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Liver cancer is one of the most common cancers, with increasing trends in

incidence and mortality. A novel acidic polysaccharide (BJP-2) obtained from

blackened jujube was extracted by hot water followed by chromatographic

purification employing DEAE-cellulose 52 and Sephadex G-100 column.

And then BJP-2 was identified by SEC-MALLS-RI, GC-MS, methylation and

NMR for the following characteristics: molecular weight of 6.42 × 104

Da, monosaccharide composition of glucuronic acid (GalA), arabinose (Ara),

galactose (Gal), rhamnose (Rha), xylose (Xyl), glucuronic acid (GlcA), glucose

(Glc), fucose (Fuc) and mannose (Man) with the percentage of 39.78, 31.93,

16.86, 6.43, 1.86, 1.28, 1.02, 0.61, and 0.23%, as well as the main chain of

→5)-α-L-Araf(1→4)-β-D-Gal(1→, T-α-L-Araf(1→4)-β-D-Gal(1→, and→4)-α-

L-6MeGalAp(1→. The e�ect of BJP-2 on the apoptosis of HepG2 cells and

its anti-tumor mechanism were further explored. The analysis by MTT and

flow cytometry showed that BJP-2 suppressed cell proliferation by inducing

apoptosis in a concentration-dependentmanner. Cell scratching and Transwell

revealed that BJP-2 was able to block the invasion and metastasis of tumor

cells. Western blot results demonstrated that BJP-2 exhibited antitumor activity

through a mitochondria-dependent pathway, as evidenced by overexpression

of Bax, Cleaved Caspase-3/Caspase-3 and Cleaved Caspase-9/Caspase-9 and

downregulation of Bcl-2. Therefore, BJP-2 has broad research prospects as a

tumor preventive or therapeutic agent.
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Introduction

At present, malignant tumors are one of the most serious diseases that threaten

human health and life, and are classified into liver cancer, lung cancer, breast cancer,

colorectal cancer and so on, according to their sites of development (1–3). Of these,

liver cancer has a high incidence in China, accounting for more than 50% of new liver

cancer patients worldwide each year, and its danger should not be underestimated (4).

With the advancement of medical technology, surgery, radiotherapy and chemotherapy
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are three key and effective means of cancer treatment (5).

However, many of the side effects can lead to a decrease in

the immune function of the patient’s organism, while the drug

relieves symptoms and extends the patient’s life (6). Therefore,

the investigation and discovery of novel antitumor drugs with

low cost, low toxicity and high efficiency are of vital importance.

Plant polysaccharides, a polymeric sugar polymer

carbohydrate consisting of more than 10 monosaccharides

extracted from plants, has various pharmacological

effects such as antitumor, anti-inflammatory, antioxidant,

immunomodulatory and hypoglycemic (7–9). Among them,

the antitumor activity of plant polysaccharides has been

widely studied and recognized, and the mechanisms include

prevention of tumorigenesis, activation of immune response,

direct inhibition and killing of tumor cells, enhancement of the

body’s anti-free radical effect and inhibition of angiogenesis in

tumor tissues (10).

Jujube (Ziziphus jujuba Mill.) contains abundant active

ingredients such as polysaccharides, flavonoids, polyphenols

and saponins, and thus has versatile health and medicinal values

(11, 12). The cell experiments showed that a polysaccharide

fraction (HJP3) obtained from Zizyphus jujuba cv. Muzao

significantly suppressed the proliferation of HepG2 cells, but

was not cytotoxic to non-tumor cell lines, and the analysis might

be that HJP3 exerted anti-tumor activity directly and induced

apoptosis of tumor cells (13). Zizyphus jujuba cv.Ruoqiangzao

seed polysaccharides, obtained by ultrasound-assisted-

hot water extraction, exhibited concentration-dependent

inhibition of proliferation of HeLa cells, probably through

induction of apoptosis (14). A Zizyphus jujuba cv. Goutouzao

polysaccharide with antioxidant activity that prevented LoVo

cells growth, which was mediated by inducing apoptosis and

enhancing intracellular reactive oxygen species secretion (15).

Blackened jujube, a new kind of jujube processing product,

is made by fermenting dried jujube in a high temperature

and high humidity environment (16–18). Blackened jujube

polysaccharides purified from Z. jujuba cv. Hamidazao

have previously been reported to exert excellent antioxidant

capacity in vitro compared to dried jujube, including free radical

scavenging and total reducing capacity (19). Z. jujuba cv. Huizao

polysaccharides have been shown to have immunomodulatory

effects by improving serum hemolysin formation and increasing

the phagocytic capacity of macrophages (20). Taking into

account the close relationship between antitumor ability and

immunomodulatory activity, we speculated that black jujube

polysaccharide had good anti-tumor activity. To the best of

our knowledge, the anti-tumor activity of polysaccharides from

blackened jujube has never been investigated. This greatly

limited their application in the field of pharmaceuticals and

functional foods. Therefore, it is quite necessary to evaluate

the structural characteristics and anti-tumor activity of

polysaccharides from blackened jujube (made from Z. jujuba

cv. Huizao).

The highest mass yield of BJP-2 (25.8%) was obtained by

using the earlier described technique which employed hot water

extraction followed by a DEAE-cellulose 52 and Sephadex

G-100 column (21). In this study, the structure of BJP-2 was

systematically presented by multi-angle laser light scattering

combined with SEC and differential refractive index detector

(SEC-MALLS-RI), gas chromatography-mass spectrometry

(GC-MS), methylation, and nuclear magnetic resonance (NMR,

1D and 2D). Furthermore, human hepatocellular carcinoma

cells (HepG2) were used as a model to investigate its anti-tumor

ability and mechanism.

Materials and methods

Materials

Z. jujuba cv. Huizao fruits were provided by Guorentang

Food Technology Co., Ltd. (Shandong, China). HepG2 cells

were obtained from Shandong Analysis and Testing Center

(Jinan, China). High glucose Dulbecco’s modified eagle medium

(DMEM), fetal bovine serum (FBS), penicillin and streptomycin

were provided from Gibco Biotechnology Co., Ltd. (Grand

Island, New York, USA). Monosaccharide standards (Fuc,

Rha, Ara, Gal, Glc, Xyl, Man, Fru, Rib, GalA, GulA, GlcA and

ManA), 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium

bromide (MTT), trifluoroacetic acid (TFA), Mitomycin C

and NaBH4 were bought from Sigma-Aldrich (St. Louis,

MO, USA).Bicinchoninic Acid (BCA) protein kit and protein

extraction kit were purchased from Beyotime Biotechnology

Co., Ltd. (Shanghai, China). The Annexin V-Fluorescein

Isothiocyanate/Propidium Iodide (FITC/PI) Apoptotic

Cell Detection Kit and antibodies (Bcl-2, Bax, Caspase-3,

Cleaved Caspase-3, Caspase-9 and Cleaved Caspase-9) were

obtained from Wanlei Biotechnology Co., Ltd. (Shenyang,

China). All other chemicals and reagents were of analytical

reagent grade.

Structural features of BJP-2

Chemical analysis

The chemical composition of BJP-2 was determined

based on the previous method (22, 23). To determine total

sugar content, the phenol-sulfuric acid method was used,

with glucose as the standard. Using bovine serum albumin

as the reference, the Bradford method was adopted to

assay the protein content. For the determination of total

phenol content, the Folin-Ciocalteu colorimetric method was

applied. The total flavonoid content was estimated with

sodium nitrite-aluminum nitrite method, using rutin as

the standard.
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Molecular weight distribution

As described by previous studies (24), briefly, the solution

of BJP-2 (1 mg/ml) was configured with 1M NaNO3 as a

solvent and passed through a filter (0.45µm). A DAWN

HELEOS-II laser photometer (Wyatt Technology Co., Santa

Barbara, CA, USA) equipped with three tandem columns (300

× 8mm, Shodex OH-pak SB-805, 804 and 803; Showa Denko

K.K., Tokyo, Japan) was used for the determination under the

following conditions: column temperature of 45◦C, flow rate

of 0.4 ml/min, injection volume of 100 µl, and mobile phase

A of 0.1M NaNO3. Data were acquired and processed using

ASTRA6.1 (Wyatt Technologies Inc., USA).

Monosaccharide composition

5.00mg of BJP-2 powder was transferred to a

chromatographic sample bottle and then hydrolyzed by TFA

(2M, 1ml) for 2 h at 121◦C, after which it was repeatedly washed

three times with methanol and blow-dried with nitrogen. The

residue was re-dissolved in deionized water and purified

through a 0.22µm microporous filter before determination on

an HPAEC-PAD (Thermo Fisher ICS-5000+, USA) equipped

with a DionexTM CarboPacTM PA-20 chromatography column

(Dionex, 3 × 150mm). Conditions: flow rate, 0.5 ml/min;

injection volume, 5 µl; solvent system, B: (0.1M NaOH,

0.2M NaAc); gradient program, 95:5 V/V at 0min, 80:20

V/V at 30min, 60:40 V/V at 30.1min, 60:40 V/V at 45min,

95:5 V/V at 45.1min, 95:5 V/V at 60min (25). The different

monosaccharides were identified and quantified based on the

retention time and peak area of the monosaccharide standards.

Methylation analysis

As previously reported data (19), the BJP-2 solution (10

mg/ml, 1ml) was added to carbodiimide (100 mg/ml, 1ml) for

2 h and then reacted with imidazole and NaBD4 (10 mg/ml,

1ml) for 3 h, respectively. The mixture was terminated by

acetic acid (10 µl), followed by dialysis and freeze-drying.

Next, the sample was dissolved by DMSO (500 µl) and then

treated by methylation with NaOH (50 µl) and methyl iodide

solutions for 30min and 1 h, respectively. The target, obtained

by dichloromethane extraction followed by nitrogen flow drying,

was hydrolyzed by TFA (2M, 100 µl) at 121◦C for 1.5 h and

then treated by ammonia (2M, 50 µl) and NaBD4 (1M, 50 µl)

at room temperature for 2.5 h. After termination by acetic acid

(20 µl)and blowing dry under nitrogen, the resulting sample

was acetylated for 2.5 h at 100◦C using acetic anhydride (250

µl) and finally extracted with dichloromethane (500 µl). A

gas chromatograph-mass spectrometer (GC-MS, Agilent 7890A-

5977B, Agilent, Santa Clara, CA, USA) equipped with a BPX70

GC column (30 cm × 0.25mm × 0.25µm) was employed. GC

parameters: injection volume of 1 µl, splitting ratio of 10:1,

carrier gas of high-purity helium, initial temperature of 140◦C

held for 2.0min, program of 3◦C/min, 230◦C held for 3min. MS

parameters: a mode of full scan and a mass scan range setting of

30–600 m/z.

NMR spectroscopy analysis

1D NMR spectra (1H and 13C) and 2D NMR spectra

[correlation spectroscopy (COSY), heteronuclear single

quantum coherence (HSQC), heteronuclear multiple bond

coherence (HMBC) and nuclear overhauser effect spectroscopy

(NOESY)] were performed by high-resolution AVANCE III 600

NMR spectrometer (Bruker, Germany). After dissolving 30mg

of BJP-2 in D2O, it was added to the NMR tube, and then the

spectra were recorded at 25◦C.

Antitumor activity of BJP-2 in vitro

Cell culture and viability

DMEM medium containing penicillin (100 U/ml) with 10%

FBS, 1% penicillin and 1% streptomycin was used to incubate

HepG2 cells at 37◦C with 5% CO2. The effects of BJP-2 on the

viability of HepG2 cells were assayed byMTT assay (26). HepG2

cells (5 × 103 cells/well) were stimulated for 48 h with different

concentrations of BJP-2 (0, 50, 100, 200, 400, 800µg/ml) after

cells were cultured overnight in 96-well plates. Reaching time,

the medium was removed and 20 µl MTT was added to each

well, and then placed in an incubator at 37◦C and 5% CO2

for 4 h. After that, the cell supernatant was aspirated and 150

µl of Formanzan was added, and the optical density (OD) of

the reaction solution at 570 nm was recorded on an microplate

reader (ELX-800, Biotek, USA). Cell viability was computed

as follows:

Cell viability=
ODsample

ODblank
× 100% (1)

Apoptosis detection by flow cytometry

Cells were cultured in 6-well plates at a quantity of 5

× 105, referring to Section Cell culture and viability. After

centrifugation (150 g, 5min) and aspiration of the supernatant,

apoptosis was examined using Annexin V-FITC/PI Apoptosis

Detection Kit based on the instructions. The flow cytometer

(NovoCyte, ACEA, USA) was utilized for the following analysis.

Scratch assay

Cells were scratched using a sterile pipette (200µl), and then

the cell surface was washed once with serum-free medium and

observed and photographed under a microscope (100 ×, IX53,
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Olympus, Japan). Replaced with serum-free medium, cells were

kept in an incubator for 24 h under 37◦C and 5% CO2 and

then photographed and recorded. Mitomycin C (1 mg/ml) was

employed to exclude the interference caused by proliferation on

migration (27). The cell migration rate was calculated according

to the following equation:

Cell migration rate= 1−
scratch width of 48 h

scratch width of 0 h
× 100% (2)

Transwell assay

The Transwell chambers (LABSELECT, Anhui, China) were

placed in 24-well plates and coated with Matrigel gel (Corning,

New York, USA) after overnight thawing at 4◦C, and then

incubated for 2 h at 37◦C (28). Cell cultures from each group

were discarded, washing twice with PBS, after which cells were

digested by adding trypsin. Resuspension of cells in serum-

free medium and adjustment of cell numbers. The Transwell

inserts containing Matrigel gel were placed in a 24-well plate,

with 800 µl of culture medium containing 10% FBS in the

lower chamber and 200 µl of cell suspension in the upper

chamber, respectively, and adjusted the cell concentration to

6 × 104 cells/well and placed in the incubator at 37◦C.

Transwell inserts were washed twice with PBS and fixed in

4% paraformaldehyde (Aladdin, Shanghai, China) at room

temperature for 20min. After that, they were stained with 0.5%

crystalline violet (Amresco, USA) staining solution for 5min,

rinsed with distilled water, and observed under an inverted

microscope (200×).

Western blot

Western blot analysis based on the method of literature

(29). Briefly, proteins were isolated and quantified using

protein extraction and BCA protein assay kits, respectively.

Various concentrations of polyacrylamide gels (5–14%) were

prepared and subjected to protein electrophoresis, after which

the proteins were transferred to polyvinylidene difluoride

(PVDF) film. PVDF films were removed and immersed in

Tris-buffered saline with Tween 20 (TBST) with shaking

for 5min, then the membrane were immersed in 5%

(m/v) skim milk powder solution with shaking for 1 h.

Conditions of the primary antibody incubation were Bcl-2

(1:500), Bax (1:1,000), Caspase-3/Cleaved Caspase-3 (1:500),

Caspase-9/Cleaved Caspase-9 (1:1,000) and β-actin (1:400),

overnight at 4◦C. After that, the films were removed from

the hybridization bag and soaked in TBST for four washes,

and then the goat anti-rabbit IgG HRP secondary antibodies

were incubated at a dilution ratio of 1:5,000 for 45min

at 37◦C. After six times washing, the membranes were

added ECL reagent, and were photographed by WD-9413B

imaging system (Beijing LIUYI Biotechnology Co., Ltd.,

Beijing, China).

Statistical analysis

Results are denoted as mean ± standard deviation (SD).

The significance of differences was evaluated using the one-way

analysis of variance (ANOVA) followed by Tukey’s test by SPSS

software at p < 0.05.

Results and discussion

Basic chemical composition and
molecular weight

The total sugar and total flavonoids of BJP-2 were 92 ±

0.05% and 0.81 ± 0.01%, respectively. Its total phenols and

protein content were 1.68 ± 0.01% and 0.52 ± 0.01%. The

average molecular weight of BJP-2 was 6.42 × 104 Da and

the polydispersity index was 3.797. The BJP-2 was principally

comprised of GalA (39.78%), Ara (31.93%), Gal (16.86%) and

Rha (6.43%), and contained a small amount of Xyl (1.86%),

GlcA (1.28%), Glc (1.02%), Fuc (0.61%) and Man (0.23%),

showing that BJP-2 was a acidic polysaccharide (Figures 1A,B).

Compared to the Z. jujuba cv. Huizao polysaccharide (HP-

2), they both consisted mainly of GalA, Ara, and Gal, but

possessed different percentages, and the molecular weight of

BJP-2 (64.2 kDa) was smaller than that of HP-2 (111 kDa) (20).

This phenomenon was explained as being caused by blackened

jujube during processing, but the specific changes still depend

on subsequent systematic research.

Methylation analysis of BJP-2

The linkage types and ratios of glycosidic bonds are

usually determined by methylation analysis. As summarized

in Table 1, the BJP-2 were identified as containing seventeen

derivatives. Among them, (1→4)-linked-GalpA was the most

dominant linkage pattern (46.11%), followed by Araf (1→

(12.94%),→4) Galp (1→ (11.60%) and→5) Araf (1→ (8.31%),

together accounting for 78.96% of the total methylated sugars.

Meanwhile, some of the discrepancies between the above results

and the analysis of monosaccharide composition were explained

by the fact that the dialysis step of acidic sugars when undergoing

pre-treatment could have an effect on the results. However,

the qualitative and quantitative analyses of the monosaccharide

composition of BJP-2 were reliable, and the qualitative results

of the methylation results on the type of glycosidic bonds and

the mode of attachment were also correct (30). The structure of

BJP-2 was further confirmed by NMR spectra.
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FIGURE 1

GC-MS analysis of the standard monosaccharides (A) and BJP-2 (B).

TABLE 1 Results of methylation analysis of BJP-2.

Retention time (min) Linkage types Methylated sugars Molar ratio (%)

5.459 t-Rhap 1,5-di-O-acetyl-6-deoxy-2,3,4-tri-O-methyl rhamnitol 0.725

5.72 t-Araf 1,4-di-O-acetyl-2,3,5-tri-O-methyl arabinitol 12.943

6.988 t-Arap 1,5-di-O-acetyl-2,3,4-tri-O-methyl arabinitol 1.010

8.452 2-Rhap 1,2,5-tri-O-acetyl-6-deoxy-3,4-di-O-methyl rhamnitol 1.565

9.575 t-Galp 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl galactitol 3.539

9.575 t-GalpA 1,5-di-O-acetyl-2,3,4,6-tetra-O-methyl galactitol 3.517

10.214 5-Araf 1,4,5-tri-O-acetyl-2,3-di-O-methyl arabinitol 8.306

12.016 2,4-Rhap 1,2,4,5-tetra-O-acetyl-6-deoxy-3-O-methyl rhamnitol 3.900

12.46 3-Galp 1,3,5-tri-O-acetyl-2,4,6-tri-O-methyl galactitol 0.959

13.365 4-Galp 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl galactitol 11.592

13.365 4-GalpA 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl galactitol 46.105

13.666 4-Glcp 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol 0.448

13.666 4-GlcpA 1,4,5-tri-O-acetyl-2,3,6-tri-O-methyl glucitol 0.297

15.055 6-Galp 1,5,6-tri-O-acetyl-2,3,4-tri-O-methyl galactitol 1.199

15.328 3,4-Galp 1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl galactitol 0.894

15.328 3,4-GalpA 1,3,4,5-tetra-O-acetyl-2,6-di-O-methyl galactitol 0.889

18.472 3,6-Galp 1,3,5,6-tetra-O-acetyl-2,4-di-O-methyl galactitol 2.112

NMR spectral analysis of BJP-2

As shown in Figure 2A, BJP-2 exhibited five major anomeric

proton signals (δ 5.10, 5.16, 5.07, 4.97, and 4.65) in the 1H

NMR spectrum, which were labeled as A, B, C, D, and E,

respectively. Meanwhile, the chemical shifts of the protons from

C-2 to C-6 of the residues were mainly distributed in the

range of δ 4.75–3.40 ppm. Referring to the HSQC spectrum,

there were five heterocephalic signals at δ 107.48, 107.05, 98.92,

100.39, and 104.33 ppm at the 13C NMR spectrum (Figure 2B).

Based on the reported literature, these 1H and 13C signals

were assigned to the 1H-1H COSY (Figure 2C) and HSQC

(Figure 2D) spectra (31–34). Table 2 provided information on

the signal assignments of the protons and carbons for the five

major residues in BJP-2. The anomeric proton and carbon of

residue A produced the chemical shifts at δC 107.48/δH 5.10

ppm (C-1), δC 80.88/δH 4.14 ppm (C-2), δC 76.53/δH 3.95

ppm (C-3), δC 83.82/δH 4.04 ppm (C-4) and δC 67.91/δH
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FIGURE 2

NMR spectral analysis of BJP-2. (A) 1H-NMR; (B) 13C-NMR; (C) 1H-1H COSY; (D) HSQC; (E) HMBC.

(3.75/4.02 ppm) (C-5), respectively. Summarizing these NMR

data, it was inferred that it belongs to →5)-α-L-Araf (1→

(31). Furthermore, B–E were designated as T-α-L-Araf (1→, T-

β-D-Galp(1→, →4)-α-L-GalAp(1→, →4)-β-D-Gal (1→ (32,

33). Additionally, signals of OMe were also observed as δH

3.81/δC 52.91. Taking the results of methylation analysis into

consideration, it was supposed that the presence of terminal

signal suggested as T-α-L-Araf (1→ and T-β-D-Galp(1→ in

BJP-2 (19). In the HMBC spectrum, some inter-residual cross

peaks were found: A H-1 to E C-4, B H-1 to E C-4; OMe to

δC 170.81 (Figure 2E). In summary, the main chains of BJP-2

were→5)-α-L-Araf (1→4)-β-D-Gal(1→, T-α-L-Araf (1→4)-β-

D-Gal(1→, and →4)-α-L-6MeGalAp(1→, with two different

terminal residues of T-α-L-Araf (1→ and T-β-D-Galp(1→.
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TABLE 2 Assignments of 1H and 13C NMR spectra for BJP-2.

1 2 3 4 5 6

A →5)-α-L-Araf (1→ C 107.48 80.88 76.53 83.82 67.91

H 5.10 4.14 3.95 4.04 3.75/4.02

B T-α-L-Araf (1→ C 107.05 82.20 79.08 81.23 61.05

H 5.16 4.09 4.28 4.30 3.84/3.75

C T-β-D-Galp(1→ C 98.92 67.73 83.87 68.61 70.69 61.05

H 5.07 3.70 4.09 3.99 3.53 3.84/3.75

D →4)-α-L-GalpA(1→ C 100.39 70.55 71.32 79.00 71.24 170.81

H 4.97 3.50 3.68 4.38 4.66

E →4)-β-D-Gal (1→ C 104.33 71.78 73.27 76.69 74.98 61.05

H 4.65 3.68 3.78 4.05 3.94 3.84/3.75

OMe 52.91/3.81

FIGURE 3

(A) Changes of HepG2 cell viability after 48h incubation with di�erent concentrations of BJP-2. (B) Column bar graph of apoptotic HepG2 cells.

(C) The apoptosis of HepG2 cells treated with BJP-2 at di�erent concentrations for 48h and were detected by flow cytometry. Values are

expressed as mean ± SD. *p < 0.05; **p < 0.01.

Antitumor e�ects in vitro

Cell viability of BJP-2

Evaluation of the impact of BJP-2 on the cell viability of

HepG2 cells stimulated for 48 h by MTT assay. As seen in

Figure 3A, BJP-2 exhibited significant toxicity at concentrations

of 400 and 800µg/ml, with cell viability of 81.2 ± 2.1% and

55.0 ± 4.0%, respectively (p < 0.01). Results showed that BJP-2

inhibited the growth of HepG2 cells within a certain range, and

the effect was gradually enhanced with increasing concentration.

All together, three optimal concentrations of BJP-2 (200,

400, 800µg/ml) were selected for subsequent experiments.
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FIGURE 4

(A) The changes of BJP-2 on the migration of HepG2 cells were observed by a inverted phase contrast microscope (100 ×). (B) The e�ects of

invasion on HepG2 cells after BJP-2 stimulation were observed by a inverted phase contrast microscope (200 ×). (C) Column bar graph of

migration rate of HepG2 cells. (D) Bar graph summarizes the number of invasion.

BJP-2 inhibited tumor cell growth in a similar trend to

other polysaccharides. For example, the Polygonum multiflorum

polysaccharides at 400µg/ml inhibited the growth of HepG-

2 cells by 53.35%; and the mango pomace polysaccharide

was active against HepG-2 cells in a quantitatively dependent

manner (35, 36).

The e�ect of BJP-2 on apoptosis

Triggering tumor decline by enhancing apoptosis of cancer

cells is one of the roles of antitumor drugs (37). Therefore,

we detected the apoptosis of HepG-2 cells at different

concentrations of BJP-2 using flow cytometry. As presented in

Figure 3B, in comparison with the blank control group (5.11

± 0.86%), the apoptosis rates increased to 20.81 ± 1.3% and

45.72 ± 3.8% by 400 and 800µg/ml BJP-2 action on HepG-2

cells for 48 h (p < 0.01). No significant effect of low doses of

BJP-2 (200µg/ml) was observed, which is consistent with the

results of cell viability. After stimulation of HepG2 cells with

BJP-2 of 800µg/ml, the early (Annexin V-FITC+/PI–) and late

(Annexin V-FITC+/PI+) apoptosis rates were 25.05 and 25.01

%, respectively, which were significantly higher than that of the

control group at 2.24 and 2.90% (Figure 3C). In summary, BJP-2

(800µg/ml) could cause more than 40% of HepG-2 cells to enter

an apoptotic state, suggesting that the induced apoptosis might

be one of the mechanisms of action.

BJP-2 suppressed HepG-2 cell migration

One of the key issues in treating cancer is to prevent tumor

cells from invading and metastasizing (38). The scratch assay

and Transwell assay were applied to detect the effect of BJP-2
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FIGURE 5

The protein levels of Bax, Bcl-2, Caspase-3, Cleaved Caspase-3, Caspase-9, Cleaved Caspase-9, β-actin by di�erent concentrations of BJP-2 for

48h. Values are expressed as mean ± SD. *p < 0.05; **p < 0.01.

on the migration of HepG-2 cells. As shown in Figures 4A,B,

supplementation of BJP-2 inhibited the ability of HepG2 cells

to heal wounds and cross over to the lower chamber, in

contrast to the blank control. Figure 4C showed that the cell

migration rate in the control group was 56.20 ± 4.4%, which

were significantly decreased to 38.45 ± 5.7% (p < 0.01) and

17.86 ± 2.1% (p < 0.01) due to the treatment with high doses

of BJP-2 (400 and 800µg/ml). The numbers of cell invasion

were 300 ± 35 and 172 ± 14 for BJP-2 at 400 and 800µg/ml

concentrations, respectively, which was significantly lower than

that of 387 ± 38 for the control group (p < 0.01) (Figure 4D).

It was demonstrated that BJP-2 possessed the ability to block

the migration and invasion of HepG-2 cells, which inferred that

the mechanism might be related to the inhibition of epithelial-

mesenchymal transition (EMT). EMT in cancers allows cells

to detach from the original tumor tissue and may cause an

invasion-metastasis cascade (39). Various polysaccharides have

demonstrated anti-tumor mechanisms by inhibiting EMT, such

as Ganoderma lucidum polysaccharides, Huaier polysaccharides

and Se-lentinan (40–42).
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BJP-2 modulated gene expression

Promoting apoptosis, a key mechanism by which plant

polysaccharides exert their antitumor effects, its critical

pathways includes the mitochondrial pathway (43). As known,

the pro-apoptotic factor Bax and the anti-apoptotic factor Bcl-

2 are antagonistic to each other, where Bax promotes tumor

cell apoptosis by promoting the release of cytochrome C, while

Bcl-2 does the opposite. Furthermore, the activated Caspase-9

convenes and activates Caspase-3, which is a major executor

of apoptosis, thereby triggering a Caspase cascade response to

induce apoptosis in tumor cells (44). By Western blot method,

the changes of apoptosis-related protein expression in HepG-

2 cells after stimulation with different concentrations of BJP-2

were investigated. From Figure 5, as compared with the control

group, there were dose-dependent increases in Bax, Cleaved

Caspase-3/Caspase-3, Cleaved Caspase-9/Caspase-9 levels on

HepG-2 cells after BJP-2 treatment, especially in the high

dose group (800µg/ml) by 2.54-fold, 7.6-fold and 33.52-fold,

respectively (p < 0.01). By contrast, the expression of Bcl-2

was significantly reduced (p< 0.01). Other polysaccharides with

similar mode of antitumor effects were also found, such as those

derived from Grifola frondosa, Boletus edulis and Ganoderma

applanatum (45–47).

Conclusion

In summary, BJP-2 is an acidic polysaccharide with a

molecular weight of 6.42 × 104 Da, mainly composed

of GalA, Ara, Gal and Rha, which was extracted and

isolated from blackened jujube. And its main chain consisted

of →5)-α-L-Araf (1→4)-β-D-Gal(1→, T-α-L-Araf (1→4)-β-

D-Gal(1→, and →4)-α-L-6MeGalAp(1→. Furthermore, the

present study demonstrated for the first time that blackened

jujube polysaccharides could inhibit the proliferation of tumor

cells causing apoptosis through the mitochondrial pathway with

a certain degree of dose-dependence. The western blotting

analysis indicated that BJP-2 could regulate the expression

of apoptosis-related proteins such as Bax, Cleaved Caspase-3,

Caspase-3, Cleaved Caspase-9, Caspase-9 and Bcl-2. In addition,

BJP-2 initially expressed the ability to suppress the migration

and invasion of HepG-2 cells, of which further validation by

subsequent experiments was required. It is well know that the

biological activities of polysaccharides are closely related to

their molecular weight, monosaccharide composition, glycosidic

bond type and other chemical properties. On the one hand,

high molecular weight plays an important role in enhancing the

immune and antitumor activity of polysaccharides. On the other

hand, the higher the Glc content, the stronger the anttumor

activity. Besides, studies have shown that the activity of the α

configuration was poor, while the activity of the β configuration

polysaccharide was good. All of these results demonstrated

the anti-tumor activity of BJP-2 and presented a theoretical

support for further study on the structure-activity relationship.

Therefore, there is potential value for BJP-2 to be developed as

a new antitumor agent drug against hepatocellular carcinoma.

Meanwhile, other anti-tumor mechanisms of blackened jujube

polysaccharides are still to be studied and revealed in depth

and systematically.
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