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Abstract

Two critical tasks in multi-criteria group decision making (MCGDM) are to describe criterion

values and to aggregate the described information to generate a ranking of alternatives. A

flexible and superior tool for the first task is q-rung orthopair fuzzy number (qROFN) and an

effective tool for the second task is aggregation operator. So far, nearly thirty different aggre-

gation operators of qROFNs have been presented. Each operator has its distinctive charac-

teristics and can work well for specific purpose. However, there is not yet an operator which

can provide desirable generality and flexibility in aggregating criterion values, dealing with

the heterogeneous interrelationships among criteria, and reducing the influence of extreme

criterion values. To provide such an aggregation operator, Muirhead mean operator, power

average operator, partitioned average operator, and Archimedean T-norm and T-conorm

operations are concurrently introduced into q-rung orthopair fuzzy sets, and an Archime-

dean power partitioned Muirhead mean operator of qROFNs and its weighted form are pre-

sented and a MCGDM method based on the weighted operator is proposed in this paper.

The generalised expressions of the two operators are firstly defined. Their properties are

explored and proved and their specific expressions are constructed. On the basis of the spe-

cific expressions, a method for solving the MCGDM problems based on qROFNs is then

designed. Finally, the feasibility and effectiveness of the method is demonstrated via a

numerical example, a set of experiments, and qualitative and quantitative comparisons.

1. Introduction

Multi-criteria group decision making (MCGDM) refers to the process of finding optimal alter-

natives in complex scenarios via synthetically evaluating the values of multiple criteria of all

alternatives provided by a group of domain experts [1]. In this process, there are two critical

tasks. One critical task is to describe the values of different criteria accurately and effectively.

For such description, there are many different kinds of available tools, where fuzzy set is a
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well-known kind [2–12]. To date, nearly thirty different types of fuzzy sets have been presented

[13]. Yager’s generalised orthopair fuzzy set [14], commonly known as q-rung orthopair fuzzy

set (qROFS), is one of the most important and popular types among them.

A qROFS consists of an element and a q-rung orthopair membership grade (commonly

known as q-rung orthopair fuzzy number (qROFN), which is used to quantify the degrees of

membership and non-membership of the element to the qROFS. In a qROFS, both the degrees

of membership and non-membership and the sum of the q-th (q = 1, 2, 3, . . .) power of the

degree of membership and the q-th power of the degree of non-membership are restricted to

[0, 1]. In other words, the rung q in a qROFS is adjustable under the premise of satisfying this

condition. Because of this characteristic, qROFS can be regarded as the generalisation of

Zadeh’s fuzzy set (FS) [15], Atanassov’s intuitionistic fuzzy set (IFS) [16], and Yager’s Pythago-

rean fuzzy set (PFS) [17]. This is because qROFS will reduce to FS when q = 1 and the sum of

the degrees of membership and non-membership is equal to 1, will reduce to IFS when q = 1,

and will reduce to PFS when q = 2. In addition, the expressiveness of a qROFS will continue to

increase as q increases, which provides enough freedom for the description of fuzzy informa-

tion. Due to such advantage, qROFSs have received extensive attention in the field of

MCGDM during the past few years. Various research topics regarding qROFSs for MCGDM,

such as correlation and correlation coefficient of qROFSs [18], distance measures of qROFSs

[19], similarity measures of qROFSs [20], application of qROFSs in practical MCGDM prob-

lems [21, 22], operational rules of qROFNs [23–25], and aggregation operators of qROFNs [26

−38], are gaining importance and popularity within academia.

The other critical task in MCGDM is to fuse the described criterion information to generate

a ranking of all alternatives. For such fusion, aggregation operator is regarded as an effective

tool. So far, over twenty different aggregation operators of qROFNs have been presented. They

are the weighted averaging (WA) operator and the weighted geometric (WG) operator pre-

sented by Liu and Wang [26], the weighted Bonferroni mean (WBM) operator and the

weighted geometric Bonferroni mean (WGBM) operator presented by Liu and Liu [27], the

weighted Archimedean Bonferroni mean (WABM) operators presented by Liu and Wang

[28], the weighted partitioned Bonferroni mean (WPBM) operator and the weighted parti-

tioned geometric Bonferroni mean (WPGBM) operator presented by Yang and Pang [29], the

weighted Heronian mean (WHM) operator and the weighted geometric Heronian mean

(WGHM) operator presented by Wei et al. [30], the WHM� operator (This operator is differ-

ent from the WHM operator presented by Wei et al. [30], though they have the same names)

and the weighted partitioned Heronian mean (WPHM) operator presented by Liu et al. [31],

the weighted Maclaurin symmetric mean (WMSM) operator and the weighted geometric

Maclaurin symmetric mean (WGMSM) operator presented by Wei et al. [32], the weighted

power Maclaurin symmetric mean (WPMSM) operator presented by Liu et al. [33], the

weighted power partitioned Maclaurin symmetric mean (WPPMSM) operator presented by

Bai et al. [34], the weighted Muirhead mean (WMM) operator and the weighted geometric

Muirhead mean (WGMM) operator presented by Wang et al. [35], the weighted extended

Bonferroni mean (WEBM) operator presented by Liu et al. [36], the weighted exponential

(WE) operator presented by Peng et al. [37], and the weighted point (WP) operators presented

by Xing et al. [38]. Each operator has its own characteristics and can work well for its specific

purpose. But there is not yet an operator that has the following three characteristics at the

same time: (1) Provide satisfying generality and flexibility in the aggregation of qROFNs; (2)

Deal with the situation in which the criteria are divided into several parts and there are interre-

lationships among different criteria in each part whereas the criteria in different parts are inde-

pendent of each other; (3) Reduce the negative effect of the unduly high or unduly low

criterion values on the aggregation results.

Archimedean power partitioned Muirhead mean operators
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In practical MCGDM problems, aggregation of criterion values is a complex process, in

which the preferences of decision makers may change frequently. An ideal aggregation opera-

tor should be general and flexible enough to adapt to such change. Moreover, there are usually

complex relationships among the different criteria considered in the problems. It is also of

importance for an aggregation operator to capture the complex interrelationships of different

criteria to generate more reasonable aggregation results [28]. Further, the values of criteria are

generally assessed by domain experts. It is often difficult to ensure the absolute objectivity,

which means that a few biased experts will give biased assessment values [33]. To obtain rea-

sonable aggregation results, it is of necessity to reduce the negative influence of biased criterion

values in the aggregation. Based on these considerations, the motivations of the present paper

are explained as follows:

1. To develop an aggregation operator of qROFNs which can capture the complex interrela-

tionships among criteria, the Muirhead mean (MM) operator [39] and partitioned average

operator are introduced. The MM operator, which is a generalisation of the generalised

arithmetic average operator, Bonferroni mean (BM) operator [40, 41], Maclaurin symmet-

ric mean (MSM) operator [42, 43], and generalised geometric average operator, is an all-in-

one aggregation operator for capturing the interrelationships of criteria. It is applicable in

the cases where all criteria are independent of each other, where there are interrelationships

between any two criteria, and where there are interrelationships between any multiple

(three or more) criteria [44–49]. The partitioned average operator is an aggregation opera-

tor that has the capability of aggregating the parameters in different partitions using the

same aggregation operator and aggregating the aggregation results of different partitions

using the arithmetic average operator [50–55].

2. To enable the aggregation operator to reduce the negative effect of extreme criterion values

on the aggregation results, the power average (PA) operator [56] is combined into the parti-

tioned MM operator. The PA operator is an aggregation operator that can assign weights to

the aggregated parameters by calculating the support degrees between these parameters,

which makes it capable of reducing the negative influence of unreasonable parameter values

on the aggregation results [57–62].

3. To improve the generality and flexibility of the combined aggregation operator, the opera-

tional rules of qROFNs based on the Archimedean T-norm and T-conorm (ATT) are lever-

aged to perform the operations in the operator. The ATT are operations for generalising

the logical conjunction and disjunction to fuzzy logic. They are important tools that can

generate versatile and flexible operational rules for fuzzy numbers and the aggregation

operators based on them are rather general and flexible for aggregating fuzzy information

[28, 63–68].

As can be summarised from the motivations above, this paper aims to present a set of

Archimedean power partitioned MM operators of qROFNs and propose a MCGDM method

based on them. This aim is achieved through combining the MM operator, the partitioned

average operator, the PA operator, and the ATT. As a result, the presented aggregation opera-

tors combine all of their characteristics.

The remainder of the paper is organised as follows. A brief introduction of some basic con-

cepts is provided Section 2. Sections 3 explains the details of the presented Archimedean

power partitioned MM operators. The specific process of the proposed MCGDM method is

described in Section 4. Section 5 demonstrates and evaluates the presented operators and pro-

posed method via example, experiments, and comparisons. Section 6 ends the paper with a

conclusion.
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2. Preliminaries

In this section, some prerequisites in qROFS theory, operational rules of qROFNs based on

ATT, PA operator, and MM operator are briefly introduced to facilitate the understanding of

the present paper.

2.1. qROFS theory

qROFS [14] is the generalisation of FS [15], IFS [16], and PFS [17]. Its formal definition is as

follow:

Definition 1 [14]. A qROFS S in a finite universe of discourse X is S = {<x, μS(x), νS(x)> |

x2X}, where μS: X! [0, 1] is the degree of membership of x2X to S, and νS: X! [0, 1] is the

degree of non-membership of x2X to S, such that 0� (μS(x))q + (νS(x))q� 1 (q = 1, 2, 3,. . .).

The degree of hesitancy of x2X to S is πS(x) = (1 − (μS(x))q − (νS(x))q)1/q.

For convenience, a pair<μS(x), νS(x)> is called a qROFN, which is commonly simplified as

Q =<μ, ν>. To compare two qROFNs, their scores and accuracies are required, which can be

calculated according to the following definitions:

Definition 2 [26]. Let Q =<μ, ν> be a qROFN. Then its score is S(Q) = μq − νq. Obviously,

−1� S(Q)� 1.

Definition 3 [26]. Let Q =<μ, ν> be a qROFN. Then its accuracy is A(Q) = μq + νq. Obvi-

ously, 0� A(Q)� 1.

Using S(Q) and A(Q), two qROFNs can be compared via the following definition:

Definition 4 [26]. Let Q1 =<μ1, ν1> and Q2 =<μ2, ν2> be any two qROFNs, S(Q1) and S
(Q2) be respectively the scores of Q1 and Q2, and A(Q1) and A(Q2) be respectively the accura-

cies of Q1 and Q2. Then: (1) If S(Q1)> S(Q2), then Q1 > Q2; (2) If S(Q1) = S(Q2) and A(Q1)>

A(Q2), then Q1 > Q2; (3) If S(Q1) = S(Q2) and A(Q1) = A(Q2), then Q1 = Q2.

To calculate the distance between two qROFNs, a distance measure of qROFNs is required.

The following definition provides the Minkowski-type distance measure of qROFNs:

Definition 5 [19]. Let Q1 =<μ1, ν1> and Q2 =<μ2, ν2> be any two qROFNs. Then the

Minkowski-type distance between Q1 and Q2 is D(Q1, Q2) = (0.5|μ1−μ2|b + 0.5|ν1−ν2|b)1/b

(b = 1, 2, . . .).

If b = 1, the Minkowski-type distance between Q1 and Q2 will reduce to the Hamming dis-

tance between Q1 and Q2: D(Q1, Q2) = 0.5(|μ1−μ2| + |ν1−ν2|); If b = 2, the Minkowski-type dis-

tance between Q1 and Q2 will reduce to the Euclidean distance between Q1 and Q2: (0.5|

μ1−μ2|2 + 0.5|ν1−ν2|2)1/2; If b =1, the Minkowski-type distance between Q1 and Q2 will reduce

to the Chebyshev distance between Q1 and Q2: D(Q1, Q2) = max{|μ1−μ2|, |ν1−ν2|}.

2.2. Operational rules of qROFNs based on ATT

Based on ATT, a set of general and versatile operational rules of qROFNs were established by

Liu and Wang [28]. The formal definition of the rules is as follow:

Definition 6 [28]. Let Q =<μ, ν>, Q1 = <μ1, ν1>, and Q2 =<μ2, ν2> be any three

qROFNs, and a and b be any two real numbers and a, b> 0. Then the sum, product, multipli-

cation, and power operations of qROFNs based on the Archimedean T-norm T(x, y) = f−1(f(x)

+ f(y)) and its T-conorm T�(x, y) = g−1(g(x) + g(y)) can be respectively defined as follows:

Q1 � Q2 ¼ hT
�ðm1; m2Þ; Tðn1; n2Þi ¼ hg

� 1ðgðm1Þ þ gðm2ÞÞ; f
� 1ðf ðn1Þ þ f ðn2ÞÞi ð1Þ

Q1 � Q2 ¼ hTðm1; m2Þ; T
�ðn1; n2Þi ¼ hf

� 1ðf ðm1Þ þ f ðm2ÞÞ; g
� 1ðgðn1Þ þ gðn2ÞÞi ð2Þ

aQ ¼ hg � 1ðagðmÞÞ; f � 1ðaf ðnÞÞi ð3Þ

Archimedean power partitioned Muirhead mean operators
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Qb ¼ hf � 1ðbf ðmÞÞ; g � 1ðbgðnÞÞi ð4Þ

2.3. PA operator

The PA operator, introduced by Yager [56], can assign weights to the aggregated arguments

via computing the degrees of support between these arguments. This makes it possible to

reduce the negative influence of the unduly high or unduly low argument values on the aggre-

gation results. The formal definition of the PA operator is as follow:

Definition 7 [56]. Let (a1, a2, . . ., an) be a collection of crisp numbers, Sup(ai, aj) = 1 − D(ai,
aj) (i, j = 1, 2, . . ., n and j 6¼ i; D(ai, aj) is the distance between ai and aj) be the degree of sup-

port for ai from aj which has the following properties: (1) 0� Sup(ai, aj)� 1; (2) Sup(ai, aj) =

Sup(aj, ai); (3) Sup(ai, aj)� Sup(ar, as) if |ai−aj|� |ar−as|, and

TðaiÞ ¼
Xn

j¼1;j6¼i

Supðai; ajÞ ð5Þ

Then the aggregation function

PA a1; a2; . . . ; anð Þ ¼

Xn

i¼1

ðð1þ TðaiÞÞaiÞ

Xn

i¼1

ð1þ TðaiÞÞ
ð6Þ

is called the PA operator.

2.4. Partitioned average operator

The partitioned average operator can aggregate the arguments in different partitions using the

same aggregation operator and aggregate the aggregation results of different partitions using

the arithmetic average operator [51]. Its formal definition is as follow:

Definition 8 [51]. Let (a1, a2, . . ., an) be a collection of crisp numbers, S = {a1, a2, . . ., an}

be a set of a1, a2, . . ., an, Sk = {a1, a2, . . ., a|Sk|} (k = 1, 2, . . ., N) be N partitions of S (i.e. S1 [ S2

[ . . . [ SN = S and S1 \ S2 \ . . . \ SN = Ø), and AO be a specific aggregation operator. Then

the aggregation function

PtA a1; a2; . . . ; anð Þ ¼
1

N

XN

k¼1

AO
jSkj

ik¼1
ðaikÞ

� �

ð7Þ

is called the partitioned average operator.

2.5. MM operator

The MM operator was firstly introduced to aggregate crisp numbers by Muirhead [39]. It has

prominent characteristics in capturing the interrelationships among multiple aggregated argu-

ments and providing a general form of a number of other aggregation operators. The formal

definition of the MM operator is as follow:

Definition 9 [39]. Let (a1, a2, . . ., an) be a collection of crisp numbers, Δ = (δ1, δ2, . . ., δn)

(where δ1, δ2, . . ., δn� 0 but not at the same time δ1 = δ2 = . . . = δn = 0) be a collection of n
real numbers, p(i) be a permutation of (1, 2,. . ., n), and Pn be the set of all permutations of (1,

Archimedean power partitioned Muirhead mean operators
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2,. . ., n). Then the aggregation function

MMD a1; a2; . . . ; anð Þ ¼
1

n!

X

p2Pn

Yn

i¼1

adipðiÞ

 !
1

Xn

i¼1

di ð8Þ

is called the MM operator.

In this operator, whether the interrelationships are considered depends on the values of δi
(i = 1, 2, . . ., n): (1) If δ1 > 0 and δ2 = δ3 = . . . = δn = 0, then the interrelationships are not con-

sidered; (2) If δ1, δ2 > 0 and δ3 = δ4 = . . . = δn = 0, then the interrelationships between two

crisp numbers are considered; (3) If δ1, δ2, . . ., δk> 0 (k = 3, 4, . . ., n) and δk+1 = δk+2 = . . . =

δn = 0, then the interrelationships among k crisp numbers are considered.

3. Aggregation operators

In this section, a q-rung orthopair fuzzy Archimedean power partitioned MM (qRO-

FAPPMM) operator and a q-rung orthopair fuzzy weighted Archimedean power partitioned

MM (qROFWAPPMM) operator are presented. The properties of the two operators are

explored and their specific cases are discussed.

3.1. qROFAPPMM operator

A qROFAPPMM operator is a power partitioned MM operator of qROFNs, in which the sum,

product, multiplication, and power operations are performed using the operational rules of

qROFNs based on ATT. Its formal definition is as follow:

Definition 10. Let Q1, Q2, . . ., Qn (Qi =<μi, νi>, i = 1, 2, . . ., n) be n qROFNs (q = 1, 2, 3, . . .),

(Q1, Q2, . . ., Qn) be a collection of Q1, Q2, . . ., Qn, S = {Q1, Q2, . . ., Qn} be an ordered set of Q1,

Q2, . . ., Qn, Sk = {Q1, Q2, . . ., Q|Sk|} (k = 1, 2, . . ., N) be N partitions of S (i.e. S1 [ S2 [ . . . [ SN =

S and S1 \ S2 \ . . . \ SN = Ø), δ1, δ2, . . ., δ|Sk| (k = 1, 2, . . ., N and δ1, δ2, . . ., δ|Sk|� 0 but not at

the same time δ1 = δ2 = . . . = δ|Sk| = 0) be |Sk| real numbers that respectively correspond to Q1,

Q2, . . ., Q|Sk|, Δk = (δ1, δ2, . . ., δ|Sk|) be a collection of δ1, δ2, . . ., δ|Sk|, Δ = (Δ1, Δ2, . . ., ΔN) be a

collection of Δ1, Δ2, . . ., ΔN, p(ik) be a permutation of (1, 2,. . ., |Sk|), P|Sk| be a set of all permuta-

tions of (1, 2,. . ., |Sk|), Qi�Qj and Qi�Qj (i, j = 1, 2, . . ., n) be respectively the sum and product

operations of Qi and Qj based on ATT, aQr and Qs
b (r, s = 1, 2, . . ., n; a, b> 0) be respectively

the multiplication operation of Qr and the power operation of Qs based on ATT, Sup(Qr, Qs) =

1 − D(Qr, Qs) (r, s = 1, 2, . . ., n and s 6¼ r; D(Qr, Qs) is the distance between Qr and Qs) be the

degree of support for Qr from Qs which satisfy 0� Sup(Qr, Qs)� 1, Sup(Qr, Qs) = Sup(Qs, Qr),

and Sup(Qr, Qs)� Sup(Qu, Qv) if |Qr−Qs|� |Qu−Qv|, and

TðQrÞ ¼
Xn

s¼1;s6¼r

SupðQr; QsÞ ð9Þ

Then the aggregation function

qROFAPPMMD Q1;Q2; . . . ;Qnð Þ

¼
1

N
�
N

k¼1

1

jSkj!
�

p2PjSk j
�
jSkj

ik¼1

nð1þ TðQpðikÞ
ÞÞ

Xn

j¼1

ð1þ TðQjÞÞ

QpðikÞ

0

B
B
B
B
@

1

C
C
C
C
A

dik
0

B
B
B
B
@

1

C
C
C
C
A

1

XjSkj

ik¼1

dik

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

ð10Þ
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is called the qROFAPPMM operator. In this operator, the values of δik (ik = 1, 2, . . ., |Sk|) are

used to capture the interrelationships among the aggregated qROFNs in each of the N partitions

S: (1) If δ1 > 0 and δ2 = δ3 = . . . = δ|Sk| = 0, then the qROFNs in the k-th partition Sk are inde-

pendent of each other; (2) If δ1, δ2 > 0 and δ3 = δ4 = . . . = δ|Sk| = 0, then the interrelationships

between two qROFNs in Sk are considered; (3) If δ1, δ2, . . ., δr> 0 (r = 3, 4, . . ., n) and δr+1 =

δr+2 = . . . = δ|Sk| = 0, then the interrelationships among r qROFNs in Sk are considered.

According to Eq (1)–(4) and (10), the following theorem is obtained:

Theorem 1. Let Q1, Q2, . . ., Qn (Qi =<μi, νi>, i = 1, 2, . . ., n) be n qROFNs (q = 1, 2, 3, . . .)

and (Q1, Q2, . . ., Qn) be a collection of Q1, Q2, . . ., Qn. Then

qROFAPPMMDðQ1;Q2; . . . ;QnÞ ¼ hm; ni ð11Þ

and it is still a qROFN, where

m ¼ g � 1 1

N

XN

k¼1

g f � 1 1

XjSkj

ik¼1

dik

f g � 1 1

jSkj!

X

p2PjSk j

g
�

f � 1

�
XjSkj

ik¼1

�

dik f ðg
� 1ððnxpðikÞÞgðmpðikÞÞÞÞ

���
0

@

1

A

0

@

1

A

0

B
B
B
B
@

1

C
C
C
C
A

0

B
B
B
B
B
@

1

C
C
C
C
C
A

0

B
B
B
B
B
@

1

C
C
C
C
C
A

ð12Þ

n ¼ f � 1 1

N

XN

k¼1
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and ξp(ik) is a PA factor which can be calculated via the following Equation:

xi ¼ 1þ
Xn

r¼1;r 6¼x

ð1 � DðQi;QrÞÞ

 !�
Xn

j¼1

1þ
Xn

s¼1;s6¼j

ð1 � DðQj;QsÞÞ

 !

ð14Þ

For the details regarding the proof of this theorem, please refer to Appendix A in S1 File.

The following two theorems respectively state the idempotency and boundedness of the qRO-

FAPPMM operator:

Theorem 2. Let Q1, Q2, . . ., Qn (Qi =<μi, νi>, i = 1, 2, . . ., n) be n qROFNs (q = 1, 2, 3, . . .)

and (Q1, Q2, . . ., Qn) be a collection of Q1, Q2, . . ., Qn. If Qi = Q =<μQ, νQ> for all i = 1, 2, . . .,

n, then qROFAPPMMΔ(Q1, Q2, . . ., Qn) = Q =<μQ, νQ>.

Theorem 3. Let Q1, Q2, . . ., Qn (Qi =<μi, νi>, i = 1, 2, . . ., n) be n qROFNs (q = 1, 2, 3, . . .),

(Q1, Q2, . . ., Qn) be a collection of Q1, Q2, . . ., Qn, QUB =<max{μi}, min{νi}>, and QLB =<min

{μi}, max{νi}>. Then QLB� qROFAPPMMΔ(Q1, Q2, . . ., Qn)� QUB.

For the details regarding the proofs of these two theorems, please refer to Appendixes B and

C in S1 File, respectively.

From Eq (11), it is not difficult to see that the qROFAPPMM operator has the capabilities

to capture the interrelationships of the aggregated qROFNs and to reduce the negative influ-

ence of unreasonable aggregated qROFNs, because the operator is constructed via combining

the MM, partitioned average, and PA operators. In addition, it can also be seen that the qRO-

FAPPMM operator has desirable generality, since different specific qROFAPPMM operators

will be obtained if different if specific functions are assigned to f. For example, if the additive

generators of Algebraic, Einstein, Hamacher, and Frank T-norms and T-conorms are assigned

to f, then four specific operators can be respectively constructed as follows:
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1. If f(t) = −Intq, then g(t) = −In(1−tq), f−1(t) = (e−t)1/q, and g−1(t) = (1−e−t)1/q. A q-rung ortho-

pair fuzzy Archimedean Algebraic power partitioned MM (qROFAAPPMM) operator is

constructed according to Eq (11):
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where ξp(ik) is a PA factor which can be calculated via Eq (14).

2. If f(t) = In[(2−tq)/tq], then g(t) = In[(1+tq)/(1−tq)], f−1(t) = [2/(et+1)]1/q, and g−1(t) =

[(et−1)/(et+1)]1/q. A q-rung orthopair fuzzy Archimedean Einstein power partitioned MM

(qROFAEPPMM) operator is constructed according to Eq (11):
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and ξp(ik) is a PA factor which can be calculated via Eq (14).

3. If f(t) = In{[λ+(1−λ)tq]/tq} (λ> 0), then g(t) = In{[λ+(1−λ)(1−tq)]/(1−tq)}, f−1(t) = [λ/(et+λ
−1)]1/q, and g−1(t) = [(et−1)/ (et+λ−1)]1/q. A q-rung orthopair fuzzy Archimedean Hama-

cher power partitioned MM (qROFAHPPMM) operator is constructed according to Eq

(11):
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and ξp(ik) is a PA factor which can be calculated via Eq (14).

4. If f(t) = −In[(ε−1)/(εy−1)] (y = tq; ε> 1), then g(t) = −In[(ε−1)/(ε1−y−1)], f−1(t) = {logε[(ε−1

+e−t)/e−t]}1/q, and g−1(t) = {1−logε[(ε−1+e−t)/e−t]}1/q. A q-rung orthopair fuzzy Archimedean

Frank power partitioned MM (qROFAFPPMM) operator is constructed according to Eq (11):
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and ξp(ik) is a PA factor which can be calculated via Eq (14).

3.2. qROFWAPPMM operator

The qROFAPPMM operator has advantages in having satisfying generality and flexibility, cap-

turing the complex interrelationships among qROFNs, and reducing the negative effect of

unreasonable qROFNs on the aggregation results. But it does not consider the relative impor-

tance of each aggregated qROFN. To overcome this limitation, weights are introduced and a

qROFWAPPMM operator is presented. The formal definition of this operator is as follow:

Definition 11. On the basis of Definition 10, let w1, w2, . . ., wn be respectively the weights

of Q1, Q2, . . ., Qn such that 0� w1, w2, . . ., wn� 1 and w1+w2+. . .+wn = 1. Then the aggrega-

tion function
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is called the qROFWAPPMM operator. In this operator, the functions of δik (ik = 1, 2, . . ., |Sk|)
are the same as the functions of δik in the qROFAPPMM operator (see Eq (11)).

According to Eqs (1)–(4) and (31), the following theorem is obtained:

Theorem 4. Let Q1, Q2, . . ., Qn (Qi =<μi, νi>, i = 1, 2, . . ., n) be n qROFNs (q = 1, 2, 3, . . .)

and (Q1, Q2, . . ., Qn) be a collection of Q1, Q2, . . ., Qn. Then
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and ξp(ik) and ξt are two PA factors which can be calculated via Eq (14).

The proof of Theorem 4 is similar to the proof of Theorem 1 (see Appendix A in S1 File)

and is omitted here. It is worth nothing that the qROFWAPPMM operator no longer has the

properties of idempotency and boundedness due to the introduce of weights.

For Eq (32), if the additive generators of Algebraic, Einstein, Hamacher, and Frank T-

norms and T-conorms are assigned to f, then four specific operators can be respectively con-

structed as follows:

1. If f(t) = −Intq, then g(t) = −In(1−tq), f−1(t) = (e−t)1/q, and g−1(t) = (1−e−t)1/q. A q-rung ortho-

pair fuzzy weighted Archimedean Algebraic power partitioned MM (qROFWAAPPMM)

operator is constructed according to Eq (32):
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where ξp(ik) and ξt are two PA factors which can be calculated via Eq (14).

2. If f(t) = In[(2−tq)/tq], then g(t) = In[(1+tq)/(1−tq)], f−1(t) = [2/(et+1)]1/q, and g−1(t) =

[(et−1)/(et+1)]1/q. A q-rung orthopair fuzzy weighted Archimedean Einstein power

Archimedean power partitioned Muirhead mean operators

PLOS ONE | https://doi.org/10.1371/journal.pone.0221759 September 5, 2019 12 / 35

https://doi.org/10.1371/journal.pone.0221759


partitioned MM (qROFWAEPPMM) operator is constructed according to Eq (32):
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and ξp(ik) and ξt are two PA factors which can be calculated via Eq (14).

3. If f(t) = In{[λ+(1−λ)tq]/tq} (λ> 0), then g(t) = In{[λ+(1−λ)(1−tq)]/(1−tq)}, f−1(t) = [λ/(et+λ
−1)]1/q, and g−1(t) = [(et−1)/ (et+λ−1)]1/q. A q-rung orthopair fuzzy weighted Archimedean

Archimedean power partitioned Muirhead mean operators
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Hamacher power partitioned MM (qROFWAHPPMM) operator is constructed according

to Eq (32):
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and ξp(ik) and ξt are two PA factors which can be calculated via Eq (14).

Archimedean power partitioned Muirhead mean operators
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4. If f(t) = −In[(ε−1)/(εy−1)] (y = tq; ε> 1), then g(t) = −In[(ε−1)/(ε1−y−1)], f−1(t) = {logε[(ε
−1+e−t)/e−t]}1/q, and g−1(t) = {1− logε[(ε−1+e−t)/e−t]}1/q. A q-rung orthopair fuzzy weighted

Archimedean Frank power partitioned MM (qROFWAFPPMM) operator is constructed

according to Eq (32):
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and ξp(ik) and ξt are two PA factors which can be calculated via Eq (14).

Archimedean power partitioned Muirhead mean operators
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4. MCGDM method

In this section, a MCGDM method based on the qROFWAPPMM operator is proposed to

solve the MCGDM problems based on qROFNs.

In general, a MCGDM problem based on qROFNs can be described via a set of alternatives

A = {A1, A2, . . ., Am}, a set of criteria C = {C1, C2, . . ., Cn} such that C is divided into N parti-

tions Ck = {C1, C2, . . ., C|Ck|} (k = 1, 2, . . ., N) and there are interrelationships among different

criteria in each Ck whereas the criteria in different Ck are independent of each other, a vector

of weights of criteria w = [w1, w2, . . ., wn] such that 0� w1, w2, . . ., wn� 1, w1+w2+. . .+wn = 1,

and each element respectively denotes the relative importance of C1, C2, . . ., Cn, a set of experts

E = {E1, E2, . . ., EM}, a vector of weights of experts $ = [$1, $2, . . .,$M] such that 0�$1,

$2, . . ., $M� 1,$1+$2+. . .+$M = 1, and each element respectively denotes the relative

importance of E1, E2, . . ., EM, and M q-rung orthopair fuzzy decision matrices Mh = [Qh,i,j]m×n

(h = 1, 2,. . ., M; i = 1, 2,. . ., m; j = 1, 2,. . ., n) such that Qh,i,j =<μh,i,j, νh,i,j> is a qROFN which

denotes the evaluation value of Cj with respect to Ai provided by Ek. Based on these compo-

nents, the MCGDM problem can be described as: Determining the optimal alternative with

the help of a ranking of the elements of A based on C, Mh, w, and$. Using the qROF-

WAPPMM operator, the problem is solved according to the following steps:

1. Normalise the q-rung orthopair fuzzy decision matrices Mh. Generally, a MCGDM problem

may contain two types of criteria, i.e. benefit and cost criteria, which affect the results of deci-

sion making positively and negatively, respectively. To eliminate the negative effect, the q-

rung orthopair fuzzy decision matrices Mh = [Qh,i,j]m×n =<μh,i,j, νh,i,j> are normalised as

MN;h ¼ ½Qh;i;j�m�n ¼
½hmh;i;j; nh;i;ji�m�n; if Cj is a benefit criterion

½hnh;i;j; mh;i;ji�m�n; if Cj is a cost criterion
ð51Þ

(

2. Calculate the power weights of Qh,i,j. The power weights of Qh,i,j are computed using

Wh;i;j ¼ ð$hxhÞ
.XM

z¼1

ð$zxzÞ

¼ $h 1þ
XM

x¼1;x6¼h

ð1 � DðQh;i;j; Qx;i;jÞÞ

 ! !.
XM

z¼1

$z 1þ
XM

y¼1;y6¼z

ð1 � DðQz;i;j; Qy;i;jÞÞ

 ! !

ð52Þ

where D(Qh,i,j, Qx,i,j) (D(Qz,i,j, Qy,i,j)) is the Minkowski-type distance between Qh,i,j and Qx,i,j

(Qz,i,j and Qy,i,j) that can be computed via the Equation in Definition 5.

3. Calculate the collective values of Qh,i,j. Taking the normalised q-rung orthopair fuzzy deci-

sion matrices MN,h and the expert weight vector $ as input, the collective values of Qh,i,j are

computed using

Qi;j ¼ hmi;j; ni;ji ¼ qROFWAPPMMDðQ1;i;j;Q2;i;j; . . . ;QM;i;jÞ ð53Þ

where qROFWAPPMM is an arbitrary specific qROFWAPPMM operator, such as the

qROFWAAPPMM operator in Eq (35), the qROFWAEPPMM operator in Eq (36), the

qROFWAHPPMM operator in Eq (39), and the qROFWAFPPMM operator in Eq (42),

and the values of the elements in Δ = (δ1, δ2, . . ., δM) (It is worth nothing that there is only

one partition) are determined via identifying the interrelationships among different experts.

In general, all experts should be mutually independent. Thus δ1 > 0 and δ2 = δ3 = . . . =

δM = 0.
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4. Calculate the power weights of Qi,j. The power weights of Qi,j are computed using

Wi;j ¼ ðwjxjÞ
.Xn

t¼1

ðwtxtÞ

¼ wj 1þ
Xn

r¼1;r 6¼j

ð1 � DðQi;j; Qi;rÞÞ

 ! !.
Xn

t¼1

wt 1þ
Xn

s¼1;s6¼t

ð1 � DðQi;t; Qi;sÞÞ

 ! !

ð54Þ

where D(Qi,j, Qi,r) (D(Qi,r, Qi,s)) is the Minkowski-type distance between Qi,j and Qi,r (Qi,t

and Qi,s) that can be computed via the Equation in Definition 5.

5. Calculate the collective values of Qi,j. On the basis of the N partitions Ck = {C1, C2, . . ., C|

Ck|}, suppose Si = {Qi,1, Qi,2, . . ., Qi,n} is an ordered set of Qi,1, Qi,2, . . ., Qi,n, Si,k = {Qi,1,

Qi,2, . . ., Qi,|Sk|} are N partitions of S that correspond to Ck, δ1, δ2, . . ., δ|Si,k| (k = 1, 2, . . ., N
and δ1, δ2, . . ., δ|Si,k|� 0 but not at the same time δ1 = δ2 = . . . = δ|Si,k| = 0) are |Si,k| real

numbers that respectively correspond to Qi,1, Qi,2, . . ., Qi,|Sk|, Δk = (δ1, δ2, . . ., δ|Si,k|) is a col-

lection of δ1, δ2, . . ., δ|Si,k|, Δ = (Δ1, Δ2, . . ., ΔN) is a collection of Δ1, Δ2, . . ., ΔN, p(ik) is a per-

mutation of (1, 2,. . ., |Si,k|), and P|Si,k| is a set of all permutations of (1, 2,. . ., |Si,k|). Then the

collective values of Qi,j are computed using

Qi ¼ hmi; nii ¼ qROFWAPPMMDðQi;1;Qi;2; . . . ;Qi;nÞ ð55Þ

where qROFWAPPMM is the same specific qROFWAPPMM operator used in Eq (53), and

the values of the elements in Δ = (Δ1, Δ2, . . ., ΔN) (Δk = (δ1, δ2, . . ., δ|Si,k|)) are determined

via identifying the interrelationships among different criteria in Ck. When all criteria in Ck

are mutually independent, then δ1 > 0 and δ2 = δ3 = . . . = δ|Si,k| = 0; When there are interre-

lationships between any two criteria in Ck, δ1, δ2 > 0 and δ3 = δ4 = . . . = δ|Si,k| = 0; When

there are interrelationships among any d (d = 3, 4, . . ., n) criteria in Ck, δ1, δ2, . . ., δd> 0

and δd+1 = δd+2 = . . . = δ|Si,k| = 0.

6. Calculate the scores and accuracies of Qi. The scores and accuracies of Qi can be respectively

computed using the Equations in Definitions 2 and 3.

7. Generate a ranking of Ai. On the basis of the scores and accuracies of Qi, a ranking of Ai can

be generated according to the comparison rules in Definition 4.

8. Determine the optimal alternative. The optimal alternative is determined with the help of

the ranking.

5. Example, experiments, and comparisons

In this section, a numerical example is firstly used to illustrate the working process of the pro-

posed MCGDM method. Then a set of experiments are carried out to explore the influence of

different specific operators and parameter values on the aggregation results. Finally, qualitative

and quantitative comparisons to the existing methods are made to demonstrate the feasibility

and effectiveness of the proposed method.

5.1. Example

A numerical example about the determination of the best industry for investment from five

possible industries (adapted on the basis of Reference [31]) is used to demonstrate the pro-

posed MCGDM method.

To make full use of idle capital, the board of directors of a company decided to invest in a

new industry. Five industries were identified as possible industries for investment after
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preliminary research. The five alternative industries are medical industry (A1), real estate

development industry (A2), Internet industry (A3), education and training industry (A4), and

manufacturing industry (A5). To select the best industry for investment, the board of directors

appointed an expert panel, which consists of four different experts E1, E2, E3, and E4. The rela-

tive importance of these experts is quantified by the weight vector $ = [0.30, 0.22, 0.28, 0.20].

The four experts were asked to evaluate the five alternative industries on the basis of five crite-

ria, which are the amount of capital profit (C1), the market potential (C2), the risk of capital

loss (C3), the growth potential (C4), and the stability of policy (C5). The relative importance of

these criteria is measured by the weight vector w = [0.20, 0.20, 0.15, 0.25, 0.20]. According to

the structure of interrelationships, the five criteria are divided into two partitions C1 = {C1, C3,

C5} and C2 = {C2, C4} and there are interrelationships among the three criteria in C1, so do the

two criteria in C2, and C1 and C2 are independent of each other. To provide enough freedom

in the evaluation of the values of the five criteria of each alternative industry, experts were

allowed to use qROFNs. The evaluation results of the four experts are respectively listed in the

following four matrices:

M1 ¼

< 0:7; 0:2 > < 0:8; 0:2 > < 0:5; 0:4 > < 0:7; 0:1 > < 0:9; 0:2 >

< 0:8; 0:6 > < 0:7; 0:6 > < 0:5; 0:4 > < 0:5; 0:3 > < 0:7; 0:2 >

< 0:6; 0:5 > < 0:5; 0:4 > < 0:6; 0:5 > < 0:8; 0:5 > < 0:8; 0:3 >

< 0:7; 0:2 > < 0:6; 0:5 > < 0:5; 0:6 > < 0:6; 0:2 > < 0:6; 0:5 >

< 0:6; 0:4 > < 0:7; 0:5 > < 0:6; 0:5 > < 0:7; 0:4 > < 0:7; 0:3 >

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

M2 ¼

< 0:7; 0:1 > < 0:7; 0:3 > < 0:5; 0:3 > < 0:6; 0:1 > < 0:8; 0:2 >

< 0:8; 0:3 > < 0:7; 0:5 > < 0:7; 0:2 > < 0:9; 0:2 > < 0:6; 0:2 >

< 0:9; 0:2 > < 0:8; 0:3 > < 0:3; 0:5 > < 0:8; 0:4 > < 0:9; 0:2 >

< 0:6; 0:3 > < 0:7; 0:5 > < 0:6; 0:4 > < 0:8; 0:3 > < 0:7; 0:6 >

< 0:7; 0:3 > < 0:8; 0:4 > < 0:4; 0:3 > < 0:7; 0:2 > < 0:6; 0:3 >

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

M3 ¼

< 0:8; 0:2 > < 0:6; 0:2 > < 0:7; 0:3 > < 0:8; 0:1 > < 0:7; 0:1 >

< 0:8; 0:6 > < 0:7; 0:4 > < 0:8; 0:4 > < 0:7; 0:4 > < 0:6; 0:4 >

< 0:7; 0:2 > < 0:8; 0:3 > < 0:6; 0:2 > < 0:9; 0:2 > < 0:8; 0:2 >

< 0:4; 0:7 > < 0:9; 0:2 > < 0:5; 0:2 > < 0:5; 0:5 > < 0:9; 0:6 >

< 0:6; 0:4 > < 0:7; 0:3 > < 0:6; 0:3 > < 0:7; 0:3 > < 0:8; 0:5 >

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

M4 ¼

< 0:9; 0:3 > < 0:6; 0:2 > < 0:6; 0:3 > < 0:7; 0:3 > < 0:7; 0:2 >

< 0:6; 0:6 > < 0:7; 0:7 > < 0:6; 0:2 > < 0:6; 0:2 > < 0:6; 0:2 >

< 0:7; 0:1 > < 0:9; 0:4 > < 0:7; 0:4 > < 0:8; 0:3 > < 0:9; 0:4 >

< 0:7; 0:3 > < 0:5; 0:4 > < 0:5; 0:4 > < 0:9; 0:4 > < 0:6; 0:2 >

< 0:8; 0:4 > < 0:8; 0:5 > < 0:5; 0:2 > < 0:7; 0:4 > < 0:8; 0:3 >

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

With the known conditions above, the determination of the best industry for investment

can be carried out leveraging the proposed MCGDM method. Its process consists of the fol-

lowing eight steps:
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1. Normalise the q-rung orthopair fuzzy decision matrices Mh (h = 1, 2, 3, 4). Among the five

criteria, the amount of capital profit (C1), the market potential (C2), the growth potential

(C4), and the stability of policy (C5) are four benefit criteria and the risk of capital loss (C3)

is a cost criterion. Based on this, the four matrices Mh are normalised according to Eq (51)

and four normalised matrices are obtained as follows:

MN;1 ¼ ½Q1;i;j�5�5

¼

< 0:7; 0:2 > < 0:8; 0:2 > < 0:4; 0:5 > < 0:7; 0:1 > < 0:9; 0:2 >

< 0:8; 0:6 > < 0:7; 0:6 > < 0:4; 0:5 > < 0:5; 0:3 > < 0:7; 0:2 >

< 0:6; 0:5 > < 0:5; 0:4 > < 0:5; 0:6 > < 0:8; 0:5 > < 0:8; 0:3 >

< 0:7; 0:2 > < 0:6; 0:5 > < 0:6; 0:5 > < 0:6; 0:2 > < 0:6; 0:5 >

< 0:6; 0:4 > < 0:7; 0:5 > < 0:5; 0:6 > < 0:7; 0:4 > < 0:7; 0:3 >

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

MN;2 ¼ ½Q2;i;j�5�5

¼

< 0:7; 0:1 > < 0:7; 0:3 > < 0:3; 0:5 > < 0:6; 0:1 > < 0:8; 0:2 >

< 0:8; 0:3 > < 0:7; 0:5 > < 0:2; 0:7 > < 0:9; 0:2 > < 0:6; 0:2 >

< 0:9; 0:2 > < 0:8; 0:3 > < 0:5; 0:3 > < 0:8; 0:4 > < 0:9; 0:2 >

< 0:6; 0:3 > < 0:7; 0:5 > < 0:4; 0:6 > < 0:8; 0:3 > < 0:7; 0:6 >

< 0:7; 0:3 > < 0:8; 0:4 > < 0:3; 0:4 > < 0:7; 0:2 > < 0:6; 0:3 >

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

MN;3 ¼ ½Q3;i;j�5�5

¼

< 0:8; 0:2 > < 0:6; 0:2 > < 0:3; 0:7 > < 0:8; 0:1 > < 0:7; 0:1 >

< 0:8; 0:6 > < 0:7; 0:4 > < 0:4; 0:8 > < 0:7; 0:4 > < 0:6; 0:4 >

< 0:7; 0:2 > < 0:8; 0:3 > < 0:2; 0:6 > < 0:9; 0:2 > < 0:8; 0:2 >

< 0:4; 0:7 > < 0:9; 0:2 > < 0:2; 0:5 > < 0:5; 0:5 > < 0:9; 0:6 >

< 0:6; 0:4 > < 0:7; 0:3 > < 0:3; 0:6 > < 0:7; 0:3 > < 0:8; 0:5 >

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5

;

MN;4 ¼ ½Q4;i;j�5�5

¼

< 0:9; 0:3 > < 0:6; 0:2 > < 0:3; 0:6 > < 0:7; 0:3 > < 0:7; 0:2 >

< 0:6; 0:6 > < 0:7; 0:7 > < 0:2; 0:6 > < 0:6; 0:2 > < 0:6; 0:2 >

< 0:7; 0:1 > < 0:9; 0:4 > < 0:4; 0:7 > < 0:8; 0:3 > < 0:9; 0:4 >

< 0:7; 0:3 > < 0:5; 0:4 > < 0:4; 0:5 > < 0:9; 0:4 > < 0:6; 0:2 >

< 0:8; 0:4 > < 0:8; 0:5 > < 0:2; 0:5 > < 0:7; 0:4 > < 0:8; 0:3 >

2

6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
5
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2. Calculate the power weights of Qh,i,j. According to Eq (52), the power weights of Qh,i,j are

computed and the computed results are listed in the following matrices:

W1;i;j
� �

5�5
¼

0:3023 0:2917 0:2995 0:3064 0:2946

0:3095 0:3063 0:2942 0:3006 0:3007

0:2805 0:2754 0:3089 0:2954 0:3044

0:3095 0:3128 0:2913 0:3013 0:3106

0:3033 0:3007 0:2903 0:3028 0:3080

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; W2;i;j
� �

5�5
¼

0:2183 0:2209 0:2212 0:2195 0:2248

0:2056 0:2246 0:2258 0:2093 0:2256

0:2212 0:2309 0:2080 0:2262 0:2197

0:2332 0:2277 0:2284 0:2303 0:2278

0:2200 0:2240 0:2217 0:2127 0:2189

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

W3;i;j
� �

5�5
¼

0:2856 0:2843 0:2750 0:2793 0:2795

0:2889 0:2736 0:2746 0:2850 0:2685

0:2936 0:2939 0:2776 0:2736 0:2807

0:2457 0:2579 0:2719 0:2682 0:2748

0:2831 0:2741 0:2855 0:2826 0:2718

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

; W4;i;j
� �

5�5
¼

0:1938 0:2031 0:2043 0:1948 0:2011

0:1960 0:1954 0:2053 0:2051 0:2051

0:2047 0:1998 0:2055 0:2048 0:1951

0:2116 0:2016 0:2084 0:2001 0:1868

0:1936 0:2012 0:2026 0:2019 0:2013

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

;

3. Calculate the collective values of Qh,i,j. Taking the normalised q-rung orthopair fuzzy deci-

sion matrices MN,h and the power weight matrices [Wh,i,j]5×5 as input, the collective values

of Qh,i,j can be computed according to Eq (53). Without loss of generality (It is worth noth-

ing that the qROFWAHPPMM operator (see Eq (39)) will reduce to the qROFWAAPPMM

operator (see Eq (35)) when λ = 1 and will reduce to the qROFWAEPPMM operator (see

Eq (36)) when λ = 2), the qROFWAHPPMM operator in Eq (39) (When adapting this oper-

ator, q = 3, λ = 3, and Δ = (δ1, δ2, δ3, δ4) = (1, 0, 0, 0)) is used in Eq (53) to complete the com-

putation. The computed results are listed in the following matrix:

MN ¼ Qi;j
� �

5�5

¼

< 0:7825; 0:1861 > < 0:6935; 0:2188 > < 0:3361; 0:5722 > < 0:7146; 0:1240 > < 0:8000; 0:1648 >

< 0:7706; 0:5248 > < 0:7000; 0:5351 > < 0:3407; 0:6445 > < 0:7046; 0:2758 > < 0:6336; 0:2414 >

< 0:7429; 0:2259 > < 0:7752; 0:3443 > < 0:4293; 0:5426 > < 0:8338; 0:3349 > < 0:8492; 0:2595 >

< 0:6250; 0:3312 > < 0:7244; 0:3799 > < 0:4503; 0:5218 > < 0:7249; 0:3241 > < 0:7416; 0:4673 >

< 0:6720; 0:3757 > < 0:7472; 0:4148 > < 0:3704; 0:5306 > < 0:7000; 0:3189 > < 0:7360; 0:3457 >

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

4. Calculate the power weights of Qi,j. According to Eq (54), the power weights of Qi,j are com-

puted and the computed results are listed in the following matrix:

Wi;j
� �

5�5
¼

0:2086 0:2078 0:1192 0:2577 0:2067

0:2038 0:2062 0:1337 0:2549 0:2014

0:2035 0:2073 0:1280 0:2574 0:2038

0:2031 0:2052 0:1384 0:2534 0:1999

0:2063 0:2024 0:1302 0:2562 0:2049

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5
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5. Calculate the collective values of Qi,j. On the basis of the two partitions C1 = {C1, C3, C5}

and C2 = {C2, C4}, the matrix MN is divided into Si,1 = {Qi,1, Qi,3, Qi,5} and Si,2 = {Qi,2, Qi,4}

(i = 1, 2, 3, 4, 5). Taking them and the power weight matrix [Wi,j]5×5 as input, the collective

values of Qi,j can be computed according to Eq (55). Since the qROFWAHPPMM operator

in Eq (39) has been used in the third step, this operator (When adapting the operator,

q = 3, λ = 3, and Δ = (Δ1, Δ2) = ((δ1, δ2, δ3), (δ1, δ2)) = ((1, 2, 3), (1, 2))) is also leveraged

in this step to complete the computation. The computed results are listed as follows:

Q1 =<0.5453, 0.5668>, Q2 =<0.5159, 0.7220>, Q3 =<0.6024, 0.6563>, Q4 =<0.5303,

0.6991>, Q5 = <0.5278, 0.6953>

6. Calculate the scores and accuracies of Qi. The scores and accuracies of Qi are respectively

computed using the Equations in Definitions 2 and 3. The computed results are respectively

listed as follows:

S(Q1) = −0.0199, S(Q2) = −0.2390, S(Q3) = −0.0641, S(Q4) = −0.1925, S(Q5) = −0.1891

A(Q1) = 0.3443, A(Q2) = 0.5137, A(Q3) = 0.5013, A(Q4) = 0.4908, A(Q5) = 0.4832

7. Generate a ranking of Ai. On the basis of the S(Qi) and A(Qi), a ranking of Ai is generated

according to the comparison rules in Definition 4. The ranking is as follow: A1� A3�

A5� A4� A2

8. Determine the optimal alternative. The best industry for investment is determined as medi-

cal industry (A1).

5.2. Experiments

To explore the effect of using different specific operators and assigning different parameter

values on the aggregation results, the following three experiments were carried out:

(1) Experiment 1 aims to show the influence of using different specific operators on the

aggregation results. In this experiment, the presented qROFWAAPPMM (see Eq (35)), qROF-

WAEPPMM (see Eq (36)), qROFWAHPPMM (see Eq (39)), and qROFWAFPPMM (see Eq

(42)) operators are respectively used to calculate the collective values of Qh,i,j and the collective

values of Qi,j in the numerical example (When calculating the collective values of Qh,i,j, q = 3,

λ = 3, ε = 2, and Δ = (δ1, δ2, δ3, δ4) = (1, 0, 0, 0); When calculating the collective values of Qi,j,

q = 3, λ = 3, ε = 2, and Δ = (Δ1, Δ2) = ((δ1, δ2, δ3), (δ1, δ2)) = ((1, 2, 3), (1, 2))). The results of the

experiment are the calculated scores of Qi and the generated rankings of Ai, which are listed in

Table 1. As can be seen from the table, there is slight difference among the scores of the same

Qi calculated by the four pairs of specific operators, and the rankings of Ai also indicate small

difference with respect to the four pairs of specific operators. These indicate that the use of dif-

ferent specific operators has no obvious influence on the aggregation results.

(2) Experiment 2 aims to show the influence of assigning different q values on the

aggregation results. In this experiment, the presented qROFWAHPPMM (see Eq (39) and

Table 1. The results of Experiment 1.

Specific operator used

in Eq (53)

Specific operator used

in Eq (55)

Calculated scores of Qi Generated ranking of Ai

S(Q1) S(Q2) S(Q3) S(Q4) S(Q5)

qROFWAAPPMM qROFWAAPPMM 0.0348 −0.1641 0.0305 −0.0782 −0.0964 A1� A3� A4� A5� A2

qROFWAEPPMM qROFWAEPPMM 0.0013 −0.2096 −0.0272 −0.1477 −0.1521 A1� A3� A4� A5� A2

qROFWAHPPMM qROFWAHPPMM −0.0199 −0.2390 −0.0641 −0.1925 −0.1891 A1� A3� A5� A4� A2

qROFWAFPPMM qROFWAFPPMM 0.0193 −0.1849 0.0041 −0.1103 −0.1219 A1� A3� A4� A5� A2

https://doi.org/10.1371/journal.pone.0221759.t001
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qROFWAFPPMM (see Eq (42)) operators (Since the qROFWAHPPMM operator is the gener-

alisation of the qROFWAAPPMM and qROFWAEPPMM operators, they are not included in

this experiment and will not be included in the subsequent experiments and comparisons for

the sake of simplicity) are respectively used to calculate the collective values of Qh,i,j and the

collective values of Qi,j in the numerical example (When calculating the collective values of

Qh,i,j, λ = 3, ε = 2, and Δ = (δ1, δ2, δ3, δ4) = (1, 0, 0, 0); When calculating the collective values of

Qi,j, λ = 3, ε = 2, and Δ = (Δ1, Δ2) = ((δ1, δ2, δ3), (δ1, δ2)) = ((1, 2, 3), (1, 2))). The results of the

experiment are the calculated scores of Qi and the generated rankings of Ai, which are depicted

in Fig 1. From the figure, it can be seen that the ranking will change as q changes. For the pair

of qROFWAHPPMMs, the ranking is A1� A3� A5� A4� A2 when q = 3, changes to A1�

A3� A4� A5� A2 when q = 4, 5, 6, and becomes A3� A1� A4� A5� A2 when q = 7, 8, 9,

10; The best alternative changes from A1 to A3 from q = 7. For the pair of qROFWAFPPMMs,

the ranking is A1� A3� A4� A5� A2 when q = 3, changes to A3� A1� A4� A5� A2 when

q = 4, 5, 6, 7, 8, 9, and becomes A3� A4� A1� A5� A2 when q = 10; The best alternative

changes from A1 to A3 from q = 4. Based on these results, it is recommended that the smallest

q which can meet 0� μq + νq� 1 is assigned in practical applications. For example, since MN,3

contains <0.9, 0.6>, q is assigned 3 since 0.92 + 0.62 > 1 and 0.93 + 0.63 < 1.

(3) Experiment 3 aims to show the influence of assigning different λ (ε) values on the

aggregation results. In this experiment, the presented qROFWAHPPMM (see Eq (39) and

qROFWAFPPMM (see Eq (42)) operators are respectively used to calculate the collective val-

ues of Qh,i,j and the collective values of Qi,j in the numerical example (When calculating the

collective values of Qh,i,j, q = 3 and Δ = (δ1, δ2, δ3, δ4) = (1, 0, 0, 0); When calculating the col-

lective values of Qi,j, q = 3 and Δ = (Δ1, Δ2) = ((δ1, δ2, δ3), (δ1, δ2)) = ((1, 2, 3), (1, 2))). The

results of the experiment are the calculated scores of Qi and the generated rankings of Ai,

which are depicted in Fig 2. It can be seen from the figure that the scores computed by the

pair of qROFWAHPPMMs (qROFWAFPPMMs) gradually decrease as λ (ε) gradually

increases. Therefore, the parameter λ (ε) can be seen as a pessimistic factor for MCGDM

problems. Generally, if the attitude of a decision maker is neutral, a small λ (ε) (e.g. λ = 1, 2,

3; ε = 2, 3, 4) is recommended. If the attitude is pessimistic enough, a bigger λ (ε) can be

Fig 1. The results of Experiment 2.

https://doi.org/10.1371/journal.pone.0221759.g001
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assigned when the pair of qROFWAHPPMMs (qROFWAFPPMMs) is used. Otherwise, a

smaller λ (ε) is recommended.

5.3. Comparisons

As mentioned in the introduction, more than twenty different aggregation operators of

qROFNs have been presented within academia. Representative examples are the WA and WG

[26], WBM and WGBM [27], WABM [28], WPBM and WPGBM [29], WHM and WGHM

[30], WHM� and WPHM [31], WMSM and WGMSM [32], WPMSM [33], WPPMSM [34],

WMM and WGMM [35], WEBM [36], WE [37], and WP [38] operators. In this subsection,

qualitative and quantitative comparisons between the MCGDM methods based on these oper-

ators and the proposed MCGDM method are carried out to demonstrate its feasibility and

effectiveness.

5.3.1. Qualitative comparison. Generally, a qualitative comparison among different

MCGDM methods can be carried out by comparing their characteristics. For the twenty exist-

ing methods and the proposed method, the generality and flexibility in the aggregation of

qROFNs, the capability to deal with the interrelationships among different criteria, and the

capability to reduce the negative influence of the unduly high or unduly low criterion values

on the aggregation results are selected as the comparison characteristics. The results of the

comparison are shown in Table 2. The details of the comparison are explained as follows:

1. Generality and flexibility: For the WP method, any one of the twenty different WP opera-

tors can be used in the aggregation. Therefore, its generality and flexibility can be seen as

moderate. The generality and flexibility of the WABM method and the proposed

(WAPPMM) method are desirable since the aggregations are based on the operations of

any family of ATTs. The aggregations in the remaining methods are based on the operation

of a specific family of ATT. Relatively, they have limited generality and flexibility.

2. When all criteria are independent of each other: It is no doubt that all of the listed methods

can deal with this case.

Fig 2. The results of Experiment 3.

https://doi.org/10.1371/journal.pone.0221759.g002
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3. When there are interrelationships between any two criteria: The WE, WP, WA, and WG

methods are only suitable for the independent case. All other methods have the capability

of dealing with the case in which there are interrelationships between any two criteria.

4. When there are interrelationships among any multiple criteria: The WMSM, WGMSM,

WPMSM, WPPMSM, WMM, and WGMM methods and the proposed method can handle

this situation because of the use of the MSM or MM operator.

5. When there are heterogeneous interrelationships among different criteria: The WPBM,

WPGBM, WPHM, WPPMSM, and WEBM methods and the proposed method can deal

with this case due to the combination of the partitioned average operator.

6. Capability to reduce the negative effect: The WPMSM and WPPMSM methods and the

proposed method have this capability because of the combination of the PA operator.

As can be summarised from the qualitative comparison above, the proposed method has

desirable generality and flexibility at both aggregating the q-rung orthopair fuzzy information

and dealing with the interrelationships of criteria, and has the capability to reduce the negative

influence caused by the deviation of some criterion values.

5.3.2. Quantitative comparison. In general, a quantitative comparison among different

MCGDM methods can be carried out using the same numerical example. Here the numerical

example in subsection 5.1 is used to quantitatively compare the proposed method to the WA,

WG, WBM, WGBM, WABM, WPBM, WPGBM, WHM, WGHM, WHM�, WPHM, WMSM,

WGMSM, WPMSM, WPPMSM, WMM, and WGMM methods (Please note that the WEBM,

WE, and WP operators were not included in the quantitative comparison because the WEBM

Table 2. The results of the qualitative comparison. Note: Heterogeneous interrelationships refer to the situation in which the criteria are divided into several parts and

there are interrelationships among different criteria in each part whereas the criteria in different parts are independent of each other.

Method Generality and

flexibility

Capability to deal with the interrelationships among different criteria Capability to reduce

the negative effectIndependent Between any two Among any multiple Heterogeneous

WA [26] Limited Yes No No No No

WG [26] Limited Yes No No No No

WBM [27] Limited Yes Yes No No No

WGBM [27] Limited Yes Yes No No No

WABM [28] Satisfying Yes Yes No No No

WPBM [29] Limited Yes Yes No Yes No

WPGBM [29] Limited Yes Yes No Yes No

WHM [30] Limited Yes Yes No No No

WGHM [30] Limited Yes Yes No No No

WHM� [31] Limited Yes Yes No No No

WPHM [31] Limited Yes Yes No Yes No

WMSM [32] Limited Yes Yes Yes No No

WGMSM [32] Limited Yes Yes Yes No No

WPMSM [33] Limited Yes Yes Yes No Yes

WPPMSM [34] Limited Yes Yes Yes Yes Yes

WMM [35] Limited Yes Yes Yes No No

WGMM [35] Limited Yes Yes Yes No No

WEBM [36] Limited Yes Yes No Yes No

WE [37] Limited Yes No No No No

WP [38] Moderate Yes No No No No

WAPPMM Satisfying Yes Yes Yes Yes Yes

https://doi.org/10.1371/journal.pone.0221759.t002
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method was pre-sented to handle the situation with unknown criterion weights, the WE

method was presented to deal with the case where the values of criteria are expressed by a

fuzzy number in Zadeh’s FS and the values of weights are described by qROFNs, the WP

method was presented to control the uncertainty of the evaluation results of some experts, and

the proposed method does not consider these characteristics). In this comparison, the qROFNs

Qh,1,4 and Qh,1,5 (h = 1, 2, 3, 4) in Mh were constantly adjusted from high score to low score

according to Table 3. It is easy to guess that such adjustments will lower the ranking of A1,

because the score becomes lower and lower. To confirm this conjecture, the methods were

implemented to generate the changes of the places of A1 in their respective rankings. The spe-

cific generation process is as follows:

1. Calculate the collective values of Qh,i,j. A specific operator presented in each method, as

listed in Table 4, was leveraged to compute the collective values of Qh,i,j in the numerical

example on the basis of certain Qh,1,4 and Qh,1,5 and certain parameters (whose values are

also listed in Table 4).

2. Calculate the collective values of Qi,j. For each method, the same specific operator used in

the calculation of the collective values of Qh,i,j, as listed in Table 4, was leveraged to compute

the collective values of Qi,j on the basis of the computed collective values of Qh,i,j of each

group of Qh,1,4 and Qh,1,5 and certain parameters (whose values are also listed in Table 4).

3. Calculate the scores of Qi. For each method, the scores of Qi of each group of Qh,1,4 and

Qh,1,5 were computed according to the calculated collective values of Qi,j of this group of

Qh,1,4 and Qh,1,5 and the Equation in Definition 2.

4. Generate the changes of the places of A1. According to the calculated scores of Qi of each

group of Qh,1,4 and Qh,1,5 of each method (The calculated scores of Q1 of the nine groups of

Qh,1,4 and Qh,1,5 of each method are listed in Table 5), the changes of the places of A1 in the

rankings of all comparison methods were generated and are depicted in Figs 3−12.

From the ten figures, it can be seen that the results of all comparison methods are consistent

with the conjecture. This verifies the feasibility and effectiveness of the proposed method. In

addition, as can be found from the figures of WA, WBM, WAHBM, WAFBM, WPBM, WHM,

WHM�, WPHM, WMSM, WPMSM, WPPMSM, WMM, WAHPPMM, and WAFPPMM (In

addition to these operators, the remaining comparison operators belong to geometric opera-

tors. Because the presented operators do not be-long to geometric operators, the geometric

operators are not included in the discussion of the quantitative comparison), the rankings of

Table 3. The values of the adjusted qROFNs in the quantitative comparison.

No. Q1,1,4 Q1,1,5 Q2,1,4 Q2,1,5 Q3,1,4 Q3,1,5 Q4,1,4 Q4,1,5

0 <0.70, 0.10> <0.90, 0.20> <0.60, 0.10> <0.80, 0.20> <0.80, 0.10> <0.70, 0.10> <0.70, 0.30> <0.70, 0.20>

1 <0.65, 0.15> <0.85, 0.25> <0.55, 0.15> <0.75, 0.25> <0.75, 0.15> <0.65, 0.15> <0.65, 0.35> <0.65, 0.25>

2 <0.60, 0.20> <0.80, 0.30> <0.50, 0.20> <0.70, 0.30> <0.70, 0.20> <0.60, 0.20> <0.60, 0.40> <0.60, 0.30>

3 <0.55, 0.25> <0.75, 0.35> <0.45, 0.25> <0.65, 0.35> <0.65, 0.25> <0.55, 0.25> <0.55, 0.45> <0.55, 0.35>

4 <0.50, 0.30> <0.70, 0.40> <0.40, 0.30> <0.60, 0.40> <0.60, 0.30> <0.50, 0.30> <0.50, 0.50> <0.50, 0.40>

5 <0.45, 0.35> <0.65, 0.45> <0.35, 0.35> <0.55, 0.45> <0.55, 0.35> <0.45, 0.35> <0.45, 0.55> <0.45, 0.45>

6 <0.40, 0.40> <0.60, 0.50> <0.30, 0.40> <0.50, 0.50> <0.50, 0.40> <0.40, 0.40> <0.40, 0.60> <0.40, 0.50>

7 <0.35, 0.45> <0.55, 0.55> <0.25, 0.45> <0.45, 0.55> <0.45, 0.45> <0.35, 0.45> <0.35, 0.65> <0.35, 0.55>

8 <0.30, 0.50> <0.50, 0.60> <0.20, 0.50> <0.40, 0.60> <0.40, 0.50> <0.30, 0.50> <0.30, 0.70> <0.30, 0.60>

https://doi.org/10.1371/journal.pone.0221759.t003
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Table 4. The specific operators and their parameter values for calculating the collective values of Qh,i,j and Qi,j.

Method Operator leveraged to

calculate the collective

values of Qh,i,j

Operator leveraged to

calculate the collective

values of Qi,j

Values of parameters when

calculating the collective

values of Qh,i,j

Values of parameters when calculating the

collective values of Qi,j

WA [26] qROFWA qROFWA q = 3 q = 3

WG [26] qROFWG qROFWG q = 3 q = 3

WBM [27] qROFWBM qROFWBM q = 3; δ1 = 1; δ2 = 0 q = 3; δ1 = 1; δ2 = 2

WGBM [27] qROFWGBM qROFWGBM q = 3; δ1 = 1; δ2 = 0 q = 3; δ1 = 1; δ2 = 2

WABM [28] qROFWAHBM qROFWAHBM q = 3; δ1 = 1; δ2 = 0; λ = 3 q = 3; δ1 = 1; δ2 = 2; λ = 3

WABM [28] qROFWAFBM qROFWAFBM q = 3; δ1 = 1; δ2 = 0; ε = 2 q = 3; δ1 = 1; δ2 = 2; ε = 2

WPBM [29] qROFWPBM qROFWPBM q = 3; δ1 = 1; δ2 = 0 q = 3; ((δ1, δ2), (δ1, δ2)) = ((1, 2), (1, 2))

WPGBM [29] qROFWPGBM qROFWPGBM q = 3; δ1 = 1; δ2 = 0 q = 3; ((δ1, δ2), (δ1, δ2)) = ((1, 2), (1, 2))

WHM [30] qROFWHM qROFWHM q = 3; δ1 = 1; δ2 = 0 q = 3; δ1 = 1; δ2 = 2

WGHM [30] qROFWGHM qROFWGHM q = 3; δ1 = 1; δ2 = 0 q = 3; δ1 = 1; δ2 = 2

WHM� [31] qROFWHM� qROFWHM� q = 3; δ1 = 1; δ2 = 0 q = 3; δ1 = 1; δ2 = 2

WPHM [31] qROFWPHM qROFWPHM q = 3; δ1 = 1; δ2 = 0 q = 3; ((δ1, δ2), (δ1, δ2)) = ((1, 2), (1, 2))

WMSM [32] qROFWMSM qROFWMSM q = 3; δ = 1 q = 3; δ = 5

WGMSM [32] qROFWGMSM qROFWGMSM q = 3; δ = 1 q = 3; δ = 5

WPMSM [33] qROFWPMSM qROFWPMSM q = 3; δ = 1 q = 3; δ = 5

WPPMSM [34] qROFWPPMSM qROFWPPMSM q = 3; δ = 1 q = 3; ((δ1), (δ1)) = ((3), (2))

WMM [35] qROFWMM qROFWMM q = 3; (δ1, δ2, δ3, δ4) = (1, 0, 0, 0) q = 3; (δ1, δ2, δ3, δ4, δ5) = (1, 2, 3, 4, 5)

WGMM [35] qROFWGMM qROFWGMM q = 3; (δ1, δ2, δ3, δ4) = (1, 0, 0, 0) q = 3; (δ1, δ2, δ3, δ4, δ5) = (1, 2, 3, 4, 5)

WAPPMM qROFWAHPPMM qROFWAHPPMM q = 3; (δ1,δ2,δ3,δ4) = (1, 0, 0, 0); λ = 3 q = 3; ((δ1,δ2,δ3), (δ1,δ2)) = ((1, 2, 3), (1, 2)); λ = 3

WAPPMM qROFWAFPPMM qROFWAFPPMM q = 3; (δ1,δ2,δ3,δ4) = (1, 0, 0, 0); ε = 2 q = 3; ((δ1,δ2,δ3), (δ1,δ2)) = ((1, 2, 3), (1, 2)); ε = 2

https://doi.org/10.1371/journal.pone.0221759.t004

Table 5. The calculated scores of Q1 of the nine groups of Qh,1,4 and Qh,1,5 of all comparison methods.

Method Used specific

operators

Calculated scores of Q1 of the nine groups of Qh,1,4 and Qh,1,5 in Table 3 Ranking

of A10 1 2 3 4 5 6 7 8

WA [26] qROFWAs 0.3812 0.3354 0.2983 0.2674 0.2413 0.2191 0.2001 0.1837 0.1695 Fig 3(A)

WG [26] qROFWGs 0.2268 0.1998 0.1720 0.1432 0.1129 0.0808 0.0464 0.0092 −0.0313 Fig 3(B)

WBM [27] qROFWBMs −0.7584 −0.7788 −0.7942 −0.8066 −0.8169 −0.8257 −0.8333 −0.8399 −0.8457 Fig 4(A)

WGBM [27] qROFWGBMs 0.9332 0.9286 0.9234 0.9177 0.9114 0.9044 0.8965 0.8875 0.8771 Fig 4(B)

WABM [28] qROFWAHBMs −0.1584 −0.2324 −0.2902 −0.3364 −0.3738 −0.4043 −0.4295 −0.4503 −0.4677 Fig 5(A)

WABM [28] qROFWAFBMs 0.3735 0.3289 0.2912 0.2587 0.2303 0.2049 0.1817 0.1600 0.1391 Fig 5(B)

WPBM [29] qROFWPBMs −0.7568 −0.7761 −0.7917 −0.8050 −0.8168 −0.8275 −0.8373 −0.8465 −0.8552 Fig 6(A)

WPGBM [29] qROFWPGBMs 0.9371 0.9320 0.9267 0.9213 0.9156 0.9095 0.9030 0.8961 0.8884 Fig 6(B)

WHM [30] qROFWHMs 0.1370 0.0795 0.0325 −0.0068 −0.0400 −0.0683 −0.0931 −0.1153 −0.1354 Fig 7(A)

WGHM [30] qROFWGHMs 0.5070 0.4827 0.4565 0.4287 0.3992 0.3676 0.3331 0.2951 0.2534 Fig 7(B)

WHM� [31] qROFWHM�s −0.7283 −0.7561 −0.7764 −0.7919 −0.8041 −0.8139 −0.8217 −0.8280 −0.8332 Fig 8(A)

WPHM [31] qROFWPHMs −0.7197 −0.7486 −0.7694 −0.7851 −0.7974 −0.8071 −0.8148 −0.8211 −0.8261 Fig 8(B)

WMSM [32] qROFWMSMs 0.9377 0.9330 0.9279 0.9225 0.9165 0.9100 0.9026 0.8942 0.8846 Fig 9(A)

WGMSM [32] qROFWGMSMs −0.7811 −0.7976 −0.8108 −0.8218 −0.8311 −0.8393 −0.8465 −0.8529 −0.8587 Fig 9(B)

WPMSM [33] qROFWPMSMs 0.1608 0.1421 0.1248 0.1071 0.0881 0.0673 0.0443 0.0186 −0.0103 Fig 10(A)

WPPMSM [34] qROFWPPMSMs −0.0024 −0.0288 −0.0559 −0.0838 −0.1124 −0.1418 −0.1723 −0.2043 −0.2380 Fig 10(B)

WMM [35] qROFWMMs 0.2802 0.2472 0.2159 0.1857 0.1560 0.1262 0.0957 0.0639 0.0303 Fig 11(A)

WGMM [35] qROFWGMMs 0.3174 0.2867 0.2611 0.2399 0.2225 0.2084 0.1973 0.1886 0.0891 Fig 11(B)

WAPPMM qROFWAHPPMMs −0.0199 −0.0559 −0.0913 −0.1261 −0.1600 −0.1931 −0.2255 −0.2571 −0.2881 Fig 12(A)

WAPPMM qROFWAFPPMMs 0.0193 −0.0135 −0.0457 −0.0777 −0.1094 −0.1409 −0.1726 −0.2046 −0.2372 Fig 12(B)

https://doi.org/10.1371/journal.pone.0221759.t005
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A1 generated by the WA, WAFBM, WMSM, WPMSM, WPPMSM, and WMM methods do

not start from the first, which is obviously different from the WBM, WAHBM, WPBM,

WHM, WHM�, WPHM, WAHPPMM, and WAFPPMM methods. From the given data in the

numerical example it is not difficult to determine that A1 is the best alternative. Therefore, the

results of the latter group of methods are more reasonable than that of the former group of

methods.

Among the methods in the latter group, the WBM, WAHBM, WHM, and WHM� methods

can deal with the case in which all criteria are independent of each other or there are interrela-

tionships between any two criteria, and the WPBM and WPHM methods are applicable for

Fig 3. The changes of the places of A1 in the rankings of the WA and WG methods.

https://doi.org/10.1371/journal.pone.0221759.g003

Fig 4. The changes of the places of A1 in the rankings of the WBM and WGBM methods.

https://doi.org/10.1371/journal.pone.0221759.g004
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the situation where the criteria are divided into several partitions and there are interrelation-

ships between any two criteria in each partition whereas the criteria in different partitions are

independent of each other. These six methods are different with the proposed (WAHPPMM,

WAFPPMM) method in characteristics.

Except the six methods, it is also of necessity to compare the results of the WMM method

and the proposed (WAHPPMM, WAFPPMM) method. The difference in characteristics

between them is that the proposed method can provide desirable generality and flexibility, deal

with the heterogeneous relationships among criteria, and reduce the negative effect of the devi-

ation of criterion values. The intuitive manifestation of such difference is that their results are

Fig 5. The changes of the places of A1 in the rankings of the WABM method.

https://doi.org/10.1371/journal.pone.0221759.g005

Fig 6. The changes of the places of A1 in the rankings of the WPBM and WPGBM methods.

https://doi.org/10.1371/journal.pone.0221759.g006
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significantly different. As can be seen from Fig 11(A) and Fig 12(A), the ranking generated by

the WMM method is A3� A1� A4� A5� A2 at 0, changes to A3� A4� A5� A1� A2 at 2,

and becomes A3� A4� A5� A2� A1 at 5; while the ranking generated by the WAHPPMM

method is A1� A3� A5� A4� A2 at 0, changes to A3� A1� A5� A4� A2 at 2 and A3�

A5� A4� A1� A2 at 5, and becomes A3� A5� A4� A2� A1 at 7. Hence, the rankings of

the two methods are different, which is caused by the capability to handle the interrelation-

ships among criteria. In addition, the place of A1 in the rankings generated by the WMM

method descends faster than that in the rankings of the WAHPPMM method. This is because

the WAHPPMM method has the capability to reduce the influence of the distortion of crite-

rion values and the WMM method does not have such capability.

Fig 7. The changes of the places of A1 in the rankings of the WHM and WGHM methods.

https://doi.org/10.1371/journal.pone.0221759.g007

Fig 8. The changes of the places of A1 in the rankings of the WHM� and WPHM methods.

https://doi.org/10.1371/journal.pone.0221759.g008

Archimedean power partitioned Muirhead mean operators

PLOS ONE | https://doi.org/10.1371/journal.pone.0221759 September 5, 2019 29 / 35

https://doi.org/10.1371/journal.pone.0221759.g007
https://doi.org/10.1371/journal.pone.0221759.g008
https://doi.org/10.1371/journal.pone.0221759


Finally, it should be pointed out that the quantitative comparison does not aim to find out

the best method, but to demonstrate the feasibility and effectiveness of the proposed method

and illustrate the difference of different methods. Generally, it is difficult to conclude that one

MCGDM method is better than the others because each method have its specific characteris-

tics, which determine its specific application scenario. A wider range of methods offer decision

makers a greater flexibility when selecting a proper method for their specific application

scenario.

Fig 9. The changes of the places of A1 in the rankings of the WMSM and WGMSM methods.

https://doi.org/10.1371/journal.pone.0221759.g009

Fig 10. The changes of the places of A1 in the rankings of the WPMSM and WPPMSM methods.

https://doi.org/10.1371/journal.pone.0221759.g010
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6. Conclusion

In this paper, an Archimedean power partitioned MM operator and a weighted Archimedean

power partitioned MM operator have been presented to solve the MCGDM problems based

on qROFNs. The idempotency and boundedness of the Archimedean power partitioned MM

operator have been proved and the four specific expressions of the two operators have been

constructed leveraging the operational rules of qROFNs based on the Algebraic, Einstein,

Hamacher, and Frank families of ATTs and their additive generators. On the basis of the pre-

sented weighted Archimedean power partitioned MM operator, a method for solving the

MCGDM problems based on qROFNs has been proposed. The paper has also provided a

Fig 11. The changes of the places of A1 in the rankings of the WMM and WGMM methods.

https://doi.org/10.1371/journal.pone.0221759.g011

Fig 12. The changes of the places of A1 in the rankings of the WAPPMM method.

https://doi.org/10.1371/journal.pone.0221759.g012
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numerical example coupled with a set of experiments to illustrate the working process of the

proposed method and reported qualitative and quantitative comparisons to demonstrate its

feasibility and effectiveness. The results of the comparisons suggest that the proposed method

is general and flexible at both aggregation of criterion values and capture of criterion interrela-

tionships, and concurrently has the capability to handle the heterogeneous interrelationships

of criteria and reduce the negative effect of the biased criterion values.

Future work will focus especially on extending the presented operators from the aspect of

dealing with more complex interrelationships of criteria and risk attitudes of decision makers.

Further, the application of the proposed method in solving practical decision making prob-

lems, such as manufacturing process selection, part build orientation determination, medical

diagnosis, and resource evaluation, will also be studied.
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