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Abstract

Unlike other dipteran disease vectors, tsetse flies of both sexes feed on blood and transmit pathogenic African
trypanosomes. During transmission, Trypanosoma brucei undergoes a complex cycle of proliferation and development
inside the tsetse vector, culminating in production of infective forms in the saliva. The insect manifests robust immune
defences throughout the alimentary tract, which eliminate many trypanosome infections. Previous work has shown that fly
sex influences susceptibility to trypanosome infection as males show higher rates of salivary gland (SG) infection with T.
brucei than females. To investigate sex-linked differences in the progression of infection, we compared midgut (MG),
proventriculus, foregut and SG infections in male and female Glossina morsitans morsitans. Initially, infections developed in
the same way in both sexes: no difference was observed in numbers of MG or proventriculus infections, or in the number
and type of developmental forms produced. Female flies tended to produce foregut migratory forms later than males, but
this had no detectable impact on the number of SG infections. The sex difference was not apparent until the final stage of
SG invasion and colonisation, showing that the SG environment differs between male and female flies. Comparison of G. m.
morsitans with G. pallidipes showed a similar, though less pronounced, sex difference in susceptibility, but additionally
revealed very different levels of trypanosome resistance in the MG and SG. While G. pallidipes was more refractory to MG
infection, a very high proportion of MG infections led to SG infection in both sexes. It appears that the two fly species use
different strategies to block trypanosome infection: G. pallidipes heavily defends against initial establishment in the MG,
while G. m. morsitans has additional measures to prevent trypanosomes colonising the SG, particularly in female flies. We
conclude that the tsetse-trypanosome interface works differently in G. m. morsitans and G. pallidipes.
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Introduction

During transmission of a pathogen, selection in the invertebrate

vector may be of profound importance in dictating which

pathogen genotypes are most prevalent in mammalian hosts. This

evolutionary pressure can select for particular combinations of

pathogen and vector species, and weed out less fit pathogen

phenotypes regardless of any competitive advantage in the

mammalian host, such as virulence or drug resistance.

Tsetse flies (Diptera: Glossinidae) serve as vectors of several

pathogenic trypanosome species in subsaharan Africa, but

typically manifest high levels of resistance to infection [1,2].

Resistance mechanisms operate at a number of levels and time

points during the trypanosome’s complex developmental cycle

within the fly. For Trypanosoma brucei, trypanosomes first establish

infection in the tsetse midgut (MG), initially in the gut lumen with

subsequent invasion of the ectoperitrophic space via the

peritrophic matrix (PM) enclosing the bloodmeal. The anti-

microbial defences operating in the MG, such as antimicrobial

peptides, lectins and reactive oxygen intermediates [3,4,5,6,7],

ensure that a high proportion of infections are cleared at this

early stage. In the laboratory, these defences can be counter-

acted by, for example, feeding the flies on lectin-binding sugars

or anti-oxidants [8,9,10] or knocking down expression of

specific antimicrobial peptides or proteins using RNA interference

[4,11].

Of the MG infections that persist, few subsequently result in a

salivary gland (SG) infection and it is evident that the

trypanosomes experience a severe population bottleneck, as the

SG are invaded and colonised by very small numbers of

trypanosomes [12,13]. The barriers to SG infection are unknown,

but there are several points along this complex pathway where

progression may potentially be blocked. From the MG, trypano-

somes move anteriorly to invade the proventriculus and penetrate

through the PM before migrating to the SG via the foregut. The

proventriculus is known to be a highly immunogenic tissue [5] and

this could influence the success of trypanosome invasion of the

foregut or the differentiation from MG procyclics to migratory

forms. Escape of trypanosomes from the proventriculus into the

foregut would also be blocked if trypanosomes were unable to

penetrate the PM. Little is known of SG immune responses, but

these are also likely to be vigorous judging by the frequent failure

of migratory trypanosomes to colonise the SG and establish

infection [2,12,13]. A recent survey of genes expressed in tsetse SG

revealed a large variety of potential immunity-related molecules,

some of which are also expressed by MG and fat body tissues [14].

Unlike other dipteran vectors such as mosquitoes, sand flies and

black flies, both male and female tsetse feed on blood and hence
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serve as trypanosome vectors. Intriguingly, fly sex appears to

influence susceptibility to trypanosome infection. Male flies

(Glossina morsitans morsitans, G. m. centralis, G. pallidipes, G. fuscipes

fuscipes) showed higher rates of SG infection with T. brucei than

females [15,16,17], and it has been suggested that a sex-linked

recessive gene is involved [16]. The underlying cause of this sex

difference in susceptibility is not known.

To investigate sex-linked differences in the development of

trypanosome infections in tsetse, we compared the development of

MG, proventriculus, foregut and SG infections in male and female

flies of G. m. morsitans. Infections developed in the same way in both

male and female flies until the final stage of SG invasion and

colonisation, when the SG environment in the female fly proved to

be much more inhospitable for trypanosomes. Comparison of G.

m. morsitans with another tsetse species, G. pallidipes, showed a

similar sex difference in susceptibility to SG infection though less

pronounced. However, G. pallidipes manifested much greater

resistance to MG infection than G. m. morsitans and remarkably

little resistance to SG infection. It thus appears that these two

tsetse species have evolved very different strategies to counter

trypanosome infection.

Results

Glossina morsitans morsitans
Comparison of male and female G. m. morsitans infected with T.

b. brucei J10 confirmed previous findings that male tsetse flies

establish greater numbers of SG infections of T. brucei than females

[15,16,17]. While there was no significant difference in MG

infection rates, a significantly higher proportion of MG infections

progressed to SG infection in male than in female flies. The

transmission index (TI = infected salivary glands/infected MGs)

for male flies was over twice that for female flies (P = 0.045;

Fig. 1A).

The progression of infection in these flies was monitored at

points of transition in the developmental cycle to investigate the

nature of the barriers to SG infection and influence of fly sex. In

established MG infections, the first event we recorded was invasion

of the proventriculus by trypanosomes migrating anteriorly within

the ectoperitrophic space. In flies dissected 10–14 days after

infection, only about three quarters had an infected proventriculus

and there was no difference in infection rates between males and

females (Table 1). In the proventriculus, trypanosomes arrest in

G2 before undergoing an asymmetric division that yields one short

and one long epimastigote; these are migratory stages and the

short epimastigote is believed to invade the SG [18,19,20].

Asymmetric dividers were found in about 75% of infected

proventriculi, with no significant difference between male and

female flies (Table 1).

The next event is that the migratory trypanosomes invade the

foregut and can be found in the salivary exudate or spit, a mixture

of regurgitated foregut contents and saliva from the SG produced

by flies when they probe a surface with the proboscis [18,21]. To

examine the foregut contents, we used individually-caged flies,

which were allowed to probe onto warm microscope slides 7–28

Author Summary

In tropical Africa human and livestock diseases caused by
parasitic trypanosomes are transmitted by bloodsucking
tsetse flies. In the fly, trypanosomes undergo a complex
cycle of proliferation and development during their
remarkable journey from the midgut to the salivary glands.
At every step of the way, the flies mount robust immune
defences against trypanosome infection and consequently
most flies fail to develop a transmissible infection. Previous
work has shown a sex difference in the numbers of salivary
gland infections with Trypanosoma brucei: male flies are
more susceptible to salivary gland infection than females.
Here we explored possible reasons for this. Infections
developed in the same way in both male and female flies
until the final stage of salivary gland invasion and
colonisation. We conclude that the salivary gland environ-
ment in the female fly is much more inhospitable for
trypanosomes, perhaps because of a greater immune
response. Comparison of two different tsetse species
showed very different levels of trypanosome resistance in
the midgut and salivary glands.

Figure 1. Sex differences in infection rates with T. b. brucei in G. m. morsitans. Individually-caged male and female flies were fed an infected
feed supplemented with N-acetyl-glucosamine; data combined from two replicate experiments. Spit samples were collected between days 7 to 28,
and flies were dissected to score midgut (MG) and salivary gland (SG) infections on day 28. Transmission index (TI) is the percentage of flies with MG
infection that also developed SG infection. P values from chi-squared analysis to compare differences between male and female flies; NS = not
significant. A. Infection rates at dissection. N = 87 males, 95 females. B. Analysis of positive spit samples produced by 40 male and 37 female flies. Left:
Percentage of MG infections that produced a positive spit sample. Right: Percentage of positive spit samples that resulted in SG infection.
doi:10.1371/journal.pntd.0001515.g001
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days after infection; dissection results for these flies at day 28 are

shown in Fig. 1A. Trypanosome-positive spit samples were only

obtained from those flies subsequently found to have MG

infection, but some flies (about 20%) with MG infection did not

produce a positive spit sample during the whole observation period

(Fig. 1B). This reflects the failure of about 40% (27 of 64) MG

infections to infect the proventriculus and produce asymmetric

dividers (Table 1). Only a small proportion of spit-positive flies

finally developed SG infection, just over 20% combining males

and females (Fig. 1B), which means that in the majority of

infections the migratory trypanosomes either failed to reach the

SG or to colonise them. Attrition was greater in female than male

flies (Fig. 1B), although the sex difference was not statistically

significant.

The relative proportions of trypanosome developmental stages

in individual stained spit samples from male and female flies were

similar (Table 2); at this early stage of infection, few metacyclics

were present. Additionally, the trypanosome composition of the

spit sample had no bearing on whether a fly subsequently

developed SG infection, as there was no significant difference in

numbers of developmental stages in spit samples from flies with or

without SG infection when dissected at 28 days (Table 2).

However, there was a significant effect of gender on the rate at

which flies became spit-positive, the females lagging behind the

males (Fig. 2: median time to positivity 10 or 14 days for males or

females, respectively, P,0.05). It was noticed that often very few

trypanosomes (typically ,5) were present in spit samples from flies

that became positive on or after 12 days, the majority of which

were female. It is possible that colonisation is adversely affected by

the later arrival and smaller numbers of migratory trypanosomes

in female compared to male flies. However, this hypothesis was not

borne out by statistical analysis of the combined data from male

and female flies: of 48 flies that gave their first positive spit sample

early (7–11 days after infection), 9 had positive SG at dissection

(19%), whereas of 29 flies that produced their first positive sample

late (12–21 days after infection), 6 were SG positive at dissection

(21%) (P = 1.00). So time of migration to the SG does not affect the

success of SG colonisation.

Glossina pallidipes
We compared infection rates of G. m. morsitans with those of G.

pallidipes using the same strain of T. b. brucei, J10. Without

immunosuppressive supplements, MG infection rates were very

low in G. pallidipes compared to G. m. morsitans (Table 3). The

addition of N-acetyl-glucosamine (NAG) or L-glutathione (GSH)

to the infected feed has been shown to enhance MG infection rates

[8,9] in G. m. morsitans by blocking antimicrobial lectins or reactive

oxygen species respectively, and this is also evident from the data

collected here for G. m. morsitans (Table 3); there is no effect of these

supplements on SG infection rates except as a result of increased

numbers of MG infections [8,22]. However, in contrast to G. m.

morsitans, NAG appeared to be totally ineffective in boosting

numbers of MG infections in G. pallidipes: no infected MG were

found with NAG in G. pallidipes compared with 54.4% infected

MG in G. m. morsitans (Table 3). The addition of GSH resulted in a

large increase in numbers of infected MG for G. pallidipes (50.0%

Table 1. Proventriculus infection rates of T. b. brucei J10 in G.
m. morsitans.

Glossina morsitans morsitans Male Female

Number of flies dissected 32 32

Infected proventriculus 24/32 (75%) 25/32 (78%)

Proportion of infected proventriculi
containing asymmetric dividers

18/24 (75%) 19/25 (76%)

All flies had an infected midgut; infected feed was supplemented with N-acetyl-
glucosamine.
doi:10.1371/journal.pntd.0001515.t001

Figure 2. Sex difference in first appearance of trypanosomes in
spit samples. Comparison of individually caged male (dotted line) and
female (black line) G. m. morsitans infected with T. b. brucei J10; infected
feed was supplemented with N-acetyl-glucosamine. The data from two
replicate experiments, each including male and female flies are
displayed as a Kaplan Meier survival plot (males: n = 40; females:
n = 37). Vertical ticks indicate points after which flies were not sampled
in experiments 1 (day 18) and 2 (day 28) (censored data). Female flies
were significantly slower in producing trypanosome positive spit
samples than males (P,0.05).
doi:10.1371/journal.pntd.0001515.g002

Table 2. Breakdown of trypanosome developmental stages in spit samples.

Category Subcategory N Long trypomastigotes Asymmetric dividers
Short & long
epimastigotes Metacyclics

Fly sex Male 24 7.0760.85 6.9360.74 2.9060.53 1.8260.31

Female 24 6.0561.24 4.9561.09 2.7160.78 0

Salivary glands Infected 12 6.8161.34 5.1761.18 2.4560.84 1.8260.48

Uninfected 36 6.3060.68 6.7160.60 3.1660.43 0

Results for 48 spit samples collected from G. m. morsitans infected with T. b. brucei J10 on days 8–18. Infected feed was supplemented with N-acetyl-glucosamine.
Values are the square-root transformed means 6 standard errors for the number of trypanosomes of each cell type per spit sample.
doi:10.1371/journal.pntd.0001515.t002
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with GSH versus 1.3% without GSH), similar to the effect seen in

G. m. morsitans (81.0% with GSH, 11.3% without GSH), but

significantly lower comparing the two fly species (P = 0.018)

(Table 3).

The high MG infection rates obtained with GSH enabled us to

examine SG infection rates in G. pallidipes (Fig. 3). Comparison

with G. m. morsitans showed that transmission was far more efficient

in G. pallidipes, despite lower MG infection rates; the SG infection

rates and TI for both sexes of G. pallidipes were significantly higher

than for G. m. morsitans (P,0.0001; Fig. 3). In fact, all 17 male G.

pallidipes with MG infection also had infected SG (TI = 100%)

compared to only three of 38 male G. m. morsitans, and 13 of 17

female G. pallidipes with MG infection also had infected SG

whereas none of 48 female G. m. morsitans with infected MG had

infected SG. As for G. m. morsitans, there was a sex difference in TI

and G. pallidipes males had a higher TI than females, though this

was not significant. Although female G. pallidipes had higher MG

and SG infection rates than males, the differences were not

significant either (Fig. 3).

Salivary gland hypertrophy
The G. pallidipes colony from which our experimental flies were

derived suffers from infection with a virus that causes the SG to

become much enlarged, a condition called salivary gland

hypertrophy (SGH) [23,24]. Although the prevalence of SGH is

relatively low in the colony (3.8%), PCR diagnosis indicates that

almost all flies are infected with SGH virus [23]. Viral load is

significantly higher in symptomatic flies [24], suggesting that while

most flies control viral infection and are asymptomatic, a minority

succumb and develop SGH.

As it is not known how SGH affects trypanosome infection, we

analysed whether there was an association between trypanosome

infection and SGH in G. pallidipes infected with T. b. brucei (J10 and

other strains) dissected at 28 days or later. The observed

prevalence of SGH in our experimental flies at dissection was

11% (43 of 402). Of the 43 flies with SGH, 38 had infected SG

(88%), a significantly greater level of infection than flies with

normal SG (247 SG infected of 359 flies, 69%; P = 0.008).

Although SGH is positively correlated with trypanosome infection,

the large number of SG positive flies without SGH (69%) shows

that SGH is by no means essential for SG colonisation by

trypanosomes in G. pallidipes.

Discussion

The tsetse fly is unusual among dipteran vectors of disease

because both sexes feed on blood and hence transmit pathogenic

trypanosomes. However, the sexes are not equally efficient vectors

and males have been found to be more susceptible to infection

with T. brucei than females [15,16,17]. To explore the underlying

basis of this sex difference, we compared infections in male and

female G. m. morsitans at a number of points in the trypanosome’s

developmental cycle within the alimentary tract and SG of the fly.

Levels of attrition were similar in both male and female flies, until

the final stage of SG invasion and colonisation. The only

difference detected was among the trypanosomes that migrate

from the MG to the SG via the foregut: in female flies these

appeared later than in males. However, there was no detectable

difference in the success of early or late migrating populations in

invading and colonising the SG, so differential attrition at the

trypanosome-SG interface remains the only underlying explana-

tion for the observed sex difference.

It appears that migratory trypanosomes encounter a very hostile

environment in the SG. In G. m. morsitans SG colonisation was

frequently unsuccessful and only about 20% of flies positive for

migratory trypanosomes in spit samples were subsequently found

to have SG infection. Compared to the MG, little is known about

the functional immune response of the SG to trypanosomes, but

Table 3. Effect of supplements on infection rates.

Infected midguts Transmission index (TI)

Supplement Gmm Gp Gmm Gp

Control 8/71 = 11.3% 1/78 = 1.3% 1/8 = 12.5% 1/1 = 100%

NAG 99/182 = 54.4% 0/53 = 0% 17/99 = 17.2% 0/0 = 0%

GSH 77/95 = 81.0% 34/68 = 50.0% 3/77 = 3.9% 30/34 = 88.2%

Comparison of infection rates of G. m. morsitans (Gmm) and G. pallidipes (Gp)
fed T. b. brucei J10 in horse blood (control) or horse blood supplemented with
N-acetyl-glucosamine (NAG) or glutathione (GSH). Pooled results from male and
female flies and replicate experiments.
doi:10.1371/journal.pntd.0001515.t003

Figure 3. Sex differences in G. pallidipes and G. m. morsitans infected with T. b. brucei. Infected feeds were supplemented with glutathione.
A. G. pallidipes N = 42 males, 26 females. B. G. m. morsitans 47 males, 48 females. Differences between MG, SG and TI results for male and female G.
pallidipes were not significant by chi-squared analysis. No female G. m. morsitans had infected SG in this experiment. Pooled data from male and
female flies in Table 3.
doi:10.1371/journal.pntd.0001515.g003
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there are now detailed studies of the SG transcriptome and

proteome that describe an armoury of potential antimicrobial

defensive molecules [14,25]. Presumably the host-parasite inter-

action in the SG is intensified by the invasive nature of

trypanosome attachment, as the epimastigotes form extensive

cell-cell junctions with the epithelial cells via the flagellar

membrane [26]. We hypothesize that the SG environment of

the female fly is far less hospitable than that found in the male fly,

thus leading to lower rates of SG infection in female flies, but the

factors accounting for this difference remain to be identified.

Why might this sex difference in resistance to trypanosome

infection have arisen? In nature, because of the slow rate of tsetse

reproduction, selection for female longevity must be intense. Each

female fly gives birth to a fully grown larva every 8–9 days, the first

larva being produced about 16 days after emergence and mating.

In contrast, male flies reach sexual maturity within a week and can

mate several times. For survival of the species, it is thus imperative

that female tsetse live at least 24 days. Survival data from the field

support this: in Zimbabwe the estimated mean ages of female G. m.

morsitans and G. pallidipes were 29 and 48 days respectively,

compared to about 15 days for males of both species [27]. Since T.

brucei takes a minimum of about two weeks to complete its life

cycle, female flies are more likely than males to be exposed to

prolonged SG infection. If this is detrimental to fly survival, might

trypanosomes themselves have driven the sex difference in

resistance to SG infection? Few studies have addressed the impact

of trypanosome infection on tsetse fitness. There was no effect of

trypanosome MG infection on tsetse mortality, although fecundity

of infected females decreased [28]. Tsetse with SG infection take

longer to feed than uninfected flies and show altered composition

of the saliva [29], implying that SG infection may indeed prejudice

survival of flies in the wild.

We found differences in the host-parasite interaction in G.

pallidipes compared to G. m. morsitans and there is a marked species

difference in fly susceptibility to T. b. brucei infection. In both G. m.

morsitans and G. pallidipes the immune responses of the MG are

robust and capable of destroying most trypanosomes before they

have a chance to establish infection. These defences can be

mitigated by use of NAG or GSH in G. m. morsitans, but only GSH

was effective in G. pallidipes. In contrast, whereas only a small

proportion of MG infections result in SG infection in G. m.

morsitans, the migration of trypanosomes from MG to SG seems to

proceed without hindrance in G. pallidipes. A comparative study of

the humoral immune response of these two species showed that G.

pallidipes has a higher baseline level of attacin in the fat body,

proventriculus and midgut than G. m. morsitans; in G. pallidipes

attacin levels increased after blood feeding and knockdown of

attacin expression by RNA interference increased susceptibility to

trypanosome infection [30]. Higher attacin levels may therefore be

the underlying cause of the low MG infection rates we observed in

G. pallidipes. The fact that immunosuppression with either NAG or

GSH failed to work as efficiently in G. pallidipes compared to G. m.

morsitans indicates that lectins and reactive oxygen species play a

greater part in MG defence in G. m. morsitans.

Despite its refractoriness to MG infection, we found that G.

pallidipes was far more permissive than G. m. morsitans in allowing

progression to SG infection, particularly in male flies. We also

found a positive correlation between SG infection and viral SGH

in G. pallidipes, suggesting the possibility that susceptibility to SG

colonisation is associated with viral infection. This echoes the

association of infection with the secondary endosymbiont Sodalis

glossinidius with susceptibility to MG infection with trypanosomes

[1,31]. The G. pallidipes colony shows a high prevalence of SGH

virus infection, though relatively few flies have frank SGH.

Interestingly the prevalence of SGH is significantly higher in male

than female flies [23]. Viral infection may lead to changes in the

SG epithelium that favour trypanosome colonisation; alternatively,

flies that succumb to viral infection and develop SGH may have

lower levels of immunity in the SG. On the other hand, G. pallidipes

may naturally manifest low levels of immune defence in the SG,

explaining both its susceptibility to virus and trypanosomes.

Similar arguments have been rehearsed for the interaction

between Sodalis glossinidius and trypanosome infection [1,2,31].

Our experimental G. pallidipes come from a virus-infected colony

and no virus-free flies were available to test. SGH virus has also

been reported at low levels in wild G. pallidipes (reviewed by [24]).

Natural SG infection rates of G. pallidipes with T. brucei are

typically very low (,0.3%, [32]), and no SG infections were

detected by dissection in recent surveys in Kenya [33] and

Tanzania [34]. Since a strong MG immune response by itself is

sufficient to block transmission of T. brucei, without any need for

deployment of further immune defences in the foregut and SG,

there is no inconsistency between our laboratory results and the

observed refractoriness of G. pallidipes to trypanosome infection in

the field. However, in laboratory G. pallidipes, the decreased ability

to block SG colonisation makes G. pallidipes a very useful

experimental fly for transmission of T. brucei.

Materials and Methods

Tsetse flies and trypanosomes
Tsetse flies were kept at 25uC and 70% relative humidity and

fed on sterile defibrinated horse blood via a silicone membrane.

Flies were given the infected bloodmeal for their first feed 24–

48 hours post-eclosion, which consisted of cryopreserved blood-

stream form trypanosomes of T. b. brucei J10 (MCRO/ZM/74/J10

[clone 1]) in defibrinated horse blood (approximately 106 cells/ml).

Infective bloodmeals were supplemented if necessary with final

concentrations of 60 mM N-acetyl-glucosamine (NAG) [8] or

10 mM L-glutathione (GSH) [9] to increase infection rates.

Results were usually combined from two replicate experiments

to increase sample size, except for those shown in Tables 1 and 2

which were each derived from a single batch of flies.

Spit samples
Spit samples were obtained from flies as described [13]; male

and female flies were sampled on days 8–18 and 7–28 in two

replicate experiments. Slides were fixed with 2% paraformalde-

hyde (PFA), washed three times with phosphate buffered saline

(PBS) and then incubated with 1:1006Hoechst 33258 DNA stain

for 15 minutes. The slides were mounted using FluorSave reagent

and viewed by fluorescence imaging to record the life cycle stage of

the parasites using a DMRB microscope (Leica) equipped with a

Colour Coolview camera (Photonic Science) and ImagePro Plus

software (Media Cybernetics). Digital images of life cycle stages

were quantified using Image J (http://rsb.info.nih.gov/ij/).

Morphology and relative positions of the nucleus and kinetoplast

were used to identify developmental stages [18,19,20]. Cells were

assigned to the following developmental stages: long proventricular

trypomastigote, asymmetrically dividing cell, short or long

epimastigote, metacyclic.

Dissection
Flies were killed by removing the head. Salivary glands were

placed into a drop of PBS. Salivary gland hypertrophy (SGH) was

recorded if the glands were grossly swollen; such glands also

appear white rather than transparent. Whole tsetse alimentary

tracts, from the proventriculus to the rectum, were placed into a

Development of Trypanosomes in Tsetse
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separate drop of PBS. Infection of the proventriculus was

examined in flies dissected 10–14 days after the infected feed;

the proventriculus was cut from the MG immediately upon

dissection and placed in a separate drop of PBS. Organs were

viewed as wet mounts in PBS under bright field illumination

(6100 magnification) and the presence of trypanosomes recorded.

Statistics
The chi-squared test (Fisher’s exact) was used for analysis of

categorical data using http://www.graphpad.com/quickcalcs/

contingency1.cfm. ANOVA was used for comparison of trypano-

some cell types in spit samples from male and female flies.

Numbers of trypanosomes were square-root transformed prior to

analysis to normalise variances. The rate at which flies became

positive for trypanosomes in spit samples was analysed by Kaplan

Meier survival followed by Breslow (generalized Wilcoxon) testing.

ANOVA and Kaplan-Meier data were processed using the

statistical package SPSS version 18.0.
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