection criteria.

(XLSX)

Table S6 LS-CHD related gene subsets for enrichment test.

Gene subsets for key processes involved in LS-CDH were

downloaded from Ingenuity.

(XLSX)

Table S7 Pathway analysis. An empirical significance test based

on a regression framework was used for enrichment testing of the

LS-CHD pathway genes relative to all and all genic CNVs.

(XLSX)

Table S8 Endeavour prioritization list for the LS-CHD cohort.

The enriched angiogenesis dataset was used to prioritize candidate

genes for LS-CHD pathogenesis to generate a global ranking using

order statistics.

(XLSX)

Table S9 SAGE analysis for genes identified in the LS-CHD

cohort. The mouse homologues for the human genes intersecting

rare CNVs were filter for enriched expression in the outflow tract

versus ventricle and atrium in developing mouse hearts.

(XLSX)
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