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a b s t r a c t

Viruses that infect the nervous system may cause acute, chronic or latent infections. Despite

the so-called immunoprivileged status of the nervous system, immunosurveillance plays an

important role in the fate of viral infection of the brain. Herpes simplex virus 1 (HSV-1)

persists in the nervous system for the life of the host with periodic stress induced reactiva-

tion that produces progeny viruses. Prevention of reactivation requires a complex interplay

between virus neurons, and immune response. New evidence supports the view that CD8+T

cells employing both lytic granule- and IFN-gamma-dependent effectors are essential in

setting up and maintaining HSV-1 latency. HSV-1 infection of the nervous system can be

seen as a parasitic invasion which leaves the individual at risk for subsequent reactivation

and disease. The recent observation that herpes virus latency may confer protection against

experimental bacterial infection suggests that unexpected symbiosis may exist between

latent viruses and the infected nervous system of its host.

# 2009 Elsevier Masson SAS. All rights reserved.

r é s u m é

En parasites obligatoires, les virus ont adopté des stratégies d’évitement des défenses

cellulaires et des réactions immunitaires. Pendant la phase infection aiguë, les virus doivent

se répliquer sans faire périr la cellule et l’hôte qui les hébergent et éviter de se faire éliminer

trop rapidement par la réponse immunitaire de l’hôte infecté. Après quelques cycles et la

dissémination des particules virales nouvellement formées, l’infection est généralement

éliminée. Dans certains cas, toutefois, le virus disparaı̂t sous sa forme infectieuse, mais son

génome reste hébergé par les cellules de l’organisme. Ces cellules constituent un réservoir

où le virus persiste à l’état latent pendant toute la durée de vie de l’hôte. Les virus de la

famille des Herpes (virus de Herpes simplex, virus de la varicelle) sont des exemples bien

documentés d’infection latente du système nerveux central. L’état de latence virale semble

résulter d’un équilibre subtil entre le virus, la machinerie cellulaire et la réponse immu-

nitaire. Certains stimuli – comme un affaiblissement de la réponse immune – peuvent

causer des phases de réactivation qui se traduisent par éruption de boutons de fièvre ou de
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zona. Les cellules infectées de façon latente sont souvent présentes dans les organes –

comme le système nerveux – peu accessibles à la réponse immunitaire ce qui rend leur

élimination difficile. L’infection par le virus du VIH réactive, à la faveur de l’immunodépres-

sion qu’il provoque, des infections virales du système nerveux responsables d’encéphalites

(CMV, HSV) mais aussi de lymphomes (EBV). L’émergence de cas d’encéphalite leucocytaire

causée par le polyoma virus JC après l’utilisation du Natalizumab (anticorps dirigé contre la

chaine a4 de l’intégrine 4 dans le traitement de la sclérose en plaques) a mis en lumière le rôle

de la réponse immune dans le contrôle des infections virales latentes du système nerveux.

De récentes données illustrent le rôle paradoxal des lymphocytes cytotoxiques de l’hôte

dans le système nerveux ; leur présence serait requise pour que la latence virale s’établisse et

persiste. Néanmoins, comme dans de nombreuses associations parasitaires, il se pourrait

aussi que l’hôte infecté trouve quelques avantages à la présence de virus latents dans son

système nerveux.

# 2009 Elsevier Masson SAS. Tous droits réservés.
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1. Introduction

Neurotropic viruses cause serious neurological diseases in

humans. Development of the disease as an acute or latent

infection results of several factors among which the strength

of the viral load, the potency of the host immune response and

the strategies of virus to escape from the immune response are

important factors. In most experimental virus infections of the

brain the rapid production of a local innate immune response,

including the production of type I interferon (type I IFN) is

paramount for host survival (Griffin, 2003). In other instances,

the virus burden is so high that clearance of infection by the

immune system from the brain fails. This is for example the

case of fatal encephalitic cases of West Nile virus encephalitis

in mouse model and in humans, where death occurs despite

accumulation of inflammatory infiltrates consisting predomi-

nantly of nodules of activated microglia, T and B cells,

macrophages (Agamanolis et al., 2003; Brehin et al., 2008;

Kelley et al., 2003). Failure of the immune response to clear

infection off the brain may also result of immunoevasive

strategies selected by viruses to evade the host immune

response. A well-characterized case is rabies. Rabies virus has

developed sophisticated mechanisms to destroy or inactivate

‘protective’ T cells that migrate into the infected nervous

system, as a result of the overexpression of immunosubver-

sive molecules such as FasL, HLA-G or B7-H1 in the infected

nervous system (Lafon et al., 2006; Lafon et al., 2008; Baloul

et al., 2004). For other virus infection such as herpes simplex

virus of type 1 (HSV-1) evasion from the immune response can

be in some how incomplete. In HSV-1 brain infection, the host

immune constraints are sufficient to contribute to latency but

they are not strong enough to clear infection. Weakness of the

immune response leads episodically to reactivation of the

infection. Nevertheless, the immune response in the brain is

not always beneficial and can cause immunopathological

conditions. An obvious illustration is multiple sclerosis (MS)

for which an infectious etiology has been suspected (Dolei and

Perron, 2009; Lunemann and Munz, 2009; Perron et al.,

2009; Perron et al., 2001; Tai et al., 2009) and where

demyelination results both of inflammatory response and B

cell activation. This could be also the case of the influenza-

associated encephalopathy, where neurological complica-
tions of influenza virus infection have been attributed to the

inflammatory reactions in the brain rather to the dysfunction

of the infected neurons (Okumura et al., 2009).

2. Immune status of the nervous system

2.1. Innate immune response

Nervous parenchyma – as most tissues – has the capacity to

sense viral infection. The innate immune response triggered

in situ by the entry of pathogen into the brain is characterized

by the production of type I IFN (predominantly IFN-b in the

brain [Delhaye et al., 2006; Prehaud et al., 2005]), chimiokines

and inflammatory cytokines. Beside intrinsic antiviral pro-

perty, type I IFN also controls the expression of a large number

of genes involved in chemo attractive, antiviral and inflam-

matory responses, which contribute to the host, defence

against brain invasion. Microglia, astrocytes and now neurons

have been identified as main innate keepers of the brain

(Olson and Miller, 2004; Delhaye et al., 2006; Lafon et al., 2006;

Yang et al., 2000; Zhou et al., 2009). Cells of the NS, mainly glial

cells, express receptors such as Toll-like receptors (TLR) or

RIG-like (RLR) which allow them to recognize and respond to

the presence of danger signals and Pathogen Associated

Molecular Patterns (PAMPS) encoded by pathogens (Furr et al.,

2008; Olson and Miller, 2004). Only recently neurons were

found to express TLRs and RLRs, (Lafon et al., 2006; Tang et al.,

2007; Tang et al., 2008). TLR3 is strongly expressed by Purkinje

neurons in the cerebellum of human brains affected by viral

encephalitis, amyotrophic lateral sclerosis, stroke or Alzhei-

mer disease (Jackson et al., 2006).

It is still unclear whether the innate immune responses of

the brain are as efficient as those in periphery. Injection of the

bacterial component LPS into the brain parenchyma elicits

neutrophil and monocyte recruitment within 2 h postinjection

into the skin, whereas monocyte recruitment is observed only

after 2 days when LPS is injected into the brain parenchyma

(Andersson et al., 1992). This reduced inflammatory response

may result of the property of neurons to reduce inflammation

and regulate microglial phenotype during infection or injury

(Meuth et al., 2008). Control of local glial inflammation occurs
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via the expression by neurons of receptors such as CD47, CD22,

CD200 and by their ligands on glial cells (Griffiths et al., 2007;

Hoek et al., 2000; Wright et al., 2000).

Nevertheless, the type I IFN in the infected nervous system

is essential in controlling some neurotropic infections. This is

the case for coronavirus clearance off the brain, for which

type I IFN response is primordial irrespective of functional

adaptive immune response (Ireland et al., 2008). Neuronal

expression of TLR3 seems to play a major role in the control of

neurotropic viral infection, either decreasing viral replication

in the case of West Nile virus infections or more surprisingly

by promoting virus neuronal infection as shown in the case of

rabies virus (Daffis et al., 2008; Menager et al., 2009).

Moreover, a role of TLR3 and the resulting innate immune

response has been evoked in the susceptibility of children to

encephalitis associated to HSV-1 infection (HSVE). When

HSV-1 infects the temporal neurons, it causes severe HSVE,

with 60% of fatality in absence of treatment. Origin of the

tropism is not yet understood, nevertheless, inefficient

innate immune response may play a role since HSVE

development has been linked to TLR3 signalling deficiency,

either through TLR3 polymorphism (Zhang et al., 2007) or to

UNC-93B deficiency (Casrouge et al., 2006). UNC-93B- and

TLR3-deficient patients appear to be specifically prone to

HSVE, although clinical penetrance is incomplete. Children

with predisposition to HSVE carry an heterozygous mutation

in TLR3 at the crucial site for dsRNA binding to TLR3 and TLR3

multimerization. UNC93B1 binds the transmembrane

domain of TLR3, 7/8 and 9. It is specifically involved in the

trafficking of TLR3, 7/8 and 9. In its absence, TLR3, 7/8 and 9

cannot reach anymore the endolysosomes, and signalling is

impaired (Brinkmann et al., 2007). Humans with homologous

germline mutation show impaired cytokine production upon

TLR3, 7/8 and 9 stimulation.

2.2. Adaptive immune response in the brain

If an allograft is implanted into the brain, rejection is delayed

compared to grafts in other organs (Medawar, 1991). This

phenomenon has given rise to the concept that general rules

of the immune system are not applicable to the central

nervous system and that the brain – an organ with poor

regenerative capacity – enjoys immunological privilege. The

‘immune privilege’ of the central nervous system is a

longstanding notion which, over time, has acquired several

misconceptions and a lack of precision in its definition (Galea

et al., 2007). Different compartments composed the nervous

system: parenchyma, ventricles containing the choroid plexus

and filled with cerebrospinal fluid CSF and the meninges. The

immune privilege is solely applicable to the nervous paren-

chyma and not to the other tissues such as meninges, choroid

plexus, circumventricular organs and ventricles nor to CSF.

Experimentally, a virus infection confined to the parenchymal

substance of the brain primed the immune system ineffi-

ciently or not at all (Byrnes et al., 1996a; Stevenson et al., 1997).

In contrast, infection in the CSF elicits a comparable immune

response to intranasal infection, with an antiviral proliferative

response in the draining lymph nodes (Stevenson et al., 1997).

These different situations result on the absence of lymphoid

organs into the nervous system and the distinct capacities of
antigens to be drained or not from the nervous system towards

the cervical lymph nodes (Galea et al., 2007; Weller et al., 2009).

Even if immune privilege of nervous parenchyma is well

established, it is not a barrier for host defence, since all

neurotropic viruses reach the brain after an initial entry in the

peripheral tissues, such as muscle, skin or intestinal cells. In

these conditions, detection of the pathogen by the peripheral

immune system has already occurred and complete immune

response has been triggered against the foreign pathogen. The

so-called blood brain barrier is not a barrier either for access of

T, B and macrophages into the brain from the periphery, since,

once activated, immune expressing surface adhesion mole-

cules have the capacity to enter the nervous system

(Engelhardt, 2008). In contrast, it is well-documented that

after there entry, the migratory immune cells faced unfavou-

rable conditions for survival. This results of a series of

parameters controlled by neurons that seriously dampen T

cells activity. For example, secretion of several neuropeptides

and neurotransmitters by neurons such as vasointestinal

peptide, calcitonin gene related peptide, norepinephrin and

alpha melanocyte stimulating hormone down regulate the

activity of T cells (Niederkorn, 2006). T cells can be subjected to

apoptosis by encountering FasL (Baloul et al., 2004). T cells can

also be converted into regulatory T cells in presence of TGF-b

secreted by neurons (Liu et al., 2006).

Surprisingly despite this rigorous regulation, T cells can

still participate to the immunosurveillance against brain

infection as illustrated by the side effect attributed to the

use of natalizumab. Natalizumab is a humanized recombinant

monoclonal antibody that efficiently reduces inflammation of

nervous system in MS patients. This mAb targeting the a4

subunit of a4b1 integrin expressed by T cells inhibits alpha (4)

integrin-mediated adhesion of human T cells to the inflamed

BBB (Bauer et al., 2009; Coisne et al., 2009). Nevertheless, a few

MS patients treated with Natalizumab in clinical trials

developed a progressive multifocal leukoencephalopathy

caused by the polyomavirus JC, an opportunistic viral

infection of the NS (Stuve, 2008). This might be related to

the property of Natalizumab to decrease the entry into the

brain of protective lymphocytes allowing the infection of the

nervous system by the JC virus a human neuroropic

poyomavirus, a virus requiring strong suppression of the

immune system in order to thrive. This opportunity occurs

after Natalizmab treatment and as told by Igor Koralnik ‘‘Bad

things may happen when rescuers are turned back at the gates’’

(Berger and Koralnik, 2005). This side effect illustrates the

critical role of immuneresponse – despite the immunosup-

pressive neuronal local environement – in protecting the brain

against viral infection. Role of immune response in brain

protection against invading pathogens, is also illustrated by

HIV-infected subjects progressing into symptomatic AIDS

and concomitantly their immune response deteriorating,

they become vulnerable to opportunistic infections such as

Cryptococcus neoformans (2–30% of cases), human cytomegalo-

virus, HCMV (9%), toxoplasmosis (4%), HSV-1 (4%) as well as

Epstein-Barr virus infection (5–10%) the latest causing primary

central nervous system lymphoma (Anthony et al., 2008).

Indeed T cells, are major actors in the clearance of viral

infections (Baloul et al., 2004; Bantug et al., 2008; Byrnes et al.,

1996b; Galelli et al., 2000; Lafon et al., 2008). Nevertheless, in
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some cases, as illustrated below, T cells may have dual role in

the fight against infection in the nervous system.

3. Dual role of immune response in HSV-1
latency

HSV-1 establishes a lifelong persistent infection of human

peripheral nervous system. During primary infection, virus

enters the nervous termini located in mouth-pharyngeal area,

and then travels by retrograde axonal transport up to the

bodies of the sensory nerves in sensory ganglia. Acute

infection is replaced by a latent infection where viral genomes

persist without viral particles production. Reactivation from

latency can occur sporadically upon different triggering such

as UV irradiation or stress. Reactivation results most of the

times in benign cold sores and rarely in severe blinding

immunopathological herpes stromal keratitis. The role of the

immune responses in the control of acute HSV infection, the

establishment of the latency and reactivation have been

studied in a mouse model of infection, where corneal

scarification in presence of virus result in the infection of

trigeminal ganglia mimicking human infection.

3.1. Acute infection

In the first 2–3 days after infection, an innate immune

response is quickly triggered as soon as the virus starts

replication in the ganglia. Both cellular arm of the innate

immune response consisting in the triggering of IFN-g

secreting gd TCR+ T cells or macrophages producing nitric

oxide (NO) and tumour necrosis factor alpha (TNF-a) and

humoral arm (type 1 IFN, chemokines, cytokines) are rapidly

triggered˙ The recognition of HSV components is both TLRs (2

and 9) and RLRs-dependent(Krug et al., 2004; Kurt-Jones et al.,

2004; Lund et al., 2003; Rasmussen et al., 2007; Sorensen et al.,

2008). Despite the capacity of HSV-1 to impede the IFN

response later in the virus cycle (Randall and Goodbourn,

2008), this early competent innate immune response is

sufficient to eliminate most – but not all – replicating virus

from the infected ganglia. Plasmacytoid and conventional DCs

are also triggered to produce type I IFN which is essential for

the activation of CD8+ T cells and expansion of memory

population (Garcia-Sastre and Biron, 2006). Indeed memory

CD8+ T cells infiltrate the ganglion by day 6 post-infection,

expand and settle in the trigeminal ganglion for the rest of life

of the infected animals. In this period, CD8+ T cells participate

to the clearance of virus.

3.2. Establishment of latency

Six days after corneal infection, latency was established in

some sensory neurons which do not produce replicating

viruses anymore. Molecular events that switch an acute HSV

infection into a latent infection are not completely unders-

tood. Latency is characterized by circularization of the viral

genome and the expression of latency associated transcripts

(LATs) and viral transcripts corresponding to immediate early

(a) early (b) and even late (g1) viral genes (Feldman et al., 2002;

Stevens, 1987). It is not excluded that the cell type provides a
critical environment for establishment of latency; in the

experimental ocular infection of mice, HSV-1 establishes

latency preferentially within A5 neurons, a subset of sensory

neurons expressing Galb1-4GlcNAc-R epitopes (Yang et al.,

2000). This subset of neurons could correspond to neurons

where expression of lytic viral genes such as ICP0 a gene

which prevents circularization of viral genome, is impaired

(Jackson and DeLuca, 2003; Margolis et al., 1992). Intriguingly

enough, establishment of latency may also require CD8+T

cells since mice genetically deficient in CD8+T cells or

depleted in CD8+T cells failed to establish uniform latency

(Gesser et al., 1994; Simmons and Tscharke, 1992). Resident

CD8+T cells located in the latently-infected ganglia are

specific for the glycoprotein B and since they expressed the

marker of activation CD69 they should result of recent viral

antigen encountering and activation. Indeed transcripts and

viral proteins can be detected in latently-infected mouse

neurons (Sawtell, 2003). This observation challenges the

concept that HSV-1 latency represents a silent infection that

should be ignored by the host immune response and suggests

instead the antigen direct retention of memory CD8+T cells

(Khanna et al., 2003).

CD8+ T lymphocytes play a critical role in preventing virus

reactivation – a phenomenon which can occur in a small

number of cells harbouring latent genomes, (1–5%) only, but

sufficient enough to cause disease. It has been shown the

reactivation is blocked by CD8+ T cells which produced IFN�g

(Khanna et al., 2003). The CD8+ T cells produce IFN-g which

inhibits the expression of the viral gene, ICP0 that prevents

genome circularisation (Halford and Schaffer, 2001; Knickel-

bein et al., 2008; Steed et al., 2006). The IFN-g receptor is

constitutively expressed in many neuronal populations

(Robertson et al., 2000; Vikman et al., 1998), nevertheless,

not all the neurons expressed receptor for IFN-g, prevention of

reactivation by IFN-g would be restricted to IFN-g receptor

positive cells only. In neurons lacking IFN-g receptor, it is

thought that some virus-mediated latency mechanisms

operate.

The CD8+ T cells also polarize their T cell receptor (TCR) to

the junction with neurons forming immunological synapses

where the lytic granules of perforine and granzymes accu-

mulated (Knickelbein et al., 2008). The function of lytic

granules is not to trigger death of the surrounding HSV-

infected neurons. Instead, lytic granules inhibit the expression

of ICP4, a viral gene essential for further viral gene expression.

Prevention of reactivation is controlled both by lytic granules

and by IFN-g. Thus, it has been proposed that altogether the

virus, the neurons and CD8+T cells are complementary actors

in maintaining HSV1 latency (Divito et al., 2006).

In addition, HSV latency may confer a surprising benefit to

the host. It appears that symbiotic protection could be offered

form bacterial infection to the host harbouring HSV infection.

Mice latently infected with a murine gamma herpes virus 68,

were more resistant to bacterial infections than the non-

latently virally infected mice. This effect is mediated by the

prolonged production of the antiviral IFN-g and the resulting

systemic activation of macrophages (Barton et al., 2007). Thus,

viral latency could be seen as a symbiotic relationship with

immune benefit for the host. It remains to be shown whether

this symbiotic protection do work in humans too.
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4. Conclusion

Neurotropic virus and host immune responses can build

intricate and complex interactions controlling viral pathology.

Viral infections of the nervous system are powerful models to

better understand how the nervous system controls inflam-

mation and invading immune cells. Viral neuroimmunology

studies may contribute to a better understanding of the

harmful mechanisms leading to neurodegenerative diseases.
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