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The JAK-STAT signaling pathway plays a central role in
transducing stress and growth signals in the hypertrophic
heart. Unlike most signal transducers, JAKs and STATs signal
in a number of different ways, both within the JAK-STAT
pathway and in collaboration with other signaling pathways.
In this review, we discuss how IL-6 activates cells lacking IL-6
receptors through trans-signaling and examine JAK-STAT
pathway interaction with GPCR-linked pathways both within
and between cells. Finally, we discuss recent studies showing
how the JAK-STAT pathway can intersect with a general trans-
criptional regulatory mechanism to effect transcription of
STAT-dependent stress response genes.

Introduction

The heart responds to increased demand by mounting an adap-
tive or compensatory response to increase cardiac function and
normalize cardiac output. To achieve this, cardiomyocytes
increase synthesis of sarcomeres, their primary contractile unit,
and assemble them into an expanded arrangement of myofibrils.1

To accommodate these additional myofibrils, the cardiomyocyte
enlarges or hypertrophies. While this allows the heart to meet
increased demand in the short term, prolonged load imposition
causes this adaptive response to turn maladaptive or decom-
pensatory. Cardiomyocytes become metabolically depleted and
die causing severe erosion in systolic and diastolic function that
eventually leads to heart failure.

Underlying the adaptive and maladaptive hypertrophic res-
ponses are distinct genetic programs controlling cardiomyocyte
contractility, stress response and metabolic energy production.2-10

Each program is a response to hypertrophic signals, cytokines and
stress hormones. A variety of experimental approaches have
identified distinct signal transduction pathways linking these
signals to the genomic stress response mounted by cardiomyo-
cytes.3,11,12 Among the most prominent signal transducers
involved in cardiac hypertrophy are the MAPKinase, calmodu-
lin-dependent phosphatase and JAK-STAT signaling path-
ways.13-15 Ongoing research on the role of JAK-STAT signaling
in cardiac hypertrophy has provided new insights into how this
signaling pathway can “repurpose” its signal transducers to play
a much wider and more influential role in controlling how
cardiomyocytes sense and respond to hypertrophic stress. In this
review, we discuss three examples of how JAKs and STATs
can interact with other signal transducers and transcriptional
regulators within the same cell and between different cells to
orchestrate the hypertrophic response.

The JAK-STAT Pathway

The JAK-STAT pathway was originally identified as a receptor-
activated pathway responsive primarily to interferon-gamma and
members of the interleukin-6 family, such as IL-6, cardiotrophin
1 (CT-1) and leukemia inhibitory factor (LIF).16-22 The signaling
pathway formed by these latter ligands and their IL6-a/gp130
receptor plays an important role in biology and has long been
exemplary of the JAK-STAT pathway itself. But further study
has shown that this simple JAK-STAT signaling paradigm is
representative of only a portion of the signaling pathways that
use JAK and STAT proteins to transmit extracellular signals.
JAK kinases have been shown to associate with a wider spectrum
of receptor types such as tyrosine kinase or G-protein linked
receptors and activated JAKs are able to phosphorylate other
receptors and adaptor proteins suggesting that their substrate
specificity need not be confined to IL6-a/gp130 type receptors or
STATs alone.23-25 This allows the JAK kinase to transduce a wider
spectrum of signals via STATs or other signaling molecules
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thereby widening the number of possible intercellular interac-
tions that can be mediated by JAK-STAT signaling.

The JAK-STAT pathway differs from most signaling path-
ways in that one of its cytoplasmic signal transducers, the STAT
protein, is itself the transcription factor activated by the JAK
kinases. While much is known about how these two signal
transducers form the JAK-STAT signaling pathway or act in
conjunction with other receptor systems to transmit diverse
signals, much less is known about how STATs interact with the
transcriptional apparatus to bring about transcription of STAT-
dependent genes. Here again, the prominence of the JAK-STAT
pathway in transmitting hypertrophic signals to cardiomyocyte
nuclei has afforded us the opportunity to study such interactions.
Our laboratory’s long-standing interest in hypertrophic signaling
through the JAK-STAT pathway has recently intersected with our
more recent studies of the transcriptional regulator CLP-1 (cardiac
lineage protein-1) in controlling RNA polymerase II-dependent
transcription. These studies have led to new insights into how the
JAK-STAT signaling pathway can act to potentiate transcription
of STAT-dependent genes by interacting with the more general
components of the basal transcriptional apparatus.

In this review, we will examine how the JAK-STAT pathway
broadens its signaling “bandwidth” allowing it to transmit extra-
cellular signals for a number of important processes, particularly
those related to the cellular response to hypertrophic stress-
inducing stimuli. We will focus on the cardiovascular system in
which the JAK-STAT pathway has been shown to play a
prominent role in transducing as well as responding to stress
signals in the hypertrophic mammalian heart.

IL-6 Cytokine Signaling:
Pathway Diversity and Alternative Mechanisms

The IL-6 cytokine family mediates various aspects of cardiac
hypertrophy including decreased diastolic function, increased cell
size and protein content, and altered cellular metabolism.26-28 To
mediate these diverse responses to hypertrophic stress, IL-6
cytokines signal through an equally diverse array of receptors and
signaling pathways. For example, to induce homodimerization of
the gp130 signal transducer and activation of JAK kinases, IL-6
binds to the IL-6R receptor while CT-1 and LIF bind to the
LIFRβ receptor.29,30 Along with receptor diversification, the
signaling pathway associated with these receptors can diversify
by employing any one of five different STAT isoforms or even
diverge completely from the canonical JAK-STAT pathway to
include other pathways such as the ERK1/2 and PI3Kinase/Akt
pathways.31 Diversification of receptor and signaling pathways has
provided a way for JAK-STAT signaling to detect different stresses
associated with a variety of cardiomyopathies such as hypertrophy,
myocardial infarction, and ischemia/reperfusion injury, and
respond in a variety of ways by fostering a state of cytoprotection,
anti-apoptosis, cell survival or hypertrophic growth.32

Many of these diverse effects can be delineated by cytokine
and the receptor-signaling pathways these cytokines activate.
For example, in addition to mediating the hypertrophic as well
as cytoprotective response in cardiomyocytes through activation

of STATs 1 and 3,21,22,33-35 LIF and its receptor can also activate
two non-STAT pathways, the MEK/ERK/p90 cascade leading to
activation of ERK5 and the PI3Kinase/Akt pathway leading to
activation of the S6 kinase.36,37 The same is true for CT-1 and its
role in ventricular remodeling in the hypertrophic and failing
heart.38-41 As with LIF, CT-1 uses different signaling pathways
downstream of the LIFRβ/gp130 complex to stimulate different
responses to different stimuli. For anti-apoptotic and/or survival
effects, CT-1 activates the p42/p44 (MEK1/2-ERK1/2) and the
PI3Kinase/Akt pathways.42,43 In cardiac hypertrophy, recent
findings show that while the JAK-STAT and MEK1-ERK1/2
pathways are activated in response to CT-1, establishment of
hypertrophy was dependent only upon activation of the MEK5-
ERK5 pathway.44

In addition to LIF and CT-1, IL-6 signaling is activated in a
number of cardiomyopathies in response to inducers such as
inflammatory cytokines and neurohormones.45,46 As with LIF
and CT-1, studies of IL-6 have shown activation of the ERK1/2
and Akt/S6 kinase signaling pathways.47 But unlike LIF and
CT-1, various studies have shown that this is achieved by a unique
kind of signaling mechanism. Rather than bind to IL-6R receptors
in the plasma membrane of responding cells, IL-6 binds to a
soluble, non-membranous form of IL-6R, called sIL-6R, that is
extracellular in nature and not physically associated or tethered
to any one cell. Upon binding the IL-6 cytokine, the IL-6/sIL-
6R complex associates with gp130 transducers on the surface of
cells, activating them to transduce the IL-6 signal to down-
stream signal transduction pathways.48-51 The use of soluble IL-6
receptors to transmit the IL-6 signal is intriguing for two reasons:
it provides an alternative IL-6 signaling pathway that can act
either independently or in conjunction with IL-6 signaling
through the membrane-bound IL-6 receptor, and second, it
provides a way for gp130-positive cells completely lacking a
membrane IL-6 receptor a means of responding to IL-6.

The ability to enhance signaling in IL-6-responsive cells or
confer this ability to cells lacking the IL-6 receptor appears to
be a critical feature in both hypertension and cardiac hyper-
trophy.52 Three studies of sIL-6R signaling have demonstrated
the importance of either enhancing IL-6 responsiveness or
conferring it on a wider number of cells to evoke a greater
physiological response, e.g., hypertension or hypertrophy. Hirota
et al. showed that in mice doubly transgenic for DNA constructs
constitutively expressing IL-6 and IL-6R, increased expression
and distribution of this ligand-receptor pair initiated cardiac
hypertrophy whereas single transgenics did not.53 Similar results
were obtained with cultured cardiomyocytes stimulated with the
hypertrophic agent phenylephrine (PE) but in these studies
increased IL-6 responsiveness and establishment of hypertrophy
were achieved by treating cells with increased levels of the soluble
IL-6 receptor along with the IL-6 ligand.47 These results suggested
that activation of both membrane-bound and soluble IL-6
receptors were needed to effectively express the hypertrophic
phenotype. It remained to be determined if the soluble receptor
signaling mechanism was essential for establishing hypertrophy.
Coles et al. addressed this question by using an in vivo model in
which cardiac hypertrophy is induced by chronic administration
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of Ang II.52 They first showed the critical need for IL-6 signaling
in hypertrophy by showing that hearts of IL-6 knockout mice did
not undergo hypertrophy with Ang II treatment. To assess the
need for the soluble IL-6 receptor in establishing hypertrophy,
these same researchers inhibited IL-6R trans-signaling in Ang
II-treated mice using a soluble form of the gp130 receptor
(sgp130FC). Surprisingly, hearts in these mice became hyper-
trophic suggesting that sIL-6R signaling was not required.
Together, these experiments showed that while IL-6 signaling
is critical for establishing hypertrophy, certain hypertrophic
stimuli, e.g., PE, may be unable to activate the membrane-bound
IL-6 signaling pathway to the extent needed for mounting a
response. In this case, activation of the soluble receptor pathway
may be needed to maximize IL-6 signaling, STAT3 activation and
transcription of STAT3-dependent hypertrophic stress response
genes. In the case of Ang II, the soluble receptor pathway is
apparently not needed for mounting a hypertrophic response
suggesting that this stimulus can maximally activate IL-6 signaling
through membrane-bound receptors. An alternative possibility
is that Ang II can directly induce expression of IL-6 receptors in
IL-6 receptor-negative cells and in this way maximize IL-6
signaling independently of the soluble IL-6 receptor mechanism.
Perhaps comparative analysis of Ang II-IL-6 signaling in
hypertensive vascular smooth muscle cells, which requires soluble
IL-6 receptor signaling, vs. that in hypertrophic cardiomyocytes
may provide some insights into the molecular rationale for using
the soluble IL-6 receptor mechanism.

Signaling through Non-gp130 Receptors:
Variations in JAK-Receptor Coupling

For the IL-6 family of cytokines, mounting the appropriate
response to a wide array of physiological conditions often relies
on using different receptors to respond to different cytokines.
By varying the type of cytokine (IL-6, CT-1 and LIF), cytokine
receptor (IL-6R, sIL-6R and LIFRβ), and receptor signaling
pathway (MEK, PI3K, Akt and JAK-STAT), cells can react to
a wider variety of stress or other stimuli by activating the
appropriate sets of genes and mounting the appropriate physio-
logical response. Another way in which the JAK-STAT pathway
can respond to a wider array of physiological conditions is by
transducing signals received by receptors other than the IL6-R/
gp130 receptor complex. In this signaling paradigm, it is the JAK
kinase that determines variation in signaling, gene expression, and
physiological effects through its association with other non-gp130
receptors and activation when these receptors bind non-IL-6
cytokines. One example of this type of signaling can be found in
the hypertensive heart.

While cardiac hypertrophy can occur in response to a number
of pathological conditions, the most widespread is elevated arterial
blood pressure or hypertension. Hypertension results from
over-activation of the renin-angiotensin system or RAS in the
kidneys leading to elevated levels of the circulating hormonal
peptide Angiotensin II or Ang II.54,55 This RAS is called systemic
RAS and the Ang II it produces is responsible for controlling
blood pressure by regulating vasoconstriction. In hypertension,

increased Ang II and vasoconstriction raises peripheral arterial
resistance to a point where the heart must work harder to pump
blood. In response, cardiomyocytes increase their contractility by
increasing the extent to which they mechanically stretch. Under
these conditions, the Ang II AT1 receptor can act as a stretch-
sensing receptor.56 One of the genes induced by stretch-activated
AT1 receptors is angiotensinogen whose active product, Ang II,
can auto-activate Ang II receptors on cardiomyocytes. This
activation of RAS in cardiomyocytes is called local RAS and its
continued activation by stretch or Ang II signaling can maintain
the hypertrophic state.57,58

As with IL-6, deciphering how Ang II or mechanical stretch
signals via the AT1 receptor to evoke the hypertrophic response is
best done in cultured cardiomyocytes under controlled condi-
tions. When cardiomyocytes are treated with Ang II, the AT-1
receptor is activated leading to phosphorylation/activation of
JAK2 and STATs 1, 3, 5A and 5B.59,60 Similarly, when
cardiomyocytes are mechanically stretched in the absence of
Ang II, the AT-1 receptor is activated and JAKs 1 and 2, STATs 1
and 3 and gp130 are phosphorylated and activated as is the
G-protein linked ERK signaling pathway.56,61 The phosphoryla-
tion of gp130 by JAK kinases activated by the canonical IL-6R/
gp130-JAK-STAT pathway is unlikely since the time course of
IL-6 cytokine production (60–120 min) is incompatible with
JAK-STAT activation (2–5 min).61 This suggests that the gp130
complex and the AT1 receptor can be activated directly by stretch,
perhaps via stretch-induced conformational changes that expose
binding sites for JAK kinases or G proteins.56 An alternative
explanation more in keeping with the heart’s cellular composition
is to have Ang II or IL-6 cytokines produced in other cells signal
to cardiomyocytes in paracrine fashion. Sano et al. have shown
that Ang II can induce IL-6, LIF and CT-1 in cardiac fibroblasts
and that these cytokines can activate gp130-linked receptors to
induce cardiomyocyte hypertrophy.62 Stretch experiments have
shown that both cardiomyocytes as well as cardiac fibroblasts can
produce Ang II suggesting that autocrine as well as paracrine
signaling can be a motive force for sustained hypertrophy;63-66

however, see reference 67. These possibilities are illustrated in
Figure 1.

In hypertrophy, autostimulatory production of Ang II follow-
ing exhaustion of the mechanical stretch signal may be one way
the hypertrophic state is sustained. Since auto-stimulation of the
AT-1 receptor by Ang II activates STATs to enter the nucleus,68,69

this loop likely involves STAT-dependent activation of RAS-
related genes, the most likely candidate being the angiotensinogen
gene whose gene product is proteolytically processed to give Ang
II. To examine this possibility, Mascareno and colleagues treated
cardiomyocytes with Ang II and found that this led to upre-
gulation of the angiotensinogen gene.70 To demonstrate a direct
linkage with an activated AT-1 receptor-JAK-STAT pathway,
they showed that Ang II could stimulate STATs 3 and 6 to bind
as a heterodimer to a STAT-binding element within the promoter
of the angiotensinogen gene to activate its transcription. To
determine if these in vitro results held in vivo, Mascareno and
colleagues examined the genetically hypertensive SHR rat strain
and showed that hypertensive but not normal hearts expressed
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nuclear STATs that were bound to the STAT-binding site within
the angiotensinogen gene promoter.70 These findings, together
with those of Sano et al.,62 suggest that both Ang II autocrine and
paracrine signaling can act to maintain hypertension leading to

hypertrophy: autocrine stimulation of cardiomyocyte AT-1
receptors to produce more angiotensinogen and Ang II, and
paracrine stimulation of cardiac fibroblast AT-1 receptors to
produce IL-6 cytokines that feedback onto IL-6 receptors on

Figure 1. Models of mechanical stretch activation of JAK kinases and STAT proteins. Conformational model. Mechanical stretch is postulated to induce
conformational changes in the gp130 and AT1 receptors that expose binding sites for JAK2 kinases and Gaq proteins, respectively. It is unclear how or
if gp130 dimerizes in order to allow JAK2 kinase cross-phosphorylation. The AT1 receptor acting as a stretch receptor will activate the RAS/MEK/ERK/p38
pathway leading to upregulation of the angiotensinogen gene. The transcription factor activated by p38 or ERK1/2 has not been identified. Paracrine
model. Mechanical stretch initiates signal transducer association with receptors as in conformational model. Continued signaling after mechanical stretch
exhaustion is performed by Ang II produced in response to stretch-activated AT1 receptors to give autocrine signaling as well as paracrine signaling.
Ang II-activated cardiac fibroblasts produce IL-6 family cytokines that activate the canonical JAK-STAT pathway in cardiomyocytes via paracrine signaling
thereby maintaining the post-mechanical stretch hypertrophic state.
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cardiomyocytes to increase angiotensinogen gene expression
(Fig. 1). Nyui et al.71 have shown that in the absence or presence
of Ang II, MAPKinase is activated in stretched cardiomyocytes by
LIF acting through the LIFRβ/gp130 receptor. More recently, Lal
et al. have extended these observations to show that prolonged
stretch of cardiac fibroblasts and cardiomyocytes activates the p38
kinase to increase transcription of the angiotensinogen gene.66

Together, these observations show how JAK-STAT signaling
contributes to the interactions between cardiac fibroblasts and
cardiomyocytes so critical to the development, function and
response of the heart to stress stimuli.72 These studies suggest that
cellular interactions of this type may rely, in part, on the cross-talk
between JAK-STAT signaling pathways in each cell type. In the
following section, we discuss how JAK-STAT pathways can cross-
talk with non-STAT signaling pathways within cells to mount a
genomic response to a potentially broader array of extracellular
stimuli.

Signaling Pathway Crosstalk within Cells

The heart responds to the stress of increased workload by increas-
ing cardiac output through increased synthesis and assembly of
functional sarcomeres. Flawed synthesis and assembly could lead
to functionally compromised sarcomeres, reduced contractility
and cardiomyocyte elimination by apoptosis. To prevent this,
stressed cardiomyocytes express aB-crystallin (CryAB), a heat
shock protein, that binds to sarcomeric proteins such as titin
to ensure the correct assembly of sarcomeres.73 Because of its
protective functions, CryAB and other stress-induced heat shock
proteins are often upregulated in response to hypertrophic
stimuli.74,75 Within the CryAB gene is an intronic regulatory
element (IRE) similar to one in the ventricular myosin light
chain-2 gene that mediates myosin upregulation during hyper-
trophic stress.76 This sequence can bind the NFAT transcription
factor indicating that CryAB is responsive to calcineurin-NFAT
signaling activated by increases in intracellular Ca2+.77-80

One signaling system known to activate Ca2+ channels under
conditions of cardiac stress is the endothelin-1 (ET-1) signal
transduction pathway.81,82 Our laboratory has investigated the
response of cardiomyocytes to ET-1 and has shown that in
addition to activation of the calcineurin-NFAT pathway, there
is a distinct and essential involvement of STAT3 dimers for
activating the CryAB gene.83 This suggests that ET-1 (ETa)
receptors can signal via the JAK2 kinase to phosphorylate and
activate STAT3 dimers. As a GPCR, ETa predominantly signals
via IP3 kinase to activate the PKC/Raf/MEF/ERK signal trans-
duction pathway. But also as a GPCR, ETa apparently shares
with receptors as diverse as those for Ang II, stromal cell-derived
factor-1a, cholecystokinin, monocyte chemotactic protein 1,
angiotensin-(1–7), bradykinin B2 and opioid receptors, the ability
to signal via JAK2 kinase.84 Unlike the AT1 receptor, ETa has
no apparent sites for binding JAKs suggesting that JAK2 kinases
must be activated “off-receptor” and then recruited to the receptor
to phosphorylate bound STAT proteins (for which a binding site
motif, YXXQ, exists85).86 While it is unclear as to how the ETa
receptor could achieve this, Kurdi and Booz have put forth a

model for non-canonical JAK2 activation by GPCRs that
could provide some insight into how GPCRs can signal via JAK
kinases under conditions of oxidative stress that are often seen in
cardiomyopathies.84

According to the Kurdi and Booz model, GPCRs act to
maintain JAK2 kinase phosphorylation and activity through
inhibition of its phosphatase, SHP-1. GPCRs achieve this by
activating PKCd which either directly or indirectly inhibits
SHP-1. One interpretation of this model is that GPCRs may be
acting to keep levels of phospho-JAK2 kinase high enough to
allow potential recruitment for phosphorylating either them-
selves or more likely, bound STATs. How JAK2 kinases are
phosphorylated to begin with in the absence of a dimerizing
“platform” (as in the canonical gp130 model) is unclear. One
possibility is that JAK2 is activated by other receptors such as the
AT1 or IL-6/gp130 family of receptors. In fact, there is evidence
to suggest that ET-1 can potentiate Ang II signaling in
establishing hypertrophy and activating the fibrotic program that
causes fibrosis in hypertrophic hearts. Adiarto et al. have shown
that endothelial cells in the heart can produce ET-1 which can
bind to ETa receptors on cardiomyocytes and cardiac fibroblasts
in AngII-infused hearts to induce cardiac hypertrophy and
fibrosis.87 In support of the Kurdi and Booz model, these
researchers also showed an increase in PKCd indicating activation
of the DAG/PKC pathway that inhibits SHP-1. These possibi-
lities are illustrated in Figure 2.

JAK-STAT Interaction with the Basal
Transcriptional Apparatus

Unlike most other signal transduction pathways that terminate in
the activation of nuclear transcription factors, the STAT proteins
are themselves transcription factors not only capable of trans-
ducing the hypertrophic signal from the cytoplasm but also acting
to transcribe stress response genes in the nucleus. Our laboratory
as well as others have shown that under hypertrophic conditions,
the JAK2 kinase phosphorylates STATs, activating them to
dimerize and translocate to the nucleus where they upregulate
target genes.56,70,88,89 Exactly how the STAT proteins engage the
basal transcriptional machinery to initiate transcription is not
fully known and with the increasing complexity of the trans-
criptome, becoming much harder to fathom. Yet despite this,
some progress is being made, particularly with respect to the
interaction of the JAK-STAT pathway with the nuclear trans-
cription factors and regulatory molecules that control RNA
polymerase (pol) II activity and its accessibility to RNA pol II-
dependent genes.

Our laboratory is studying one such nuclear regulatory
molecule, CLP-1, and its involvement in the cellular response
to hypertrophic stimuli.90-93 CLP-1, the mouse homolog of the
human HEXIM1 gene,94-96 is a nuclear protein that regulates
P-TEFb (transcription elongation factor b), a complex formed
by cyclin dependent kinase (cdk) 9 with cyclin T1. CLP-1
reversibly inhibits P-TEFb kinase activity, repressing cdk9 when
associated with P-TEFb and de-repressing cdk9 when dissociated.
When de-repressed, cdk9 phosphorylates RNA pol II, switching
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it from an initiation state at the transcriptional start site to an
elongation state that allows completion of nascent RNA chains
(Fig. 3). This process, termed “promoter proximal pausing,”
appears to regulate expression of genes such as developmental
control and stress response genes that require rapid activation in
response to changing cellular conditions.97,98 Emerging evidence
suggests that the CLP-1-P-TEFb transcriptional regulatory
machinery can act as the molecular “go-between” linking extra-
cellular signals to genomic output. As a prominent transducer of
hypertrophic signals in cardiomyocytes, the JAK-STAT pathway
is a good candidate for interaction with the CLP-1-P-TEFb
regulatory complex for controlling transcription of stress and
STAT-dependent genes. Based on the CLP-1-P-TEFb model, for
STATs to activate genes, they must in some way activate or
de-repress P-TEFb. To examine this, we blocked the JAK-STAT
pathway in hypertrophic cardiomyocytes using the JAK2 kinase
inhibitor AG490 and found that more P-TEFb complexes
retained CLP-1 keeping cdk9 activity repressed.99 Since inhibition
of JAK2 kinase prevents STAT dimerization and mobilization
to the nucleus, these results suggested that under normal con-
ditions, STAT dimers might promote transcription by preventing
binding of CLP-1 to P-TEFb complexes. Some evidence for direct
STAT3 interaction with cdk9 in regulating gene transcription in
this way has come from studies of two STAT3-inducible genes,
the p21waf1 gene and the c-fibrinogen gene.100,101

IL-6 treatment of HepG2 cells activates the IL-6Ra/gp130
receptor resulting in the phosphorylation and activation of
STAT3 and transcription of STAT3-dependent genes, two
of which, p21waf1 and c-fibrinogen (FBG), were the subject of
independent studies on how STAT3 interacts with transcriptional
regulators to initiate gene transcription.100-103 In both cases,
activated nuclear STAT3 dimers were shown to bind to cdk9 to
form STAT3-cdk9 complexes that were then recruited to the
STAT3-binding site within the promoter of the p21waf1 and
c-fibrinogen genes. With the STAT3-cdk9 complex localized to
the proximal promoter, cdk9 can readily phosphorylate RNA
pol II at the transcriptional start site, switching it from its
initiation state to its elongation state and productive synthesis
of full-length RNA transcripts. Giraud et al.100 went on to
show that STAT3 can also recruit the chromatin-modifying
proteins p300/CBP, a transcriptional co-activator and histone
acetyltransferase, and BRG1, a chromatin remodeler, that act
to make the proximal promoter region more accessible to RNA
pol II.100,104-106 It appears from these studies that cdk9 and
STAT3 are mutually dependent on each other for conferring
full transcriptional competency to STAT-dependent genes:
STAT3 brings cdk9 to the promoter region made accessible
to RNA pol II through STAT3 recruitment of chromatin
modifiers and remodelers while cdk9 phosphorylates the
recruited RNA pol II to complete gene transcription.

Figure 2. Endothelin-1 receptor crosstalk with Ang II receptor to potentiate JAK2 kinase activity. Endothelial cell-derived ET-1 activates the ETa receptor
on cardiomyocytes or cardiac fibroblasts. Activated ETa signals to PKCd, which mediates inhibition of the SHP-1 JAK2 kinase phosphatase to allow
phosphorylated JAK2 kinases to remain phosphorylated and active. These active JAK2 kinases can phosphorylate STAT3 associated with either the AT1 or
ETa receptor (which lacks a JAK2 binding site but has one for STAT3). How JAK2 kinases become phosphorylated to begin with is not clear. There is some
evidence that the AT1 receptor can dimerize in which case the associated JAK2 kinases can cross-phosphorylate themselves.
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Conceivably, STAT3 dimers could be acting in the same way
in hypertrophic cardiomyocytes to facilitate STAT-dependent
gene transcription. STAT3 is of particular interest since it is
known to upregulate predominantly cardioprotective genes in
various hypertrophic models suggesting a role in compensatory
hypertrophy.107,108 This potential regulatory mechanism is
illustrated in Figure 4.

Together, these experiments show how two well-studied
transcriptional processes can interact to form a novel mechanism
for increasing the transcriptional readiness and output of target
genes. It also suggests how potent gene activators such as the
cdk9-cyclin T1 complex might “acquire” specificity for a given
gene by in effect using the sequence recognition properties of
binding partners such as STAT3 to be “guided” to that gene

where it can activate RNA pol II and gene transcription. If true,
such a model could explain how other non-sequence recognizing
activators can be brought to specific genes to upregulate their
transcription. These experiments also suggest that STAT-
dependent genes that are stress response genes may be in a state
of “paused” RNA synthesis, poised to respond to stress signals by
rapidly completing transcript formation for translation into
protein product. How this gene activation model might relate
to STAT-dependent stress response genes in hypertrophic
cardiomyocytes is presently under study in our laboratory.
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Figure 3. Schematic of CLP-1 control of P-TEFb and gene transcription. When CLP-1 is bound to P-TEFb, the cdk9 kinase is inhibited and RNA pol II
remains in an initiation state in which “paused” RNA synthesis produces only nascent RNAs. Dissociating or preventing CLP-1 from binding to P-TEFb
de-represses cdk9 to phosphorylate RNA pol II and activate it to an elongation state in which it completes nascent RNA transcripts. The association of
CLP-1 with P-TEFb is reversible and potentially subject to control by other factors such as signal transducers or transcription factors in their effort to
promote transcription of their target genes.
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Figure 4. Interaction between the JAK-STAT
pathway and the CLP-1-P-TEFb transcrip-
tional regulatory mechanism. In the absence
of hypertrophic signals, STAT3 remains
cytoplasmic and CLP-1 inhibits P-TEFb.
This keeps RNA pol II in the initiation state
and STAT-responsive genes untranscribed.
In the presence of hypertrophic signals,
STAT3 is activated and STAT3 dimers are
mobilized to the nucleus where they bind to
cdk9-cyclin T1 complexes (active P-TEFb)
and prevent binding by the CLP-1 repressor.
The STAT3-P-TEFb complex is then recruited
to STAT3 target genes via binding to specific
STAT3 binding sites within the proximal
promoter of these genes. Recruitment of
chromatin modifiers by STAT3 (not shown)
opens chromatin to access by RNA pol II,
which upon phosphorylation by active cdk9
kinase resumes synthesis of paused, nascent
RNA transcripts.
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