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Abstract: A novel framework for inverse quantitative structure–activity relationships (inverse
QSAR) has recently been proposed and developed using both artificial neural networks and mixed
integer linear programming. However, classes of chemical graphs treated by the framework are
limited. In order to deal with an arbitrary graph in the framework, we introduce a new model, called
a two-layered model, and develop a corresponding method. In this model, each chemical graph is
regarded as two parts: the exterior and the interior. The exterior consists of maximal acyclic induced
subgraphs with bounded height, the interior is the connected subgraph obtained by ignoring the
exterior, and the feature vector consists of the frequency of adjacent atom pairs in the interior and the
frequency of chemical acyclic graphs in the exterior. Our method is more flexible than the existing
method in the sense that any type of graphs can be inferred. We compared the proposed method
with an existing method using several data sets obtained from PubChem database. The new method
could infer more general chemical graphs with up to 50 non-hydrogen atoms. The proposed inverse
QSAR method can be applied to the inference of more general chemical graphs than before.

Keywords: QSAR; molecular design; artificial neural network; mixed integer linear programming;
enumeration of graphs; cheminformatics; materials informatics

1. Introduction

Computer-aided design of chemical structures is one of the key topics in chemoinfor-
matics. In particular, extensive studies have been done on inverse quantitative structure–
activity relationships (inverse QSAR), which seek chemical structures having desired
chemical activities under some constraints. In this framework, chemical compounds are
usually represented as vectors of real or integer numbers, which are often called descriptors
in chemoinformatics and correspond to feature vectors in machine learning. Using these
chemical descriptors, various heuristic and statistical methods have been developed for in-
verse QSAR [1–3]. In many of such methods, inference or enumeration of graph structures
from a given set of descriptors is a crucial subtask. Although various methods have been
developed for that purpose [4–7], enumeration still remains a challenging task because
the number of possible chemical graphs is huge, for example, chemical graphs with up
to 30 atoms (vertices) C, N, O, and S, may exceed 1060 [8]. Furthermore, even inference is a
challenging task because it is NP-hard (computationally difficult) except for some simple
cases [9]. Due to this inherent difficulty, most existing methods for inverse QSAR do not
guarantee optimal or exact solutions.
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On the other hand, the design of novel graph structures has recently become a hot
topic in artificial neural network (ANN) studies, and thus extensive studies have been
done for inverse QSAR using ANNs, especially with graph convolutional networks [10].
For example, variational autoencoders [11], recurrent neural networks [12,13], grammar
variational autoencoders [14], generative adversarial networks [15], and invertible flow
models [16,17] have been applied. Note that QSAR using three-dimensional structures
of chemical compounds (3D-QSAR) has also been studied [18]. Particularly, comparative
molecular field analysis (CoMFA) has been extensively studied and applied to various
molecular design problems [19,20]. In CoMFA, electrostatic potential interaction energies
across superimposed molecular structures are used as descriptors and then regression
is performed by using the partial least squares (PLS) fitting. Recently, deep neural net-
works have been applied to 3D-QSAR by combining potential interaction energies with
convolutional neural networks [21]. However, in order to apply 3D-QSAR, we need to
calculate accurate three-dimensional structures of chemical compounds, which is not a
straightforward task.

A novel framework for inferring chemical graphs has recently been developed [22,23]
based on ANNs and mixed integer linear programming (MILP), as illustrated in
Figure 1. It constructs a prediction function in the first phase and infers a chemical graph
in the second phase. The first phase of the framework consists of three stages. In Stage 1,
we choose a chemical property π and a class G of graphs, where a property function a is
defined so that a(G) is the value of π in G ∈ G, and collect a data set Dπ of chemical graphs
in G such that a(G) is available. In Stage 2, we introduce a feature function f : G → RK for
a positive integer K. In Stage 3, we construct a prediction function ηN with an ANN N
that, given a vector x ∈ RK, returns a value y = ηN (x) ∈ R so that ηN ( f (G)) serves as
a predicted value to a(G) for each G ∈ Dπ . Given a target chemical value y∗, the second
phase infers chemical graphs G∗ with ηN ( f (G∗)) = y∗ in the next two stages. In Stage 4,
we formulate an MILP that simulates the construction of f (G) from G and the computation
process in the ANN so that given a target value, y∗, and solve the MILP to infer a chemical
graph G† and a feature vector x∗ such that f (G†) = x∗ and ηN (x∗) = y∗. In Stage 5, we
generate other chemical graphs G∗ such that ηN ( f (G∗)) = y∗ based on the output chemical
graph G†.
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Figure 1. An illustration of a framework for inferring a set of chemical graphs G∗.

MILP formulations required in Stage 4 have been designed for chemical compounds
with cycle index 0 (i.e., acyclic) [23,24], cycle index 1 [25], and cycle index 2 [26]. In partic-
ular, Azam et al. [24] introduced a restricted class of acyclic graphs that is characterize by
an integer ρ, called a “branch-parameter” such that the restricted class still covers most of
the acyclic chemical compounds in the database.
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Recently, Akutsu and Nagamochi [27] extended the idea to define a restricted class
of cyclic graphs, called “ρ-lean cyclic graphs”, that covers most of the cyclic chemical
compounds in the database. Based on this, they also defined a set of rules for specifying
several topological substructures of a target chemical graph in a flexible way in Stage 4
before we solve an MILP. The method has been implemented by Zhu et al. [28], and
computational results showed that chemical graphs with around up to 50 non-hydrogen
atoms can be inferred. Although the method can infer the class of ρ-lean cyclic graphs and
specify topological structures of the cyclic part, we still need to introduce a new model to
deal with an arbitrary graph and to include a prescribed structure in the acyclic part of a
target chemical graph.

In this paper, we introduce a new model, called a two-layered model, for representing
the feature of a chemical graph in order to deal with an arbitrary graph in the framework.
In the two-layered model, a chemical graph G with a parameter ρ ≥ 1 is regarded as
two parts: the exterior and the interior. The exterior consists of maximal acyclic induced
subgraphs with height at most ρ and the interior is the connected subgraph obtained by
ignoring the exterior. We define a feature vector f (G) of a chemical graph G to be the
frequency of adjacent atom pairs in the interior and the frequency of chemical acyclic
graphs in the exterior. Figure 2 illustrates an example of a chemical graph G. For a branch-
parameter ρ = 2, the interior of the chemical graph G in Figure 2 is obtained by removing
the set of vertices with degree 1 ρ = 2 times, i.e., first remove the set V1 = {w1, w2, . . . , w14}
of vertices of degree 1 in G, and then remove the set V2 = {w15, w16, . . . , w19} of vertices of
degree 1 in G−V1, where the removed vertices become the exterior-vertices of G and there
are eight rooted trees T1, T2, . . . , T8 in the exterior of G.
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Figure 2. An illustration of a chemical graph G, where for ρ = 2, the exterior-vertices are
w1, w2, . . . , w19 and the interior-vertices are u1, u2, . . . , u28.

We also introduce a new set of rules for specifying topological substructures of a target
chemical graph G to be inferred so that a prescribed structure can be included in both of the
acyclic and cyclic parts of G. The set of rules contains (i) a seed graph GC as an abstract form
of a target chemical graph G; (ii) a set F of chemical rooted trees as candidates for trees in
the exterior of G; and (iii) lower and upper bounds on the number of components in a target
chemical graph such as chemical elements, double/triple bounds and the interior-vertices
in G. Figure 3a,b illustrates examples of a seed graph GC and a set F of chemical rooted
trees, respectively. Given a seed graph GC, the interior of a target chemical graph G is con-
structed from GC by replacing some edges a = uv with paths Pa between the end-vertices u
and v, and by attaching new paths Qv to some vertices v. For example, the chemical graph
G in Figure 2 is constructed from the seed graph GC in Figure 3a as follows. First replace five
edges a1 = u1u2, a2 = u1u3, a3 = u4u7, a4 = u10u11 and a5 = u11u12 in GC with new paths
Pa1 = (u1, u13, u2), Pa2 = (u1, u14, u3), Pa3 = (u4, u15, u16, u7), Pa4 = (u10, u17, u18, u19, u11)
and Pa5 = (u11, u20, u21, u22, u12), respectively, to obtain the subgraph G1 of G that con-
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sists of vertices depicted with squares. Next, attach to this graph G1 three new paths,
Qu5 = (u5, u24), Qu18 = (u18, u25, u26, u27), and Qu22 = (u22, u28), to obtain the interior of
G in Figure 2. Finally, the chemical graph G in Figure 2 is obtained by attaching eight
trees T1, T2, . . . , T8 selected from the set F and assigning chemical elements and bond-
multiplicities in the interior. The frequency of chemical elements and the graph size are
controlled with lower and upper bounds on the components in a target chemical graph G.
See Section 2.2 for more details on the specification.

We implemented the two-layered model and the results of computational experiments
suggest that the proposed method can infer chemical graphs with around up to 50 non-
hydrogen atoms.
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Figure 3. (a) An illustration of a seed graph GC where the vertices in VC are depicted with gray
squares, the edges in E(≥2) are depicted with dotted lines, the edges in E(≥1) are depicted with dashed
lines, the edges in E(0/1) are depicted with gray bold lines, and the edges in E(=1) are depicted with
black solid lines. (b) A set F = {ψ1, ψ2, . . . , ψ11} ⊆ F (Dπ) of 11 chemical rooted trees ψi, i ∈ [1, 11],
where the root of each tree is depicted with a black circle.

The paper is organized as follows. Section 2.1 introduces some notions on graphs,
a modeling of chemical compounds, and a choice of descriptors. Section 2.2 introduces
a method of specifying topological substructures of target chemical graphs in Stage 4.
Section 3 reports the results on some computational experiments conducted for chemical
properties such as octanol/water partition coefficient, boiling point, melting point, flash
point, lipophylicity, and solubility. Section 4 makes some concluding remarks. An MILP
formulation used in Stage 4 and a review of the dynamic programming algorithm for
generating isomers in Stage 5 can be found in Supplementary Materials. The proposed
method/system is available at GitHub https://github.com/ku-dml/mol-infer.

2. Materials and Methods

This section presents mathematical details of our developed method. Readers not
interested in mathematical details can skip this section.

2.1. Preliminary

This section introduces some notions and terminology on graphs, a modeling of
chemical compounds, and our choice of descriptors.

Let R, Z and Z+ denote the sets of reals, integers and non-negative integers, respec-
tively. For two integers a and b, let [a, b] denote the set of integers i with a ≤ i ≤ b.

Graphs. Given a graph G, let V(G) and E(G) denote the sets of vertices and edges,
respectively. For a subset V′ ⊆ V(G) (resp., E′ ⊆ E(G)) of a graph G, let G − V′ (resp.,
G− E′) denote the graph obtained from G by removing the vertices in V′ (resp., the edges
in E′), where we remove all edges incident to a vertex in V′ in G− V′. The rank r(G) of
a graph G is defined to be the minimum |F| of an edge subset F ⊆ E(G) such that G− F
contains no cycle. A path with two end-vertices u and v is called a u, v-path. An edge
e = u1u2 in a connected graph G is called a bridge if the graph G− e obtained from G by

https://github.com/ku-dml/mol-infer
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removing edge e is not connected, i.e., G− e consists of two connected graphs Gi containing
vertex ui, i = 1, 2. For a cyclic graph G, an edge e is called a core-edge if it is in a cycle of G
or is a bridge e = u1u2 such that each of the connected graphs Gi, i = 1, 2 of G− e contains
a cycle. A vertex incident to a core-edge is called a core-vertex of G.

A vertex designated in a graph G is called a root. In this paper, we designated at most
two vertices as roots, and denote by Rt(G) the set of roots of G. We call a graph G rooted
(resp., bi-rooted) if |Rt(G)| = 1 (resp., |Rt(G)| = 2), where we call G unrooted if Rt(G) = ∅.

For a graph G, possibly with roots, a leaf-vertex is defined to be a non-root vertex
v ∈ V(G) \ Rt(G) with degree 1, call the edge uv incident to a leaf vertex v a leaf-edge, and
denote Vleaf(G) and Eleaf(G) the sets of leaf-vertices and leaf-edges in G, respectively. For a
graph or a rooted graph G, we define graphs Gi, i ∈ Z+ obtained from G by removing the
set of leaf-vertices i times so that

G0 := G; Gi+1 := Gi −Vleaf(Gi),

where we call a vertex v ∈ Vleaf(Gk) a leaf k-branch and we say that a vertex v ∈ Vleaf(Gk)
has height height ht(v) = k in G. The height ht(T) of a rooted tree T is defined to be the
maximum of ht(v) of a vertex v ∈ V(T). For an integer k ≥ 0, we call a rooted tree T k-lean
if T has at most one leaf k-branch. For an unrooted cyclic graph G, we regard the set of
non-core-edges in G induces a collection T of trees each of which is rooted at a core-vertex,
where we call G k-lean if each of the rooted trees in T is k-lean. Nearly 97% of cyclic
chemical compounds with up to 100 non-hydrogen atoms in PubChem are 2-lean [24].

Two-layered Model. Let G be an unrooted graph. For an integer ρ ≥ 0, which we
call a branch-parameter, a two-layered model of G is a partition of G into an “interior” and an
“exterior” in the following way. We call a vertex v ∈ V(G) (resp., an edge e ∈ E(G)) of G an
exterior-vertex (resp., exterior-edge) if ht(v) < ρ (resp., e is incident to an exterior-vertex) and
denote the sets of exterior-vertices and exterior-edges by Vex(G) and Eex(G), respectively
and denote Vint(G) = V(G) \Vex(G) and Eint(G) = E(G) \ Eex(G), respectively. We call
a vertex in Vint(G) (resp., an edge in Eint(G)) an interior-vertex (resp., interior-edge). The set
Eex(G) of exterior-edges forms a collection of connected graphs each of which is regarded
as a rooted tree T rooted at the vertex v ∈ V(T) with the maximum ht(v), where we call T
a ρ-fringe-tree (or a fringe-tree). Let T ex(G) denote the set of fringe-trees in G. The interior
of G is defined to be the subgraph (Vint(G), Eint(G)) of G. Note that every core-vertex
(resp., core-edge) in G is an interior-vertex (resp., interior-edge) of G. Figure 2 illustrates
an example of a graph G, such that Vint = {u1, u2, . . . , u28}, Vex = {w1, w2, . . . , w19} and
T ex(G) = {T1, T2, . . . , T8} for a branch-parameter ρ = 2.

2.1.1. Modeling of Chemical Compounds

To represent a chemical compound, we assume that each chemical element a has a
unique valence val(a) ∈ [1, 4] and we use a hydrogen-suppressed model, because hydrogen
atoms can be added at the final stage under the assumption. In the hydrogen-suppressed
model, a chemical compound C is represented by a tuple G = (H, α, β) of a simple,
connected undirected graph H and functions α : V(H)→ Λ and β : E(H)→ [1, 3], where
Λ is a set of non-hydrogen chemical elements such as C (carbon), O (oxygen), N (nitrogen),
and so on. The set of atoms and the set of bonds in the compound C are represented by
the vertex set V(H) and the edge set E(H), respectively. The chemical element assigned
to a vertex v ∈ V(H) is represented by α(v) and the bond-multiplicity between two
adjacent vertices u, v ∈ V(H) is represented by β(e) of the edge e = uv ∈ E(H). We say
that two tuples (Hi, αi, βi), i = 1, 2 are isomorphic if they admit an isomorphism φ, i.e., a
bijection φ : V(H1) → V(H2) such that uv ∈ E(H1), α1(u) = a, α1(v) = b, β1(uv) = m↔
φ(u)φ(v) ∈ E(H2), α2(φ(u)) = a, α2(φ(v)) = b, β2(φ(u)φ(v)) = m. When Hi is rooted at
a vertex ri, i = 1, 2, (Hi, αi, βi), i = 1, 2 are rooted-isomorphic (r-isomorphic) if they admit
an isomorphism φ such that φ(r1) = r2. Chemical rooted trees T1 and T5 in Figure 2
are r-isomorphic.
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Associated with the two functions α and β in a tuple G = (H, α, β), we introduce
the following functions: βG : V(H) → [0, 12], ac : V(E) → Λ× Λ× [1, 3], cs : V(E) →
Λ× [1, 4], and ec : V(E)→ (Λ× [1, 4])× (Λ× [1, 4])× [1, 3].

For a notational convenience, we use a function βG : V(H)→ [0, 4] such that βG(u)
means the sum of bond-multiplicities of edges incident to a vertex u, i.e.,

βG(u) , ∑
uv∈E(H)

β(uv) for each vertex u ∈ V(H).

A chemical graph G is defined to be a tuple (H, α, β) such that the valence condition at
each vertex v ∈ V(H) is satisfied, i.e.,

βG(v) ≤ val(α(v)),

where we define the hydro-degree deghyd(v) of a vertex v to be val(α(v))− βG(v).
Figure 2 illustrates an example of a chemical graph G = (H, α, β).
To represent a feature of an edge e = uv ∈ E(H) such that α(u) = a, α(v) = b and

β(e) = m in a chemical graph G = (H, α, β), we use a tuple (a, b, m) ∈ Λ × Λ × [1, 3],
which we call the adjacency-configuration ac(e) of the edge e. We introduce a total order <
over the elements in Λ to distinguish with (a, b, m) and (b, a, m) (a 6= b) notationally. For
a tuple ν = (a, b, m), let ν denote the tuple (b, a, m).

To represent a feature of a vertex v ∈ V(H) with α(v) = a that has d atoms in its
neighbor in a chemical graph G = (H, α, β), we use a pair (a, d) ∈ Λ× [1, 4], which we call
the chemical symbol cs(v) of the vertex v. We treat (a, d) as a single symbol ad, and define
Λdg to be the set of all chemical symbols µ = ad ∈ Λ× [1, 4].

To represent a feature of an edge e = uv ∈ E(H) such that cs(u) = µ, cs(v) = ξ and
β(e) = m in a chemical graph G = (H, α, β), we use a tuple (µ, ξ, m) ∈ Λdg ×Λdg × [1, 3],
which we call the edge-configuration ec(e) of the edge e. We introduce a total order < over
the elements in Λdg to distinguish with (µ, ξ, m) and (ξ, µ, m) (µ 6= ξ) notationally. For a
tuple γ = (µ, ξ, m), let γ denote the tuple (ξ, µ, m).

To represent a feature of the exterior of a chemical graph G = (H, α, β), a ρ-fringe-tree
in T ex(G) is called a fringe-configuration in the exterior.

2.1.2. Introducing Descriptors of Feature Vectors

This section introduces descriptors to define our feature vectors. Let π be a chemical
property for which we will construct a prediction function ηN from a feature vector f (G)
of a chemical graph to a predicted value y ∈ R for the chemical property of G.

We first choose a set Λ of non-hydrogen chemical elements and then collect a data
set Dπ of chemical compounds C whose chemical elements belong to Λ ∪ {H}, where we
regard Dπ as a set of chemical graphs that represent the chemical compounds C in Dπ .
To define the interior/exterior of chemical graphs G ∈ Dπ , we next choose a branch-
parameter ρ, where we recommend ρ = 2.

Let Λint(Dπ) (resp., Λex(Dπ)) denote the set of chemical elements used in the set of
interior-vertices (resp., exterior-vertices) over all chemical graphs G ∈ Dπ , and Γint(Dπ)
denote the set of edge-configurations used in the set of interior-edges over all chemical
graphs G ∈ Dπ . Let F (Dπ) denote the set of chemical rooted trees ψ r-isomorphic to a
ρ-fringe-tree T ∈ T ex(G) over all chemical graphs G ∈ Dπ .

We define an integer encoding of a finite set A of elements to be a bijection σ : A→
[1, |A|], where we denote by [A] the set [1, |A|] of integers. Introduce an integer coding
of each of the sets Λint(Dπ), Λex(Dπ), Γint(Dπ) and F (Dπ). Let [a]int (resp., [a]ex) denote
the coded integer of an element a ∈ Λint(Dπ) (resp., a ∈ Λex(Dπ)), [γ] denote the coded
integer of an element γ in Γint(Dπ) and [ψ] denote an element ψ in F (Dπ).

For each chemical element a ∈ Λ, let mass(a) and val(a) denote the mass and valence
of a, respectively. In our model, we use integers mass∗(a) = b10 ·mass(a)c, a ∈ Λ.
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We define the feature vector f (G) of a chemical graph G = (H, α, β) ∈ Dπ to be a vector
that consists of the following non-negative integer descriptors dcpi(G), i ∈ [1, K], where
K = 17 + |Λint(Dπ)|+ |Λex(Dπ)|+ |Γint(Dπ)|+ |F (Dπ)|.
1. dcp1(G): the number n(G) = |V(G)| of vertices in G.
2. dcp2(G): the number |Vint(G)| of interior-vertices in G.
3. dcp3(G): the average ms(G) of mass∗ over all non-hydrogen atoms in G, i.e., ms(G) ,

∑v∈V(G) mass∗(α(v))/n(G).
4. dcpi(G), i = 3 + d, d ∈ [1, 4]: the number dgd(G) of interior-vertices of degree d in G.
5. dcpi(G), i = 7 + d, d ∈ [1, 4]: the number dgint

d (G) of interior-vertices of interior-
degree deg(Vint,Eint)(v) = d in the interior (Vint, Eint) of G.

6. dcpi(G), i = 11 + d, d ∈ [0, 3]: the number hydgd(G) of vertices in G of hydro-degree
deghyd(v) = d.

7. dcpi(G), i = 15 + m, m ∈ [2, 3]: the number bdint
m (G) of interior-edges with bond

multiplicity m in G, i.e., bdint
m (G) , {e ∈ Eint | β(e) = m}.

8. dcpi(G), i = 17 + [a]int, a ∈ Λint(Dπ): the frequency naint
a (G) of chemical element a

in the set of interior-vertices in G.
9. dcpi(G), i = 17+ |Λint(Dπ)|+ [a]ex, a ∈ Λex(Dπ): the frequency naex

a (G) of chemical
element a in the set of exterior-vertices in G.

10. dcpi(G), i = 17 + |Λint(Dπ)|+ |Λex(Dπ)|+ [γ], γ ∈ Γint(Dπ): the frequency ecγ(G)

of edge-configuration γ in the set of interior-edges e ∈ Eint in G.
11. dcpi(G), i = 17 + |Λint(Dπ)| + |Λex(Dπ)| + |Γint(Dπ)| + [ψ], ψ ∈ F (Dπ): the fre-

quency fcψ(G) of fringe-configuration ψ in the set of ρ-fringe-trees in G.

2.2. Specifying Target Chemical Graphs

Given a prediction function ηN and a target value y∗ ∈ R, we call a chemical graph G∗

such that ηN (x∗) = y∗ for the feature vector x∗ = f (G∗) a target chemical graph. This section
presents a set of rules for specifying topological substructure of a target chemical graph in
a flexible way in Stage 4.

We first describe how to reduce a chemical graph G = (H, α, β) into an abstract form
based on which our specification rules will be defined. To illustrate the reduction process,
we use the chemical graph G = (H, α, β) in Figure 2.

R1 Removal of all ρ-fringe-trees: The interior Hint = (Vint(H), Eint(H)) of G is ob-
tained by removing the non-root vertices of each ρ-fringe-trees T ∈ T ex(G). Figure 4
illustrates the interior Hint of chemical graph G with ρ = 2 in Figure 2.

R2 Removal of some leaf paths: We call a u, v-path Q in Hint a leaf path if vertex
v is a leaf-vertex of Hint and the degree of each internal vertex of Q in Hint is 2,
where we regard that Q is rooted at vertex u. A connected subgraph S of the in-
terior Hint of G is called a cyclical-base if S is obtained from H by removing the
vertices in V(Qu) \ {u}, u ∈ X for a subset X of interior-vertices and a set {Qu |
u ∈ X} of leaf u, v-paths Qu such that no two paths Qu and Qu′ share a vertex.
Figure 5a illustrates a cyclical-base S = Hint − ⋃

u∈X(V(Qu) \ {u}) of the interior
Hint for a set {Qu5 = (u5, u24), Qu18 = (u18, u25, u26, u27), Qu22 = (u22, u28)} of leaf
paths in Figure 4.

R3 Contraction of some pure paths: A path in S is called pure if each internal vertex
of the path is of degree 2. Choose a set P of several pure paths in S so that no two
paths share vertices except for their end-vertices. A graph S′ is called a contraction
of a graph S (with respect to P) if S′ is obtained from S by replacing each pure
u, v-path with a single edge a = uv, where S′ may contain multiple edges between
the same pair of adjacent vertices. Figure 5b illustrates a contraction S′ obtained
from the chemical graph S by contracting each uv-path Pa ∈ P into a new edge
a = uv, where a1 = u1u2, a2 = u1u3, a3 = u4u7, a4 = u10u11, and a5 = u11u12,
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and P = {Pa1 = (u1, u13, u2), Pa2 = (u1, u14, u3), Pa3 = (u4, u15, u16, u7), Pa4 =
(u10, u17, u18, u19, u11), Pa5 = (u11, u20, u21, u22, u12)} of pure paths in Figure 5a.
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Figure 4. The interior Hint of chemical graph G with ρ = 2 in Figure 2.
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Figure 5. (a) A cyclical-base S = Hint −⋃
u∈{u5,u18,u22}(V(Qu) \ {u}) of the interior Hint in Figure 4;

(b) A contraction S′ of S for a pure path set P = {Pa1 , Pa2 , . . . , Pa5} in (a), where a new edge obtained
by contracting a pure path is depicted with a thick line.

We will define a set of rules so that a chemical graph can be obtained from a graph
(called a seed graph in the next section) by applying processes R3 to R1 in a reverse way.
We specify topological substructures of a target chemical graph with a tuple (GC, σint, σce)
called a target specification defined under the set of the following rules.

Seed Graphs
A seed graph GC = (VC, EC) is defined to be a graph (possibly with multiple edges)

such that the edge set EC consists of four sets E(≥2), E(≥1), E(0/1), and E(=1), where each
of them can be empty. A seed graph plays a role of the most abstract form S′ in R3.
Figure 3a illustrates an example of a seed graph, where VC = {u1, u2, . . . , u12}, E(≥2) =
{a1, a2, . . . , a5}, E(≥1) = {a6}, E(0/1) = {a7}, and E(=1) = {a8, a9, . . . , a17}.

A subdivision S of GC is a graph constructed from a seed graph GC according to the
following rules:

- Each edge e = uv ∈ E(≥2) is replaced with a u, v-path Pe of length at least 2;
- Each edge e = uv ∈ E(≥1) is replaced with a u, v-path Pe of length at least 1 (equiva-

lently e is directly used or replaced with a u, v-path Pe of length at least 2);
- Each edge e ∈ E(0/1) is either used or discarded; and
- Each edge e ∈ E(=1) is always used directly.

We allow a possible elimination of edges in E(0/1) as an optional rule in constructing
a target chemical graph from a seed graph, even though such an operation has not been
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included in the process R3. A subdivision S plays a role of a cyclical-base in R2. A target
chemical graph G = (H, α, β) will contain S as a subgraph of the interior Hint of G.

Interior-Specification
A graph H∗ that serves as the interior Hint of a target chemical graph G will be

constructed as follows. First, construct a subdivision S of a seed graph GC by replacing
each edge edge e = uu′ ∈ E(≥2) ∪ E(≥1) with a pure u, u′-path Pe. Next, construct a
supergraph H∗ of S by attaching a leaf path Qv at each vertex v ∈ VC or at an internal
vertex v ∈ V(Pe) \ {u, u′} of each pure u, u′-path Pe for some edge e = uu′ ∈ E(≥2) ∪ E(≥1),
where possibly Qv = v, E(Qv) = ∅ (i.e., we do not attach any new edges to v). We introduce
the following rules for specifying the size of H∗, the length |E(Pe)| of a pure path Pe, the
length |E(Qv)| of a leaf path Qv, the number of leaf paths Qv, and a bond-multiplicity of
each interior-edge, where we call the set of prescribed constants an interior-specification σint:

- Lower and upper bounds nint
LB, nint

UB ∈ Z+ on the number of interior-vertices of a target
chemical graph G.

- For each edge e = uu′ ∈ E(≥2) ∪ E(≥1),

a lower bound `LB(e) and an upper bound `UB(e) on the length |E(Pe)| of a
pure u, u′-path Pe. (For a notational convenience, set `LB(e) := 0, `UB(e) := 1,
e ∈ E(0/1) and `LB(e) := 1, `UB(e) := 1, e ∈ E(=1). )

a lower bound blLB(e) and an upper bound blUB(e) on the number of leaf paths
Qv attached to at internal vertices v of a pure u, u′-path Pe.

a lower bound chLB(e) and an upper bound chUB(e) on the maximum length
|E(Qv)| of a leaf path Qv attached at an internal vertex v ∈ V(Pe) \ {u, u′} of a
pure u, u′-path Pe.

- For each vertex v ∈ VC,

a lower bound chLB(e) and an upper bound chUB(e) on the number of leaf paths
Qv attached to v, where 0 ≤ chLB(e) ≤ chUB(e) ≤ 1.

a lower bound chLB(v) and an upper bound chUB(v) on the length |E(Qv)| of a
leaf path Qv attached to v.

- For each edge e = uu′ ∈ EC, a lower bound bdm,LB(e) and an upper bound bdm,UB(e)
on the number of edges with bond-multiplicity m ∈ [2, 3] in u, u′-path Pe, where we
regard Pe, e ∈ E(0/1) ∪ E(=1) as single edge e.

We call a graph H∗ that satisfies an interior-specification σint a σint-extension of GC,
where the bond-multiplicity of each edge has been determined.

Table 1 shows an example of an interior-specification σint to the seed graph GC in
Figure 3.

Figure 6 illustrates an example of an σint-extension H∗ of seed graph GC in Figure 3
under the interior-specification σint in Table 1.

Chemical-Specification
Let H∗ be a graph that serves as the interior Hint of a target chemical graph G, where

the bond-multiplicity of each edge in H∗ has be determined. Finally, we introduce a set of
rules for constructing a target chemical graph G from H∗ by choosing a chemical element
a ∈ Λ and assigning a ρ-fringe-tree ψ to each interior-vertex v ∈ Vint. We introduce the
following rules for specifying the size of G, a set of chemical rooted trees that are allowed to
use as ρ-fringe-trees and lower and upper bounds on the frequency of a chemical element, a
chemical symbol, and an edge-configuration, where we call the set of prescribed constants
a chemical specification σce:

- Lower and upper bounds nLB, n∗ ∈ Z+ on the number of vertices in G, where
nint

LB ≤ nLB ≤ n∗.
- Subsets F (v) ⊆ F (Dπ), v ∈ VC and FE ⊆ F (Dπ) of chemical rooted trees with

height at most ρ, where we require that every ρ-fringe-tree Tv rooted at a vertex
v ∈ VC (resp., at an internal vertex v not in VC) in G belongs to F (v) (resp., FE). Let
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F ∗ := FE ∪
⋃

v∈VC
F (v) and Λex denote the set of chemical elements assigned to

non-root vertices over all chemical rooted trees in F ∗.
- A subset Λint ⊆ Λint(Dπ), where we require that every chemical element α(v) as-

signed to an interior-vertex v in G belongs to Λint. Let Λ := Λint ∪Λex and naa(G)
(resp., naint

a (G) and naex
a (G)) denote the number of vertices (resp., interior-vertices

and exterior-vertices) v such that α(v) = a in G.
- A set Λint

dg ⊆ Λ × [1, 4] of chemical symbols and a set Γint ⊆ Γint(Dπ) of edge-
configurations (µ, ξ, m) with µ ≤ ξ, where we require that the edge-configuration
ec(e) of an interior-edge e in G belongs to Γint. We do not distinguish (µ, ξ, m) and
(ξ, µ, m).

- Define Γint
ac to be the set of adjacency-configurations such that Γint

ac := {(a, b, m) |
(ad, bd′, m) ∈ Γint}. Let acint

ν (G), ν ∈ Γint
ac denote the number of interior-edges e such

that ac(e) = ν in G.
- Subsets Λ∗(v) ⊆ {a ∈ Λint | val(a) ≥ 2}, v ∈ VC, we require that every chemical

element α(v) assigned to a vertex v ∈ VC in the seed graph belongs to Λ∗(v).
- Lower and upper bound functions naLB, naUB : Λ → [1, n∗] and naint

LB, naint
UB : Λt →

[1, n∗] on the number of interior-vertices v such that α(v) = a in G.
- Lower and upper bound functions nsint

LB, nsint
UB : Λint

dg → [1, n∗] on the number of
interior-vertices v such that cs(v) = µ in G.

- Lower and upper bound functions acint
LB, acint

UB : Γint
ac → Z+ on the number of interior-

edges e such that ac(e) = ν in G.
- Lower and upper bound functions ecint

LB, ecint
UB : Γint → Z+ on the number of interior-

edges e such that ec(e) = γ in G.

Table 1. Example 1 of an interior-specification σint.

nint
LB = 20 nint

UB = 28

a1 a2 a3 a4 a5 a6

`LB(ai) 2 2 2 3 2 1

`UB(ai) 3 4 3 5 4 4

blLB(ai) 0 0 0 1 1 0

blUB(ai) 1 1 0 2 1 0

chLB(ai) 0 1 0 4 3 0

chUB(ai) 3 3 1 6 5 2

u1 u2 u3 u4 u5 u6 u7 u8 u9 u10 u11 u12 u23

blLB(ui) 0 0 0 0 0 0 0 0 0 0 0 0 0

blUB(ui) 1 1 1 1 1 0 0 0 0 0 0 0 0

chLB(ui) 0 0 0 0 1 0 0 0 0 0 0 0 0

chUB(ui) 1 0 0 0 3 0 1 1 0 1 2 4 1

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17

bd2,LB(ai) 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0

bd2,UB(ai) 1 1 0 2 2 0 0 0 0 0 0 1 0 0 0 0 0

bd3,LB(ai) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

bd3,UB(ai) 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
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Figure 6. An illustration of a graph H∗ that is obtained from the seed graph GC in Figure 3 under the
interior-specification σint in Table 1, where the vertices newly introduced by pure paths Pai and leaf
paths Qvi are depicted with white squares and circles, respectively.

We call a chemical graph G that satisfies a chemical specification σce a (σint, σce)-
extension of GC, and denote by G(GC, σint, σce) the set of all (σint, σce)-extensions of GC.

Table 2 shows an example of a chemical-specification σce to the seed graph GC
in Figure 3.

Table 2. Example 2 of a chemical-specification σce.

nLB = 30, n∗ = 50.

branch-parameter: ρ = 2

Each of sets F (v), v ∈ VC and FE is set to be
the set F of chemical rooted trees with height at most ρ = 2 in Figure 3b.

Λ = {C, N, O} Λdg = {C2, C3, C4, N2, O2}

Γint
ac ν1 = (C, C, 1), ν2 = (C, C, 2), ν3 = (C, N, 1), ν4 = (C, O, 1)

Γint γ1 = (C2, C2, 1), γ2 = (C2, C3, 1), γ3 = (C2, C3, 2), γ4 = (C2, C4, 1), γ5 = (C3, C3, 1),
γ6 = (C3, C3, 2), γ7 = (C3, C4, 1), γ8 = (C2, N2, 1), γ9 = (C3, N2, 1), γ10 = (C3, O2, 1),
γ11 = (C2, C2, 2), γ12 = (C2, O2, 1),

Λ∗(u1) = {N}, Λ∗(u8) = {C, N}, Λ∗(u9) = {C, O}, Λ∗(u) = {C}, u ∈ VC \ {u1, u8, u9}

C N O

naLB(a) 27 1 1

naUB(a) 37 4 8

C N O

naint
LB(a) 9 1 0

naint
UB(a) 23 4 5

C2 C3 C4 N2 N3 O2

nsint
LB(µ) 3 5 0 0 0 0

nsint
UB(µ) 8 15 2 2 3 5

ν1 ν2 ν3 ν4

acint
LB(ν) 0 0 0 0

acint
UB(ν) 30 10 10 10

γ1 γ2 γ3 γ4 γ5 γ6 γ7 γ8 γ9 γ10 γ11 γ12

ecint
LB(γ) 0 0 0 0 0 0 0 0 0 0 0 0

ecint
UB(γ) 4 15 4 4 10 5 4 4 6 4 4 4

Figure 2 illustrates an example of a (σint, σce)-extension of GC obtained from the



Int. J. Mol. Sci. 2021, 22, 2847 12 of 24

σint-extension H∗ in Figure 6 under the chemical-specification σce in Table 2.
Our specification of topological substructures is similar to that proposed by Akutsu

and Nagamochi [27], wherein a target chemical graph is restricted to ρ-lean cyclic graphs
and prescribed substructures cannot be specified in the acyclic part. In our new method, a
chemical graph with any structure can be handled and substructures in the acyclic part can
be fixed.

2.3. Examples of Specification

We here present some cases where a target specification (GC, σint, σce) can be chosen
based on a set G∗ of given chemical graphs with a similar structure so that G∗ becomes
a subset of G(GC, σint, σce). In such a case, every target chemical graph in G(GC, σint, σce)
possesses a common structure over the given set G∗.

Figure 7 illustrates a set G∗ of four flavonoids and a seed graph GC for ρ = 2 so
that G∗ ⊆ G(GC, σint, σce) for a choice of an interior-specification σint and a chemical-
specification σce. Let Λ := {C, O}. In the seed graph GC = (VC, EC), we set E(≥1) := {a1, a2},
E(0/1) := {a3}, and E(=1) := EC \ {a1, a2, a3} and predetermine the chemical element
α(u) for each vertex u ∈ VC and the bond-multiplicity β(e) for each edge e ∈ E(=1) as in
Figure 7e, i.e., Λ∗(u) := {a} for a = α(u) and bdm,LB(e) := 1 for m = β(e).
Figure 7f illustrates a set F ∗ of chemical rooted trees for the 2-fringe-trees in a target
chemical graph. For vertices in GC, we set chUB(u) := 0, u ∈ VC, F (ui) := {ψ3}, i ∈
[1, 3], F (u4) := {ψ1, ψ3}, F (u5) := {ψ4}, F (u6) := {ψ2}, and F (u) := {ψ1}, u ∈
VC \ {u1, u2, . . . , u6}. For edges ai ∈ E(≥1), i = 1, 2, we set `UB(ai) := 2, chUB(ai) := 0
and FE := {ψ1, ψ2}, where a pure path Pai may be introduced in a target chemical graph.
We see that every given chemical graph Gi ∈ G∗ belongs to G(GC, σint, σce) by setting the
other specification in σint and σce adequately.

(a) fisetin G1 (b) ruteorinn G2 

(c) aurone G3

(d) chalcone G4  
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Figure 7. Illustration of a set G∗ = {G1, G2, G3, G4} of four flavonoids, a seed graph GC, and a set
F ∗ = {ψ1, ψ2, ψ3, ψ4} of chemical rooted trees for ρ = 2: (a) fisetin G1; (b) ruteorinn G2; (c) aurone G3;
(d) chalcone G4; (e) GC = (VC, EC); (f) F ∗ = FE ∪

⋃
v∈VC

F (v).

Figure 8 illustrates a set G∗ of three dibenzodiazepine atypical antipsychotics, and
a seed graph GC for ρ = 2 so that G∗ ⊆ G(GC, σint, σce) for a choice of an interior-
specification σint and a chemical-specification σce. Let Λ := {C, O, N, S, Cl}. In the seed graph
GC = (VC, EC), we set E(≥2) := {a1} and E(=1) := EC \ {a1} and predetermine the
chemical element α(u) for each vertex u ∈ VC and the bond-multiplicity β(e) for each
edge e ∈ E(=1) as in Figure 8d. Figure 8e illustrates a set F ∗ of chemical rooted trees
for the 2-fringe-trees in a target chemical graph. For vertices in GC, we set chUB(u) :=
0, u ∈ VC \ {u2}, chLB(u2) := 0, chUB(u2) := 4, F (u1) := {ψ3, ψ7}, F (u2) := {ψ1, ψ6},
F (ui) := {ψ3}, i ∈ [3, 5], and F (u) := {ψ1}, u ∈ VC \ {u1, u2, . . . , u6}, where a leaf
path Qu2 may be introduced in a target chemical graph. For edge a1 ∈ E(≥2), we set
`UB(a1) := 3, chUB(a1) := 0 and FE := {ψ1, ψ2, ψ4, ψ8}. We see that every given chemical
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graph Gi ∈ G∗ belongs to G(GC, σint, σce) by setting the other specification in σint and
σce adequately.

(a) clozabine G1

(c) olanzapine G3 

(b) quetiapine G2

(d) GC =(VC,EC) 
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Figure 8. Illustration of a set G∗ = {G1, G2, G3} of three dibenzodiazepine atypical antipsychotics, a
seed graph GC and a set F ∗ = {ψ1, ψ2, . . . , ψ8} of chemical rooted trees for ρ = 2: (a) clozabine G1;
(b) quetiapine G2; (c) olanzapine G3; (d) GC = (VC, EC); (e) F ∗ = FE ∪

⋃
v∈VC

F (v).

3. Results

We implemented our method of Stages 1 to 5 for inferring chemical graphs under
a given target specification and conducted experiments to evaluate the computational
efficiency. We executed the experiments on a PC with Processor: 3.0 GHz Core i7-9700
(3.0 GHz) Memory: 16 GB RAM DDR4. We used ChemDoodle version 10.2.0 for construct-
ing 2D drawings of chemical graphs.

To conduct experiments for Stages 1 to 5, we selected six chemical properties π: oc-
tanol/water partition coefficient (KOW), boiling point (BP), melting point (MP), flash point
(closed cup) (FP), lipophylicity (LP), solubility (SL) provided by HSDB from PubChem [29]
for KOW, BP, MP, and FP, figshare [30] for LP and MoleculeNet [31] for SL.

Results on Phase 1.
We implemented Stages 1, 2, and 3 in Phase 1 as follows.

Stage 1. We set a graph class G to be the set of all chemical graphs with any graph structure,
and set a branch-parameter ρ to be 2. For each property π ∈ {KOW, BP, MP, FP, LP, SL}, we
first select a set Λ of chemical elements and then collect a data set Dπ on chemical graphs
over the set Λ of chemical elements. To construct the data set Dπ , we eliminated chemical
compounds that have at most three carbon atoms or contain a charged element such as N+

or an element a ∈ Λ whose valence is different from our setting of valence function val.
Table 3 shows the size and range of data sets that we prepared for each chemical

property in Stage 1, where we denote the following:

Λ: the set of selected chemical elements (hydrogen atoms are added at the final stage);
|Dπ |: the size of data set Dπ over Λ for property π;
|Γint(Dπ)|: the number of different edge-configurations of interior-edges over the
compounds in Dπ ;
|F (Dπ)|: the number of non-isomorphic chemical rooted trees in the set of all 2-fringe-
trees in the compounds in Dπ ;
[n, n]: the minimum and maximum values of n(G) over the compounds G in Dπ ; and
[a, a]: the minimum and maximum values of a(G) in π over compounds G in Dπ .
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Table 3. Data sets for stage 1 in phase 1.

π Λ |Dπ | |Γint(Dπ)| |F(Dπ)| [n, n] [a, a]

KOW C,O,N 644 24 109 [4, 58] [−7.53, 13.45]
KOW C,O,N,S,Cl 837 31 142 [4, 73] [−7.53, 13.45]

BP C,O,N 358 21 91 [4, 30] [−11.70, 470.0]
BP C,O,N,S,Cl 425 23 114 [4, 30] [−11.70, 470.0]
MP C,O,N 448 22 94 [4, 122] [−185.3, 300.0]
MP C,O,N,S,Cl 548 26 118 [4, 122] [−185.3, 300.0]
FP C,O,N 348 20 85 [4, 66] [−82.99, 300.0]
FP C,O,N,S,Cl 399 24 107 [4, 66] [−82.99, 300.0]
LP C,O,N 592 27 71 [6, 60] [−3.62, 6.84]
LP C,O,N,S,Cl 779 32 78 [6, 74] [−3.62, 6.84]
SL C,O,N 640 25 111 [4, 55] [−9.33, 1.11]
SL C,O,N,S,Cl 847 31 144 [4, 55] [−11.60, 1.11]

Stage 2. We used the new feature function that consists of the descriptors such as fringe-
configuration defined in Section 2.1 and let ffc denote the feature function.

Stage 3. Let η : RK → R be a prediction function to a property function a : D → R with a
feature function f : D → RK for a data set D of chemical graphs. We define the coefficient
of determination R2( f , η, D) of a prediction function η over a data set D to be

R2( f , η, D) , 1− ∑G∈D(a(G)− η( f (G)))2

∑G∈D(a(G)− ã)2 for ã =
1
|D| ∑

G∈D
a(G).

To conduct an experiment in Stage 3, we first constructed ten architectures Aj, j ∈
[1, 10] with one or two hidden layers. For each pair (π, Aj) of a property π ∈ {KOW, BP,
MP, FP, LP, SL}, and an architecture Aj, j ∈ [1, 10], we constructed five prediction functions
in order to evaluate the performance with cross-validation as follows. Partition data set
Dπ into five subsets D(i)

π , i ∈ [1, 5] randomly and for each set Dπ \ D(i)
π construct an ANN

N (j, i) and its prediction function ηN (j,i) using the feature function ffc. We used scikit-
learn version 0.23.2 with Python 3.8.5, MLPRegressor and ReLU activation function to
construct each ANNN (j, i). We evaluated the resulting prediction function ηN (j,i) with the

coefficient R2( ffc, ηN (j,i), D(i)
π ) of determination for the test set D(i)

π . For each property π, let

t-R2
cv(j) denote the average of R2( ffc, ηN (j,i), D(i)

π ) over all i ∈ [1, 5] in the cross-validation
to an architecture Aj.

Table 4 shows the results on Stages 2 and 3, where we denote the following.

- Λ: the set of selected chemical elements (hydrogen atoms are added at the final stage);
- L-time: the average time (s) to construct an ANN over all 10× 5 = 50 ANNs;
- t-R2

cv (best): the best value of t-R2
cv(j) over all architectures Aj, j ∈ [1, 10];

- t-R2
max: the maximum of R2( ffc, ηN (j,i), D(i)

π ) over all j ∈ [1, 10], i ∈ [1, 5]; and
- Arch.: The architecture Aj, j ∈ [1, 10] that attains t-R2

max. An architecture (K, p, 1)
(resp., (K, p1, p2, 1)) consists of an input layer with K nodes, a hidden layer with p
nodes (resp., two hidden layers with p1 and p2 nodes, respectively), and an output
layer with a single node, where K is equal to the number of descriptors in the feature
vector.

From Table 4, we see that the execution of Stage 3 was considerably successful, where
most of t-R2

max are around 0.85 to 0.95 for all six chemical properties.
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Table 4. Results of Stages 2 and 3 in Phase 1.

π Λ L-Time t-R2
cv (Best) t-R2

max Arch.

KOW C,O,N 0.7 0.959 0.983 (156,10,10,1)
KOW C,O,N,S,Cl 0.7 0.947 0.968 (199,20,10,1)

BP C,O,N 3.5 0.858 0.923 (135,30,20,1)
BP C,O,N,S,Cl 3.3 0.821 0.899 (163,10,1)
MP C,O,N 3.8 0.784 0.893 (139,40,1)
MP C,O,N,S,Cl 4.1 0.796 0.880 (170,10,10,1)
FP C,O,N 1.1 0.750 0.874 (128,40,1)
FP C,O,N,S,Cl 1.8 0.707 0.853 (157,10,10,1)
LP C,O,N 0.5 0.868 0.908 (121,30,1)
LP C,O,N,S,Cl 0.7 0.861 0.892 (137,20,10,1)
SL C,O,N 0.7 0.870 0.913 (159,30,1)
SL C,O,N,S,Cl 0.9 0.870 0.903 (201,30,20,1)

An Additional Experiment in Stage 3. We conducted an additional experiment to com-
pare our new feature function ffc with the feature function fec based edge-configuration
in the previous method [27] designed with the same framework. Note that the previous
feature vector fec(G) can be defined only for a cyclic graph G, whereas our feature vector
ffc(G) is defined for an arbitrary graph G. For each property π ∈ {KOW, BP, MP, FP, LP,
SL}, we set a set Λ of chemical elements to be {C, O, N, S, Cl} and then collect a data set
D̃π of chemical cyclic graphs from the data set Dπ of all chemical graphs over the set Λ
of chemical elements in the previous experiment. For each of the feature functions fec
and ffc, we constructed five prediction functions with the same set of ten architectures
Aj, j ∈ [1, 10] and the data set D̃π of chemical cyclic graphs in the same manner of the
previous experiment.

Table 5 shows the results of this experiment, where the table also includes the result of
prediction functions by ffc in the set Dπ of all chemical graphs. In the table, we denote the
following:

- |D̃π |, |Dπ |: the size of data set D̃π of cyclic graphs (resp., Dπ of all chemical graphs)
for property π;

- t-R2
cv (ave.): the average of R2( f , ηN (j,i), D(i)) over all j ∈ [1, 10], i ∈ [1, 5] for f =

fec, ffc and D = D̃π , Dπ ; and
- t-R2

cv (best): maxj∈[1,10]{the average of R2( ffc, ηN (j,i), D(i)
π ) over all i ∈ [1, 5]}.

From Table 5, we see that the score of R2 of the prediction function by ffc in chemical
cyclic graphs (resp., in all chemical graphs) is improved from that by fec for properties MP

and FP (resp., BP, MP, and FP). Recall that our new feature function ffc can be defined
for arbitrary graphs and we can select a larger data set than that by fec in a learning stage.
This advantage is observed in the experiment. We guess that the better prediction function
for BP (resp., FP) is obtained by using ffc because the size of data set becomes considerably
larger from |D̃π | = 224 to |Dπ | = 425 (resp., from |D̃π | = 218 to |Dπ | = 399).

Table 5. Results of prediction functions by fec and ffc in data set D̃π of cyclic graphs and ffc in data set Dπ of all graphs.

f = fec, D = D̃π f = ffc, D = D̃π f = ffc, D = Dπ

π |D̃π | t-R2
cv (ave.) t-R2

cv (Best) t-R2
cv (ave.) t-R2

cv (Best) |Dπ | t-R2
cv (ave.) t-R2

cv (Best)

KOW 580 0.952 0.959 0.950 0.954 837 0.944 0.947
BP 224 0.688 0.718 0.680 0.693 425 0.809 0.821
MP 348 0.668 0.694 0.712 0.736 548 0.776 0.796
FP 218 0.435 0.476 0.574 0.623 399 0.688 0.707
LP 776 0.832 0.842 0.853 0.861 779 0.854 0.861
SL 638 0.851 0.863 0.853 0.861 847 0.860 0.870
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Results on Phase 2.
We prepared the following instances (a–d) for conducting experiments of Stages 4 and

5 in Phase 2.

(a) Ia = (GC, σint, σce): The instance used in Section 2.2 to explain the target specification.

(b) Ib,i = (Gi
C, σi

int, σi
ce), i = 1, 2, 3, 4: An instance for inferring chemical graphs with

rank at most 2. In the four instances Ib,i, i = 1, 2, 3, 4, the following specifications in
(σint, σce) are common.

Set Λ := {C, N, O}, set Λint
dg to be the set of all possible symbols in Λ× [1, 4], and

set Γint to be the set of all possible edge-configurations. Set Λ∗(v) := Λ, v ∈ VC.
The lower bounds `LB, blLB, chLB, bd2,LB, bd3,LB, naLB, naint

LB, nsint
LB, acint

LB, ecint
LB are

all set to be 0.
The upper bounds `UB, blUB, chUB, bd2,UB, bd3,UB, naUB, naint

UB, nsint
UB, acint

UB, ecint
UB

are all set to be an upper bound n∗ on n(G∗).
For each property π, let F (Dπ) denote the set of 2-fringe-trees in the compounds
in Dπ , and select a subset F i

π ⊆ F (Dπ) with |F i
π | = 45− 5i, i ∈ [1, 5]. For each

instance Ib,i, set FE := F (v) := F i
π , v ∈ VC.

Instance Ib,1 is given by the rank-1 seed graph G1
C in Figure 9a and Instances Ib,i,

i = 2, 3, 4 are given by the rank-2 seed graph Gi
C, i = 2, 3, 4 in Figure 9b–d.

(i) For instance Ib,1, select as a seed graph the monocyclic graph G1
C = (VC, EC =

E(≥2) ∪ E(≥1)) in Figure 9a , where VC = {u1, u2}, E(≥2) = {a1} and E(≥1) = {a2}.
Set nint

LB := 0, nint
UB := 12 and nLB := n∗ := 38. We include a linear constraint

`(a1) ≤ `(a2) as part of the side constraint.
(ii) For instance Ib,2, select as a seed graph the graph G2

C = (VC, EC = E(≥2) ∪ E(≥1) ∪
E(=1)) in Figure 9b, where VC = {u1, u2, u3, u4}, E(≥2) = {a1, a2}, E(≥1) = {a3}
and E(=1) = {a4, a5}. Set nint

LB := nint
UB := 30 and nLB := n∗ := 50. We include a

linear constraint `(a1) ≤ `(a2).
(iii) For instance Ib,3, select as a seed graph the graph G3

C = (VC, EC = E(≥2) ∪ E(≥1) ∪
E(=1)) in Figure 9c, where VC = {u1, u2, u3, u4}, E(≥2) = {a1}, E(≥1) = {a2, a3}
and E(=1) = {a4, a5}. Set nint

LB := nint
UB := 30 and nLB := n∗ := 50. We include

linear constraints `(a1) ≤ `(a2) + `(a3) and `(a2) ≤ `(a3).
(iv) For instance Ib,4, select as a seed graph the graph G4

C = (VC, EC = E(≥2) ∪
E(≥1) ∪ E(=1)) in Figure 9d, where VC = {u1, u2, u3, u4}, E(≥1) = {a1, a2, a3} and
E(=1) = {a4, a5}. Set nint

LB := nint
UB := 30 and nLB := n∗ := 50. We include linear

constraints `(a2) ≤ `(a1) + 1, `(a2) ≤ `(a3) + 1 and `(a1) ≤ `(a3).

a1

a2
u1

u2

a1

u3u1 u2
u4

a5a4

a3
a2

u3u1 u2 u4

a1

a5a4

a3

u3u1 u2 u4

a1

a5a4

a3

a2

a2

(a) GC
1

(c) GC
3

(d)  GC
4

(b) GC
2

Figure 9. An illustration of seed graphs: (a) A monocyclic graph G1
C; (b) A rank-2 cyclic graph G2

C
with two vertex-disjoint cycles; (c) A rank-2 cyclic graph G3

C with two disjoint cycles sharing a vertex;
(d) A rank-2 cyclic graph G4

C with three cycles.

We define instances in (c) and (d) in order to find chemical graphs that have an in-
termediate structure of given two chemical cyclic graphs GA = (HA = (VA, EA), αA, βA)
and GB = (HB = (VB, EB), αB, βB). Let Λint

A and Λint
dg,A denote the sets of chemical ele-

ments and chemical symbols of the interior-vertices in GA, Γint
A denote the sets of edge-

configurations of the interior-edges in GA, and FA denote the set of 2-fringe-trees in GA.
Analogously define sets Λint

B , Λint
dg,B, Γint

B , and FB in GB.
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(c) Ic = (GC, σint, σce): An instance aimed to infer a chemical graph G† such that the core
of G† is equal to the core of GA and the frequency of each edge-configuration in the
non-core of G† is equal to that of GB. We use chemical compounds CID 24822711 and
CID 59170444 in Figure 10a,b for GA and GB, respectively.
Set a seed graph GC = (VC, EC = E(=1)) to be the core of GA.
Set Λ := {C, N, O}, and set Λint

dg to be the set of all possible chemical symbols in
Λ× [1, 4].
Set Γint := Γint

A ∪ Γint
B and Λ∗(v) := {αA(v)}, v ∈ VC.

Set nint
LB := min{nint(GA), nint(GB)}, nint

UB := max{nint(GA), nint(GB)},
nLB := min{n(GA), n(GB)} − 10 and n∗ := max{n(GA), n(GB)}+ 5.
Set lower bounds `LB, blLB, chLB, bd2,LB, bd3,LB, naLB, naint

LB, nsint
LB and acint

LB to be 0.
Set upper bounds `UB, blUB, chUB, bd2,UB, bd3,UB, naUB, naint

UB, nsint
UB and acint

UB to be n∗.
Set ecint

LB(γ) to be the number of core-edges in GA with γ ∈ Γint and ecint
UB(γ) to be the

number interior-edges in GA and GB with edge-configuration γ.
Let F (p)

B , p ∈ [1, 2] denote the set of chemical rooted trees r-isomorphic p-fringe-trees
in GB.
Set FE := F (v) := F (1)

B ∪ F (2)
B , v ∈ VC.

(d) Id = (G1
C, σint, σce): An instance aimed to infer a chemical monocyclic graph G†

such that the frequency vector of edge-configurations in G† is a vector obtained by
merging those of GA and GB. We use chemical monocyclic compounds CID 10076784
and CID 44340250 in Figure 10c,d for GA and GB, respectively. Set a seed graph to
be the monocyclic seed graph G1

C = (VC, EC = E(≥2) ∪ E(≥1)) with VC = {u1, u2},
E(≥2) = {a1} and E(≥1) = {a2} in Figure 9a.
Set Λ := {C, N, O}, Λint

dg := Λint
dg,A ∪Λint

dg,B and Γint := Γint
A ∪ Γint

B .

Set nint
LB := min{nint(GA), nint(GB)}, nint

UB := max{nint(GA), nint(GB)},
nLB := min{n(GA), n(GB)} and n∗ := max{n(GA), n(GB)}.
Set lower bounds `LB, blLB, chLB, bd2,LB, bd3,LB, naLB, naint

LB, nsint
LB and acint

LB to be 0.
Set upper bounds `UB, blUB, chUB, bd2,UB, bd3,UB, naUB, naint

UB, nsint
UB and acint

UB to be n∗.
For each edge-configuration γ ∈ Γint, let xxx∗A(γ

int) (resp., xxx∗B(γ
int)) denote the number

of interior-edges with γ in GA (resp., GB), γ ∈ Γint and set
xxx∗min(γ) := min{xxx∗A(γ), xxx∗B(γ)}, xxx∗max(γ) := max{xxx∗A(γ), xxx∗B(γ)},
ecint

LB(γ) := b(3/4)xxx∗min(γ) + (1/4)xxx∗max(γ)c and
ecint

UB(γ) := d(1/4)xxx∗min(γ) + (3/4)xxx∗max(γ)e.
Set FE := F (v) := FA ∪ FB, v ∈ VC.

In Stage 5, before we formulate an MILP for inferring a target chemical graph G† for
each instance I, we reduce the input layer of an ANN N constructed in Stage 3 so that
the input layer consists of input nodes that correspond to the descriptors actually used
in the specification (GC, σint, σce) of the instance I, i.e., we remove any input nodes in N
that represent the frequency of edge-configurations in Γint(Dπ) and chemical rooted trees
ψ ∈ F (Dπ) not contained in the specification (GC, σint, σce) of I. For example, there are
|F (Dπ)| = 109 chemical rooted trees in the set of 2-fringe-trees in the data set Dπ with
π = KOW in Table 3, and an ANN N constructed in Stage 3 contains 109 input nodes
that correspond to the descriptors for the fringe-configuration. However, the set of input
nodes for the fringe-configuration is reduced to a set of |F ∗| = 40 input nodes when we
formulate an MILP for solving instance Ib,1, saving the number of integer variables.
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(a) GA: CID 24822711 (b) GB: CID 59170444

(c) GA: CID 10076784 (d) GB: CID 44340250

Figure 10. An illustration of chemical compounds for instances Ic and Id: (a) GA: CID 24822711;
(b) GB: CID 59170444; (c) GA: CID 10076784; (d) GB: CID 44340250.

Table 6 shows the features of the seven test instances, where we denote the following:

- Λ: the set of non-hydrogen chemical elements for inferring a target graph;
- |Γint|: the number of different edge-configurations of interior-edges for inferring a

target graph;
- |F ∗|: the number of different chemical rooted trees in the setF ∗ = FE ∪

⋃
v∈VC

F (v); and
- [nint

LB, nint
UB], [nLB, n∗]: the lower and upper bounds on nint(G†) and n(G†) for inferring

a target graph G†.

Table 6. Features of test instances.

Instance Λ |Γint| |F∗| [nint
LB, nint

UB] [nLB, n∗]

Ia C,O,N 10 11 [30,50] [20,28]
Ib,1 C,O,N 28 40 [38,38] [6,6]
Ib,2 C,O,N 28 35 [50,50] [30,30]
Ib,3 C,O,N 28 30 [50,50] [30,30]
Ib,4 C,O,N 28 25 [50,50] [30,30]
Ic C,O,N 8 12 [46,46] [24,24]
Id C,O,N 7 8 [40,45] [18,18]

Stage 4. To solve an MILP in Stage 4, we used CPLEX version 12.10. Tables 7–12 show the
results on Stages 4 and 5, where we denote the following:

- [a, a]: the minimum and maximum values of a(G) in π over compounds G in Dπ

in Table 3;
- [y, y]: y (resp., y) denotes the minimum (resp., maximum) target value y with a ≤ y ≤

a such that the MILP instance for the target value y∗ = y becomes feasible (i.e., admits
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a target chemical graph G†). To determine the minimum and minimum target values
y and y, we solved many numbers of MILP instances. Note that the MILP instance
may become infeasible for some value y within the range [y, y];

- y∗: a target value in [y, y] for a property π;
- #v: the number of variables in the MILP in Stage 4;
- #c: the number of constraints in the MILP in Stage 4;
- IP-time: the time (sec.) to solve the MILP in Stage 4;
- n: the number n(G†) of non-hydrogen atoms in the chemical graph G† inferred in

Stage 4; and
- nint: the number nint(G†) of interior-vertices in the chemical graph G† inferred in

Stage 4.

Figure 11a illustrates the chemical graph G† inferred from instance Ic with y∗ = 3.0 of
KOW in Table 7.

Table 7. Results of Stage 4 for KOW.

Instance [a, a] [y, y] y∗ #v #c IP-Time n nint

Ia [−7.53, 13.45] [−7.0, 13.4] 3.2 7663 9162 3.9 35 24
Ib,1 [−7.53, 13.45] [−7.5, 13.4] 3.0 9894 6626 17.5 38 7
Ib,2 [−7.53, 13.45] [−7.5, 13.4] 3.0 11,514 8934 14.0 50 30
Ib,3 [−7.53, 13.45] [−7.5, 13.4] 3.0 11,318 8926 24.6 50 30
Ib,4 [−7.53, 13.45] [−7.5, 13.4] 3.0 11,122 8918 22.0 50 30
Ic [−7.53, 13.45] [−7.5, 13.4] 3.0 7867 8630 2.1 49 32
Id [−7.53, 13.45] [−7.5, 13.4] 3.0 5395 6899 5.2 45 23

Table 8. Results of Stage 4 for BP.

Instance [a, a] [y, y] y∗ #v #c IP-Time n nint

Ia [−11.70, 470.0] [352, 470] 411 7583 8982 2.7 42 25
Ib,1 [−11.70, 470.0] [−11, 470] 229 9816 6449 2.7 38 7
Ib,2 [−11.70, 470.0] [−11, 470] 229 11,436 8757 9.1 50 30
Ib,3 [−11.70, 470.0] [−11, 470] 229 11,240 8749 11.0 50 30
Ib,4 [−11.70, 470.0] [−11, 470] 229 11,044 8741 24.0 50 30
Ic [−11.70, 470.0] [170, 470] 320 7575 8450 25.9 49 33
Id [−11.70, 470.0] [151, 470] 310 5315 6719 4.4 43 23

Table 9. Results of Stage 4 for MP.

Instance [a, a] [y, y] y∗ #v #c IP-Time n nint

Ia [−185.3, 300.0] [55, 300] 177.5 7602 9023 16.1 41 24
Ib,1 [−185.3, 300.0] [−180, 300] 60 9833 6487 2.3 38 9
Ib,2 [−185.3, 300.0] [−185, 300] 57.4 11,453 8795 44.7 50 30
Ib,3 [−185.3, 300.0] [−185, 300] 57.4 11,257 8787 10.5 50 30
Ib,4 [−185.3, 300.0] [−185, 300] 57.4 11,061 8779 93.9 50 30
Ic [−185.3, 300.0] [253, 300] 260.0 7580 6172 24.0 41 33
Id [−185.3, 300.0] [−75, 299] 58 5110 4050 104.6 45 23
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Table 10. Results of Stage 4 for FP.

Instance [a, a] [y, y] y∗ #v #c IP-Time n nint

Ia [−82.99, 300.0] [98, 300] 199 7459 8696 1.6 35 22
Ib,1 [−82.99, 300.0] [−82, 300] 109 9694 6166 1.4 38 8
Ib,2 [−82.99, 300.0] [−82, 300] 109 11,314 8474 8.7 50 30
Ib,3 [−82.99, 300.0] [−82, 300] 109 11,118 8466 25.8 50 30
Ib,4 [−82.99, 300.0] [−82, 300] 109 10,922 8458 8.5 50 30
Ic [−82.99, 300.0] [250, 300] 275 7667 8170 60.9 47 34
Id [−82.99, 300.0] [54, 300] 177 5193 6436 2.0 45 23

Table 11. Results of Stage 4 for LP.

Instance [a, a] [y, y] y∗ #v #c IP-Time n nint

Ia [−3.6, 6.84] [−3.6, 6.8] 1.6 7597 9008 1.9 39 23
Ib,1 [−3.6, 6.84] [−3.6, 6.8] 1.6 9836 6481 2.9 38 8
Ib,2 [−3.6, 6.84] [−3.6, 6.8] 1.6 11,456 8789 21.1 50 30
Ib,3 [−3.6, 6.84] [−3.6, 6.8] 1.6 11,260 8781 20.4 50 30
Ib,4 [−3.6, 6.84] [−3.6, 6.8] 1.6 11,064 8773 24.2 50 30
Ic [−3.6, 6.84] [−3.6, 6.8] 1.6 7801 8476 1.1 47 32
Id [−3.6, 6.84] [−3.6, 6.8] 1.6 5335 6754 4.3 45 23

Figure 11b illustrates the chemical graph G† inferred from instance Id with y∗ = 1.6 of
LP in Table 11.

Table 12. Results of Stage 4 for SL.

Instance [a, a] [y, y] y∗ #v #c IP-Time n nint

Ia [−9.33, 1.11] [−9.3, −2.0] −5.6 7674 9186 2.4 41 23
Ib,1 [−9.33, 1.11] [−9.3, −2.0] −5.6 9906 6650 22.3 38 12
Ib,2 [−9.33, 1.11] [−9.3, −2.0] −5.6 11,526 8958 15.2 50 30
Ib,3 [−9.33, 1.11] [−9.3, −2.0] −5.6 11,330 8950 16.2 50 30
Ib,4 [−9.33, 1.11] [−9.3, −2.0] −5.6 11,134 8942 122.7 50 30
Ic [−9.33, 1.11] [−9.3, −2.0] −5.6 7874 8648 1.2 54 33
Id [−9.33, 1.11] [−9.3, −3.0] −6.1 5402 6917 8.1 43 23

(a) G　 (b) G　
Figure 11. (a) G† inferred from Ic with y∗ = 3.0 of KOW; (b) G† inferred from Id with y∗ = 1.6 of LP.
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The topological specification of instances Ia, Ic and Id is more restricted than that of
the other instances, and thereby the feasible target range [y, y] of Ia, Ic and Id is rather
narrower than the original range [a, a] for some property π. We see that the running time
for solving an MILP instance with n = 50 is 8.5 to 122 (s), which is much smaller than the
running time of 61 to 12058 (s) to solve a similar set of MILP instances with n = 50 in the
experimental result for the previous method [28].

Stage 5. We computed chemical isomers G∗ of each target chemical graph G† inferred in
Stage 4. We execute the algorithm for generating chemical isomers of G† up to 100 when
the number of all chemical isomers exceeds 100. The algorithm can evaluate a lower bound
on the total number of all chemical isomers G† without generating all of them.

Tables 13 and 14 show the computational results of the experiment, where we denote
the following:

- DP-time: the running time (s) to execute the dynamic programming algorithm in
Stage 5 to compute a lower bound on the number of all chemical isomers G∗ of G†

and generate all (or up to 100) chemical isomers G∗;
- G-LB: a lower bound on the number of all chemical isomers G∗ of G†; and
- #G: the number of all (or up to 100) chemical isomers G∗ of G† generated in Stage 5.

From Tables 13 and 14, we observe that the running time for generating up to 100
target chemical graphs in Stage 5 is not considerably larger than that in Stage 4.

Table 13. Results of Stage 5 for KOW, LP, and BP.

Kow Lp Bp
Instance DP-Time G-LB #G DP-Time G-LB #G DP-time G-LB #G

Ia 0.031 16 16 0.164 128 100 0.164 1.4× 105 100
I1
b 0.149 2.8× 105 100 0.148 2.0× 1010 100 0.162 4.4× 105 100

I2
b 44.1 3.9× 1010 100 118 900 100 171 6 6

I3
b 27.2 20 20 80.2 6 6 28.6 7 7

I4
b 0.166 6000 100 73 12 12 142 5 5

Ic 0.166 6000 100 0.168 288 100 0.168 4.0× 105 100
Id 22.3 8.3× 1010 100 1.44 3.2× 108 100 1.7 9.7× 109 100

Table 14. Results of Stage 5 for FP, MP, and SL.

FP MP SL
Instance DP-Time G-LB #G DP-Time G-LB #G DP-Time G-LB #G

Ia 0.057 32 32 0.165 256 100 0.165 1024 100
I1
b 0.164 3.1× 106 100 0.166 1.4× 106 100 0.163 4.5× 105 100

I2
b 28.8 720 100 8.26 2.4× 1010 100 1.07 5.6× 109 100

I3
b 72.2 27 27 51.9 1 1 46.5 1680 100

I4
b 40.3 20 20 125 6.1× 107 100 7.01 1.1× 108 100

Ic 0.169 1.1× 105 100 0.173 6048 100 0.168 120 100
Id 0.057 32 32 0.17 4.2× 108 100 0.165 1024 100

4. Discussions and Conclusions

The framework of designing chemical graphs using ANNs and MILP has been pro-
posed [23] as a basis of a total system of the QSAR and the inverse of QSAR, where the
inverse of a prediction function produced by an ANN is solved by an MILP. The merit
of the framework is that the inverse problem can be treated exactly as a mathematical
problem, and an MILP instance with a moderate size can be efficiently solved with a fast
MILP solver. On the other hand, the main technical concern in applying the framework is
in defining a feature vector of a chemical graph in terms of graph theoretical descriptors so
that the computation of a feature vector can be simulated with a set of linear constraints in
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an MILP. So far, the framework has been applied to the design of new methods of inferring
several restricted classes of chemical graphs such as the graphs with rank at most 2 and the
ρ-lean cyclic graphs [26,28].

Herein, we examine some technical issues in the previous method before we observe
some new features of our method in this paper.

In the feature vector of the previous models [26,28], the structure of subgraphs used
as descriptors is only a pair of adjacent vertices, called adjacency-configuration or edge-
configuration, which is significantly limited from a variety of subgraphs used in a more
sophisticated construction of a feature vector such as the fingerprint. However, including
the occurrence of a certain subgraph with only a few vertices as part of a feature vector may
require realizing a mechanism of the subgraph isomorphism in an MILP that simulates
the computation of such an occurrence and can easily make the resulting MILP very
complicated and hard to solve. Furthermore, the feature vector can be defined only for
cyclic graphs and we need to eliminate any acyclic graphs from the original data set before
we construct a prediction function. This may reduce a data set to an unnecessarily small
size or reduce the chances of capturing important information on QSAR over all types
of graphs.

A branch-parameter ρ was originally introduced as a new measure to the “agglomer-
ation degree” of trees [24] and then used to define restricted classes of acyclic and cyclic
graphs [24,27]. In fact, such a restriction on the structure of target chemical graphs was
rather necessary to reduce the size of an MILP formulation that simulates a selection process
of a target chemical graph from a supergraph (called a scheme graph), where the number of
variables and constraints required to infer a chemical graph with n∗ non-hydrogen atoms
is O(n∗) when some other parameters such as ρ are regarded as constants.

Although nearly 97% of cyclic chemical compounds with up to 100 non-hydrogen
atoms in PubChem are 2-lean [24], the way of specifying the topological structure of a target
chemical graph in the previous method [26,28] was based on the core and the non-core of a
chemical graph, and we could not include a fixed substructure in the non-core of a target
chemical graph.

Compared with the previous models, the two-layered model proposed in this paper is
rather simple, where a chemical graph is regarded as a combination of the interior and the
exterior. The new model can deal with chemical compounds with any graph structure and
include a prescribed structure in both of the acyclic and cyclic parts of a target chemical
graph as long as the requirement on target chemical graphs is described under the set of
specification rules introduced in this paper. This considerably improves the availability of
the framework in a practical application.

The feature vector of our two-layered model can be defined for arbitrary graphs. In the
new feature vector, the exterior of a chemical graph is encoded into fringe-configurations,
i.e., the occurrence of each chemical rooted tree with height at most ρ, where we may regard
that the set of such a chemical rooted trees plays a similar role of some types of functional
groups. In our method, we include as part of the descriptors of a feature vector the
occurrence of each of such chemical rooted trees and the descriptors of our feature vector
on the exterior of a chemical graph may have an analogous effect with the fingerprint.

Our specification of target chemical graphs can specify a candidate set F of chemical
rooted trees that are allowed to be used as chemical rooted trees in the exterior of a target
chemical graph. This allows us to control the chemical property of target chemical graphs
in a more meaningful way since chemical properties of some rooted trees in F are known
as functional groups and some kinds of rooted trees can be prohibited in a target chemical
graph, if necessary, just by excluding from the candidate set F . Although the number
|F (Dπ)| of different kinds of such chemical trees in a data set Dπ from PubChem is
approximately up to 300 for ρ = 2 in many cases and the number of input nodes in an ANN
N becomes over |F (Dπ)|, we derived an MILP formulation for inferring a chemical graph
with with n∗ non-hydrogen atoms and a candidate set F of chemical rooted trees by using
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O(n∗ + |F |) variables and O(n∗|F |) constraints when the number of interior-vertices is
constant, where |F | can be quite small compared with |F (Dπ)|.

We have implemented the proposed method for inferring chemical compounds with a
prescribed topological substructure setting ρ = 2. The results of computational experiments
using some chemical properties such as octanol/water partition coefficient, boiling point,
melting point, flash point, lipophylicity, and solubility suggest that the proposed system
can infer chemical graphs with 50 non-hydrogen atoms.

For a larger branch-parameter, say ρ = 3, 4, we obtain a more variety of chemical
rooted trees which provides new descriptors in a feature vector and new candidates for
fringe-trees in the exterior in a target chemical graph, whereas the number of different
chemical rooted trees in F (Dπ) may increase rapidly.

It is left as a future work to use other learning methods such as decision tree, random
forest, graph convolution, and an ensemble method in Stages 3 and 4 in the framework.

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1.
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