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Abstract. The mechanism underlying the potential risk asso-
ciated with in vitro fertilization and embryo transfer (iVF-eT) 
has been previously investigated but remains to be fully 
elucidated. as the placenta is a critical organ that sustains 
and protects the fetus, this is an important area of research. 
The aim of the present study was to determine the difference 
in trophoblast cell function in the first trimester between 
naturally conceived pregnancies and pregnancies achieved 
via iVF-eT therapy. a total of 20 placental villi in first 
trimester samples were obtained through fetal bud aspiration 
from patients undergoing iVF-eT due to oviductal factors 
between January 2016 and august 2018. in addition, a further 
20 placental villi were obtained from those who naturally 
conceived and had normal pregnancies but were undergoing 
artificial abortion; these patients were recruited as the controls. 
reverse transcription-quantitative (rT-q)Pcr and semi-quan-
titative immunohistochemical methods were used to detect the 
mrna and protein expression of α-fetoprotein (aFP), vascular 
endothelial growth factor (VeGF), transferrin (TF), tubulin β1 
class Vi (TuBB1), metallothionein 1G (MT1G), Bcl2, glial 
cells missing transcription factor 1 (GcM1), epidermal growth 
factor (eGF) receptor (eGFr), PTen and leukocyte associ-
ated immunoglobulin like receptor 2 (lair2) in villi from 
both groups. differentially expressed genes were analyzed 
using Search Tool for the retrieval of interacting Genes, and 
Kyoto encyclopedia of Genes and Genomes (KeGG) pathway 
analysis was conducted. The rT-qPcr data revealed that the 
mRNA expression levels of AFP, VEGF and TF were signifi-
cantly higher in the iVF-eT group than in the control group 
(P<0.05), and those of TuBB1, MT1G, Bcl2, GcM1, eGFr, 

PTEN and LAIR2 were significantly lower (P<0.05). These 
gene products were expressed in the placental villus tissues, 
either in the cytoplasm, or in the membrane of syncytiotropho-
blast and cytotrophoblast cells. The immunohistochemistry 
results were in line with those observed using rT-qPcr. KeGG 
pathway analysis indicated that the trophoblast cell function 
of the IVF‑ET group in the first trimester was different from 
naturally conceived pregnancies with regard to proliferation, 
invasion, apoptosis and vascular development. The iVF-eT 
process may trigger adaptive placental responses, and these 
compensatory mechanisms could be a risk for certain diseases 
later in life.

Introduction

There is currently growing interest in the potential risks 
associated with assisted reproductive technology (arT). after 
adjusting for several confounding factors, the risk of numerous 
adverse outcomes during the perinatal period, including 
miscarriage, premature birth, low birth weight, intra-uterine 
growth retardation and gestational hypertension, are higher 
in in vitro fertilization and embryo transfer (iVF-eT) cohorts 
than for spontaneous pregnancies (1-3). over the last few years, 
the early stages of mammalian embryonic development have 
been shown to be very sensitive to the microenvironment, with 
long term effects on fetal, postnatal and adult health (4-6). The 
developmental origins of health and disease hypothesis, based 
on the evidence that prenatal exposure to modified environ-
mental conditions affects postnatal growth, metabolism and 
disease susceptibility in adulthood, has been altered to include 
the preimplantation stages of development (7,8). The basal risk 
associated with pregnancy in a population varies greatly with 
time and place, and professionals need to be proactive in order 
to prevent them.

There are an increasing number of well-designed studies 
that have reported that placental tissues are more sensitive to 
preimplantation epigenetic disturbances in imprinted genes 
than embryonic tissues (9-11). This may lead to abnormal 
placental development and function, with possibly adverse 
consequences for the developing fetus. in regard to this 
observation, previous studies have proposed two scenarios 
to explain why the defects were apparently restricted to the 
trophectoderm lineage (12,13). on the one hand, trophec-
toderm cells, in contact with the culture medium, are more 
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severely affected by in vitro culture, which is responsible for 
a loss of imprinting in the mid-gestation placenta (14). on 
the other hand, they are also the first lineage to differentiate 
in the embryo as trophectoderm stem cells, from which the 
different cell lines of the future placenta will originate (15,16). 
in addition to culture media composition, which differs from 
the in vivo natural environment despite careful manipulation, 
in vitro production of trophectoderm cells is associated with 
several environmental stressors, such as oxygen tension, pH 
and temperature variations during manipulation, light expo-
sure and shear stress linked to repeated pipetting, which may 
affect placental development and function (17,18).

a growing body of evidence in the literature supports 
the hypothesis that a number of adverse pregnancy outcomes 
observed after iVF-eT originate from suboptimal placenta 
function caused by abnormal trophoblastic invasion due to 
a disturbed dialogue during the early phases of placenta-
tion (19,20). Fetal-maternal interactions involve a finely 
balanced synergistic cross‑talk of inflammatory and immune 
modulating factors to allow for maternal immune adaption 
and tolerance of the semiallogeneic fetus (21). Thus, it is well 
acknowledged that the placenta functions as an immune-modu-
lating organ that regulates the immune responses of 
trophoblast cells present both at the implantation site and 
systemically (22). increasing evidence indicates that metabolic 
and proinflammatory conditions affect trophoblastic invasion, 
as well as placental function and growth in the first trimester 
of pregnancy long before any phenotypic changes become 
clinically apparent (23). Furthermore, it is increasingly recog-
nized that trophoblast invasion and placental function early in 
gestation directly affects fetal development by responding to 
the environment (24). Therefore, it is important to understand 
the changes in trophoblastic invasion in placentas subjected to 
IVF‑ET processes; however, little is known concerning this.

in the present study, it was hypothesized that altered gene 
and protein expression occurs in placental tissues during the 
first trimester after IVF‑ET compared with placental tissues 
from spontaneous pregnancies. Therefore, the present study 
analyzed candidate factors related to trophoblast invasion and 
placental function, to investigate and determine the potential 
effects of iVF-eT treatment on gene expression in the placenta 
during the early stages of pregnancy. The aim of the present 
study was to explore the possible causal relationship between 
iVF-eT procedures and the higher frequency of adverse preg-
nancy outcomes. Furthermore, improving the understanding 
of the placental mechanisms triggered by iVF-eT may be of 
future value to improve the safety of iVF-eT protocols.

Materials and methods

Ethical statement. The research program was approved by the 
ethical committee of Beijing Jishuitan Hospital (permission 
no. 201703-11) and Peking university Third Hospital (permis-
sion no. 2014-075), and all participants provided written 
informed consent.

Patients. Between January 2016 and august 2018, twin to 
singleton fetal reduction was performed in a total of 20 cases at 
a mean of 49±6 days of pregnancy after iVF-eT treatment (age 
range, 23‑35 years; mean age, 30.8 years) at Beijing Jishuitan 

Hospital and Peking university Third Hospital. The clinical 
application of iVF-eT was licensed by the Ministry of Health 
of The People's republic of china. The control group included 
20 cases of unwanted twin pregnancies in the same period (age 
range, 24‑30 years; mean age, 28.9 years). Selection criteria: 
Patients underwent IVF‑ET due to oviductal obstruction; 
the quality of each male sperm was normal; reasons for fetal 
reduction in the 20 cases were the patients' demand. Women 
who had abnormal menstruation, smoked, drunk alcohol or 
used any steroid hormone drugs in the previous 3 months were 
excluded. clinical data were collected by the department of 
obstetrics and Gynecology at Beijing Jishuitan Hospital and 
Peking university Third Hospital, and organized in a database. 
each of the 20 placental specimens from the iVF-eT group 
was matched to each of the 20 controls by parity, maternal age 
and number of gestational weeks.

Sample collection. all of the fetal reductions were performed 
by the same senior physician through fetal bud aspiration 
under B ultrasound guidance. The present study selected 
20 cases for villi suction at the same time. The tissues were 
collected 30-45 days after embryo transfer, which is equivalent 
to 45-50 days of pregnancy. The control group were diagnosed 
with early intrauterine pregnancy after bimanual examination, 
urine pregnancy tests and B ultrasound. all of the patients had 
regular menstruation and had not taken any steroid hormone 
drugs in the previous 3 months. The villi were obtained during 
the conventional artificial abortion operation in the control 
group. The villi samples were purified immediately from 
the specimens within 1 h under an inverted microscope. all 
samples were then floated in ice‑cold PBS, and finally stored 
in liquid nitrogen until future total rna extraction. another 
part of the remaining specimen was immersed in 4% formalin 
for 24 h at 4˚C, and then taken out and rinsed with running 
water for 30 min. The villi then underwent routine dehydra-
tion, wax dipping, embedding and slicing.

RNA preparation and reverse transcription‑quantitative 
(RT‑q)PCR. Tissue homogenization and rna extraction were 
performed at capitalBio corporation. Homogenization of the 
tissue and isolation of the total rna were performed using 
Trizol® (Invitrogen; Thermo Fisher Scientific, Inc.) according 
to the standard method. The rna, extracted with ribosomal 
28S and 18S rna with a ratio of intensities of 1.5-1.8:1, was 
used for rT-qPcr analysis. complementary dna (cdna) 
was generated using a PrimeScript ii 1st Strand cdna 
synthesis kit (Takara Biotechnology co., ltd.) using random 
or oligo(dT) primers for 15 min at 37˚C, 5 sec at 85˚C. qPCR 
was performed using a SYBr-Green Pcr Master mix (Takara 
Biotechnology Co., Ltd.). Specific forward and reverse primer 
pairs were designed for each gene and are listed in Table i. 
Amplification was performed using the following thermocy-
cling conditions: 94˚C for 5 min; 95˚C for 30 sec, 62˚C for 
30 sec and 72˚C for 30 sec (35 cycles); and a final extension 
at 72˚C for 10 min. To minimize variation in the RT reaction, 
all the rna samples from a single experimental setup were 
reverse transcribed simultaneously (25). For the in vitro exper-
iments, the relative expression of mrna was calculated using 
the comparative quantitative cycle (2-∆∆cq) method (26,27) and 
normalized to the internal control human gene GaPdH (28).
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Immunohistochemistry (IHC). Placental tissues were 
embedded in paraffin and sectioned for IHC. After drying in 
an oven at 60˚C for 2 h, tissue sections (4 µm) were deparaf-
finized in xylene and rehydrated through a descending alcohol 
series. endogenous peroxides were quenched by immersing 
the tissue sections in 3% hydrogen peroxide in methanol for 
10 min at room temperature. after heat induction in citric 
acid for 15 min and blocking with 1% bovine serum albumin 
(Sigma‑Aldrich; Merck KGaA) for 20 min at 4˚C, the slides 
were incubated at 4˚C overnight with polyclonal antibodies. The 
following primary antibodies (1:50 dilution unless otherwise 
specified) were used: α‑fetoprotein (AFP; cat. no. ZA‑0612; 
Beijing Zhongshan Golden Bridge Biotechnology Co., Ltd.; 
oriGene Technologies, inc.), vascular endothelial growth 
factor (VEGF; cat. no. ZM‑0265; Beijing Zhongshan Golden 
Bridge Biotechnology Co., Ltd.; OriGene Technologies, Inc.), 
transferrin (TF; cat. no. TA500848; Beijing Zhongshan Golden 
Bridge Biotechnology Co., Ltd.; OriGene Technologies, 
inc.), tubulin β1 class VI (TUBB1; cat. no. TA506805; 
Beijing Zhongshan Golden Bridge Biotechnology co., 
Ltd.; OriGene Technologies, Inc.), metallothionein 1G 
(MT1G cat. no. LS‑B13009; LifeSpan BioSciences), BCL2 
(cat. no. ZM‑0010; Beijing Zhongshan Golden Bridge 
Biotechnology Co., Ltd.; OriGene Technologies, Inc.), glial 
cells missing transcription factor 1 (GCM1; 1:100 dilution; 
cat. no. ab187860; Abcam), epidermal growth factor receptor 

(EGFR; cat. no. ZM‑0093; Beijing Zhongshan Golden 
Bridge Biotechnology Co., Ltd.; OriGene Technologies, Inc.), 
PTEN (cat. no. ZA‑0635; Beijing Zhongshan Golden Bridge 
Biotechnology Co., Ltd.; OriGene Technologies, Inc.) and 
leukocyte associated immunoglobulin like receptor 2 (LAIR2; 
1:100 dilution; cat. no. ab183145; Abcam). After washing 
with PBS, the sections were subsequently incubated with 
SignalStain® Boost iHc detection reagent (horseradish peroxi-
dase, rabbit; cat. no. 8114P; Cell Signaling Technology, Inc.) 
for 1 h at room temperature. negative controls received PBS 
instead of primary antibodies. Staining was completed by incu-
bation with diaminobenzidine tetrahydrochloride for 4 min at 
room temperature, and tissues were counterstained with hema-
toxylin for 5 min at room temperature. immunohistochemical 
staining of samples and negative controls was simultaneously 
executed.

Assessment of the immunohistochemical staining results. 
The immunohistochemical staining of the villi in the slices 
was observed using optical microscopy (Eclipse 80i; Nikon 
corporation). The positive reaction products were brown-yellow 
granules. image-Pro Plus analysis software version 6.0 (Media 
cybernetics, inc.) was used on the immunohistochemical data 
for semi-quantitative analysis of the staining intensity. images 
were viewed at magnification, x400 using the double‑blind 
method and ordinary illumination, and 5 areas from each 

Table I. Primer sequences used for reverse transcription‑quantitative PCR amplification and the conditions.

Gene Primer sequence (5'‑3') Annealing temperature (˚C) Cycles Product size (bp)

aFP F: TccaGccaaaGTGaaGaGGG 59 35 471
 r: caaGcTGcTiTcTcTTaaTTc   
GcM1 F: GGccGaTccaGcTaTaTcaa 58 42 254
 r: cTGGGGTGcacaTaGTGaaa   
lair2 F: GccaTGTcTccacaccTc 60 45 428
 r: GaaGTTcacaaGacGGGaGG   
PTen F: cGacGGGaaGacaaGacaGTaG 60 42 330
 r: GcTaGccTcTGGaTTTGacG   
Bcl2 F: caGaTGGcaaaTGaccaGcaGa 58 38 375
 r: TGGcaGGaTaGcaGcacaGGaT   
TF F: GcaaTGGGcaGaTaGaGTGT 60 40 256
 r: GTGTTcTTTcGTTcGTGTT   
MT1G F: TcGcTTGaGaTcTccaGccTTac 59 42 280
 r: acaTcTGGGaGaaGaGcTGTcc   
eGFr F: GGacTcTGGaTcccaGaaGGTG 58 45 332
 r: GcTGGccaTcacGTaGGcTT   
VeGF F: aTGaacTTTcTcTGcTGTcTGG 57 35 354
 r: TcaccGccTcGGcTTGTcaca   
TuBB1 F: TTccaGcTGacccacTcTcT 60 42 434
 r: acaGGGccTcGTi'aTcaaTG   
GaPdH F: GGTGcTGaGTaTGTcGTGGaGT 58 42 212
 r: caGTcTTcTGaGTGGcaGGaT  

F, forward; R, reverse; AFP, α‑fetoprotein; VEGF, vascular endothelial growth factor; TF, transferrin; TUBB1, tubulin β1 class VI; 
MT1G, metallothionein 1G; GCM1, glial cells missing transcription factor 1; EGFR, epidermal growth factor receptor; LAIR2, leukocyte 
associated immunoglobulin like receptor 2.
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slice were randomly selected on the high-resolution monitor. 
The mean optical density (Mod) of positive expression was 
measured in each area, and the mean was calculated to obtain 
a Mod that was representative of the slice. a total of 5 slices 
from each sample were assessed, and the mean of each group 
was calculated.

Gene expression data analysis. The Kyoto encyclopedia 
of Genes and Genomes (KEGG; http://www.kegg.jp/ or 
http://www.genome.jp/kegg/) (29) orthology-Based annotation 
System (KOBAS; version 2.0; http://kobas.cbi.pku.cn) was 
employed to identify enriched KeGG pathways based on an 
adjusted P-value. Search Tool for the retrieval of interacting 
Genes (STRING; version 11.0) software was used to draw the 
genetic interaction network (https://string-db.org/). The false 
discovery rate (Fdr) was provided by KeGG.

Statistical analysis. SPSS software (version 21.0; IBM Corp.) 
was used for the collection, processing and statistical analysis 
of the data. The data were expressed as the mean ± standard 
error. Statistical analysis was performed using independent 
samples t-tests for comparison of the means. P<0.05 was 
considered to indicate a statistically significant difference.

Results

Characteristics of the patients. There were no statistical 
differences between the two groups of women in terms of age, 
gestational age and body mass index (Table ii).

mRNA expression. Based on their biological processes mostly 
related to placental functions, 10 genes were selected and 
their mrna expression was measured in the placenta using 
rT-qPcr. The results of rT-qPcr demonstrated that the 
placental mrna expression levels of aFP, VeGF and TF 
were significantly increased in the IVF‑ET group compared 
with the control group (Fig. 1). in addition, the placental 
mrna expression of TuBB1, MT1G, Bcl2, GcM1, eGFr, 
PTEN and LAIR2 was significantly decreased in the IVF‑ET 
group compared with in the control as analyzed by rT-qPcr. 
among the 10 tested genes, the present study observed a 
significant concordance with the results observed in IHC.

IHC. To verify the differentially expressed gene products 
in the human placenta, the present study localized protein 
expression via iHc. all selected proteins were located in either 
the cytoplasm or cytomembrane of syncytiotrophoblasts and 

cytotrophoblast cells in the placental villi tissues obtained 
from both the iVF-eT and control groups. The protein 
expression levels of aFP, VeGF and TF in the placental 
villi of the iVF-eT group were significantly higher than 
those in the control group (Fig. 2). The protein expression 
of TuBB1, MT1G, Bcl2, GcM1, eGFr, PTen and lair2 
in the placental villi of the iVF-eT group was lower than 
those in the control group (Figs. 2 and 3). The products of 
aFP, VeGF and TF were expressed in both villous syncy-
tiotrophoblasts and cytotrophoblast cells in the iVF-eT 
group, whereas there was only low expression in the villous 
syncytiotrophoblasts in the control group (Fig. 2). TuBB1 
was observed in the cytoplasm and cytomembrane of villous 
cytotrophoblast cells and syncytiotrophoblasts in the iVF-eT 
group, whereas there was more diffuse TuBB1 staining in 
the control group (Fig. 2). MT1G was poorly expressed in 
villous cytotrophoblast cells and syncytiotrophoblasts in 
the iVF-eT group, and it was highly expressed in vascular 
endothelial cells and syncytiotrophoblasts in the control 
group (Fig. 2). Bcl2 was widely distributed in the cyto-
plasm and cytomembrane of villous syncytiotrophoblasts 
and cytotrophoblast cells during early pregnancy. in the 
iVF-eT group, low expression of Bcl2 was observed in both 
types of cells (Fig. 3). GcM1 was located in the plasma of 
the cytotrophoblast cells and syncytiotrophoblasts of early 
villi, and it was poorly expressed in all cell types unlike the 
other selected gene products (Fig. 3). eGFr was found in 
the plasma and cytomembrane of syncytiotrophoblasts and 
cytotrophoblast cells, and it was more strongly expressed 
on the surface of syncytiotrophoblasts in the control group 
compared with the iVF-eT group (Fig. 3). PTen and lair2 
were widely expressed in the cytoplasm and cytomembrane 
of villous syncytiotrophoblasts and cytotrophoblast cells 
in early pregnancy. in the iVF-eT group, lower expression 
of PTen and lair2 was observed in both types of cells 
compared with the control group (Fig. 3).

Quantitative analysis of immunohistochemical images. after 
staining, photographs of 5 random fields for each placental 
villus were taken, and the Mod of the photographs was calcu-
lated (Table Si). The expression of aFP, VeGF and TF in the 
placental villi of the IVF‑ET group was significantly higher 
than that observed in the control group (P<0.05; Table SI). 
However, TuBB1, MT1G, Bcl2, GcM1, eGFr, PTen and 
LAIR2 expression was significantly lower in the placental villi 
of the iVF-eT group when compared with the control group 
(P<0.05; Fig. 4; Table SI).

Table ii. characteristics of the patients in the two groups.

characteristic iVF-eT group (n=20) control group (n=20) T-statistic P-value

Mean age (years) 30.66±3.76 28.86±3.45 0.823 0.425
Gestational age (day) 49.44±3.14 49.35±3.23 0.637 0.529
Gravidity 1.10±1.21 2.21±0.89 0.858 0.437
BMi (kg/m2) 23.33±3.17 22.99±2.35 1.311 0.263

iVF-eT, in vitro fertilization and embryo transfer.
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Figure 1. results of reverse transcription-quantitative Pcr analysis of selected genes from placentas derived from iVF-eT manipulation and natural 
pregnancies. *P<0.05, **P<0.01. iVF-eT, in vitro fertilization and embryo transfer; AFP, α‑fetoprotein; VEGF, vascular endothelial growth factor; TF, trans-
ferrin; TUBB1, tubulin β1 class VI; MT1G, metallothionein 1G; GCM1, glial cells missing transcription factor 1; EGFR, epidermal growth factor receptor; 
lair2, leukocyte associated immunoglobulin like receptor 2.
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KEGG pathway and network analysis. The KeGG pathway 
analysis of differentially expressed genes using KoBaS revealed 
that the observed genes participated in >25 statistically over-
represented pathways. These 10 differentially expressed genes 
participated in multiple signaling pathways, including eGFr 
tyrosine kinase inhibitor resistance (n=4; FDR: P=2.78x10-8; 
Fig. 5A), hypoxia‑inducible factor‑1 signaling pathway (n=4; 
Fdr P=6.92x10-8), focal adhesion (n=4; FDR P=9.60x10-7), 
microRNAs in cancer (n=4; FDR P=2.89x10-6) and Pi3K-akt 
signaling pathway (n=4; FDR P=7.05x10-6; Table III). The 
10 differentially expressed genes were also mapped using 
STrinG online software (Fig. 5B). a network was built based 
on evidence from experimental interactions and databases. a 
total of 5 interactions between proteins encoded by differen-
tially expressed genes were observed in STrinG (Fig. 5B). 
Bioinformatics analyses of the data suggested that various 
molecular and cellular functions were affected, and show their 
link to placental development and functions in the first trimester.

Discussion

The placenta in early pregnancy performs important func-
tions, such as adhesion, differentiation, immune tolerance, 
invasion, angiogenesis, barrier, nutrition and spiral artery 
remodeling (30). There has been previous literature on the 
development and function of the placenta; especially the devel-
opment of gene chips, making it possible to detect early, middle 
and late placental genes (31,32). as the changes in placental 
function are related to pregnancy complications (31), the 
current research hotspot in the field of obstetrics is to find the 
early pathological changes of the placenta as fast as possible, 
and develop early diagnosis and prevention methods. at the 
same time, it has been found that placental function is closely 
related to the placental origins of adulthood chronic disease, 
including metabolic, immune and cardiovascular diseases (33). 
Therefore, the existing literature and research concluded that 
the early, middle and late stages of placental development 

Figure 2. immunohistochemistry of aFP, VeGF, TF, TuBB1 and MT1G 
to detect cellular localization. all proteins were found located in either the 
cytoplasm or cytomembrane of syncytiotrophoblasts and cytotrophoblast 
cells in the placental villi tissues obtained from control group. Scale bar, 
10 µm. AFP, α‑fetoprotein; VEGF, vascular endothelial growth factor; 
TF, transferrin; TUBB1, tubulin β1 class VI; MT1G, metallothionein 1G; 
iVF-eT, in vitro fertilization and embryo transfer.

Figure 3. immunohistochemistry of Bcl2, GcM1, eGFr, PTen and 
lair2 to detect cellular localization. all proteins were located in either the 
cytoplasm or cytomembrane of syncytiotrophoblasts and cytotrophoblast 
cells in placental villi tissues obtained from the control group. Scale bar, 
10 µm. GCM1, glial cells missing transcription factor 1; EGFR, epidermal 
growth factor receptor; LAIR2, leukocyte associated immunoglobulin like 
receptor 2; IVF‑ET, in vitro fertilization and embryo transfer.
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exhibit distinct differences in physiological functions and gene 
expression, and understanding the effects of pathogenic factors 
on early placental development, function and gene expression 
contributes to early diagnosis and medical intervention (34). 
a growing body of evidence supports the hypothesis that 
various adverse pregnancy outcomes observed after arT 
originate from suboptimal placentation caused by abnormal 
trophoblast function (2,3). in humans, after adjusting for 
several confounding factors, the risk of spontaneous abortion 
is higher in arT cohorts than for spontaneous pregnan-
cies (35). notably, human studies have reported an increased 
risk of gestational hypertension, preeclampsia, placenta 
previa and placental abruption in iVF-eT groups (36,37). The 
placental phenotype is responsive to nutritional conditions. 
When fetal nutrient availability is compromised, it adapts to 

maximize the nutrient transfer capacity (38). These compensa-
tory mechanisms may start from the blastocyst stage, within 
extra-embryonic lineages (39-41). Thus, the aim of the present 
study was to determine whether there was evidence of func-
tional placental pathology in the first 6‑7 weeks of pregnancy 
after iVF-eT by detecting the expression of candidate genes 
related to trophoblastic functions.

in the present study, a number of important factors asso-
ciated with trophoblast cell invasion and placenta formation 
were selected, and their mrna and protein expression levels 
were compared between the iVF-eT group and in those that 
conceived naturally. The rT-qPcr data revealed that the 
mrna expression of aFP, VeGF and TF was upregulated, 
and TuBB1, MT1G, Bcl2, GcM1, eGFr, PTen and lair2 
were downregulated in placentas that had undergone iVF-eT 

Table iii. analysis of differentially expressed genes by KeGG signaling pathway.

Term input number P-value input

eGFr tyrosine kinase inhibitor 4 2.78x10-8 enSG00000146648|enSG00000112715|enSG0000017
resistance   1791|enSG00000171862
HiF-1 signaling pathway 4 6.92x10-8 enSG00000146648|enSG00000112715|enSG0000017
   1791|enSG00000091513
Focal adhesion 4 9.60x10-7 enSG00000146648|enSG00000112715|enSG0000017
   1791|enSG00000171862
Micrornas in cancer 4 2.89x10-6 enSG00000146648|enSG00000112715|enSG0000017
   1791|enSG00000171862
Prostate cancer 3 5.98x10-6 enSG00000146648|enSG00000171791|enSG0000017
   1862
Pi3K-akt signaling pathway 4 7.05x10-6 enSG00000146648|enSG00000112715|enSG0000017
   1791|enSG00000171862
Pathways in cancer 4 1.27x10-5 enSG00000146648|enSG00000112715|enSG0000017
   1791|enSG00000171862
Bladder cancer 2 1.31x10-4 enSG00000146648|enSG00000112715
Mineral absorption 2 2.12x10-4 enSG00000091513|enSG00000125144
endometrial cancer 2 2.23x10-4 enSG00000146648|enSG00000171862
Glioma 2 3.32x10-4 enSG00000146648|enSG00000171862
Pancreatic cancer 2 3.42x10-4 enSG00000146648|enSG00000112715
central carbon metabolism in cancer 2 3.53x10-4 enSG00000146648|enSG00000171862
Melanoma 2 3.92x10-4 enSG00000146648|enSG00000171862
Gap junction 2 5.61x10-4 enSG00000146648|enSG00000101162
Small cell lung cancer 2 5.62x10-4 enSG00000171791|enSG00000171862
endocrine resistance 2 7.13x10-4 enSG00000146648|enSG00000171791
aGe-raGe signaling pathway in 2 7.63x10-4 enSG00000112715|enSG00000171791
diabetic complications 
Sphingolipid signaling pathway 2 1.08x10-4 enSG00000171791|enSG00000171862
Foxo signaling pathway 2 1.29x10-4 enSG00000146648|enSG00000171862
Hepatitis B 2 1.55x10-4 enSG00000171791|enSG00000171862
Proteoglycans in cancer 2 3.12x10-4 enSG00000146648|enSG00000112715
rap1 signaling pathway 2 3.23x10-4 enSG00000146648|enSG00000112715
ras signaling pathway 2 3.67x10-4 enSG00000146648|enSG00000112715
cytokine-cytokine receptor interaction 2 4.79x10-4 enSG00000146648|enSG00000112715

EGFR, epidermal growth factor receptor; HIF‑1, hypoxia‑inducible factor 1; AGE, advanced glycation endproducts; RAGE, receptor for AGE; 
FoxO, forkhead box O; Rap1, Ras‑related protein 1.
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treatment, when compared with placentas from natural preg-
nancies. To identify differentially expressed gene products 
in the human placenta, these candidate factors were selected 
for iHc analysis, and the results were consistent with those 
of rT-qPcr. a number of studies have previously examined 
and identified altered gene expression in placental tissues after 
iVF-eT treatment (39-41). one study investigated global gene 
expression in three term placentas from iVF-eT pregnancies 
compared with 3 placentas from spontaneous pregnancies; they 
reported 18 differentially expressed genes, and classified them 
according to their role in biological processes associated with 
the immune response, transmembrane transport, metabolism, 
oxidative stress and cell differentiation (42). Furthermore, a 
previous study on the placental transcriptome after iVF-eT 
in animals also revealed comparable results (43). The present 
study used embryo villi in the first trimester and found a variety 
of genetic changes in trophoblastic function. These results 
suggested that early placental tissues may undergo extensive 
genetic and functional changes. Previous animal experimental 
research supports the hypothesis of the present study (44-46). 

it was previously reported that a smaller quantity of trophecto-
derm cells developed in mouse blastocysts from in vitro culture 
than in naturally conceived blastocysts (47,48). With regard to 
in vitro results, placentas were found to be smaller and lighter 
than control placentas at early gestation, and heavier at late 
gestation in iVF-eT cases (49). This supports the hypothesis 
that initial environmental disturbances could trigger placental 
adaptive responses during pregnancy. Therefore, studying 
changes in early placental gene expression could be useful in 
demonstrating the effects of iVF-eT on placental development 
and function, as well as placenta-derived diseases.

The present study demonstrated that mrna and protein 
expression of aFP, VeGF and TF was upregulated in placentas 
after iVF-eT treatment compared with placentas from natural 
pregnancies. under normal circumstances, the expression of 
aFP in trophoblast cells is weak, and it is mainly located in 
discontinuous regions at junctions between two villi (50). aFP 
is derived from trophoblast cells at the maternal-fetal interface 
in early pregnancy; it is important in regulating angiogenesis, 
cell growth, inflammatory responses and immune tolerance, as 
well as participating in important physiological events in the 
first 3 months of pregnancy (51,52). The main role of AFP is 
to facilitate the development of the placenta, and the compen-
satory mechanism is only initiated when blood vessels have 
developed abnormally. aFP is strongly expressed by villous 
trophoblastic cells in anembryonic pregnancy compared with 
the normal group (53). The present study showed that the 
expression of aFP in the villous tissue of the iVF-eT group 
was higher than in the control group. This suggested that the 
upregulation of aFP in the iVF-eT group may indicate a delay 
of embryo/placenta development rather than disruption of the 
placenta. This may support our hypothesis that, after iVF-eT, 
the vascular development of trophoblasts declines, and so there 
is a compensatory upregulation of aFP in order to ensure 
normal vascular development in the placenta during the second 
and third trimesters, as well as to maintain the normal func-
tion of the placenta, and protect the exchange of substances and 
nutrients between the mother's womb and the fetus. a similar 
mechanism is also hypothesized to occur in regard to VeGF and 
TF. VeGF improves angiogenesis and ensures normal vascular 
development in IVF‑ET placentas in the first trimester (54). TF 
is a glycoprotein produced by placental cells that is important 
in respiration and oxygen transport; therefore, it is required for 
the effective transport of iron ions throughout the placenta and 
fetus (55). abnormal expression of aFP, VeGF and TF early 
in placental development doubles the risk of preterm delivery, 
while in the fetus it may contribute to the development of 
cardiovascular disease in adulthood (56). Thus showing how 
important these factors are during pregnancy.

in the present study, the mrna and proteomic expression 
of TuBB1, MT1G, Bcl2, GcM1, eGFr, PTen and lair2 
were downregulated in the placentas that had undergone 
iVF-eT treatment when compared with the control. TuBB1 is a 
major component of microtubules, which are important cellular 
matrix structures that are essential for processes such as mitosis, 
intracellular transportation, cell motility and stability (57). The 
maintenance and morphology of an integral vascular system is 
highly reliant on an intact endothelial cytoskeleton (58). it has 
been hypothesized that impairment of maternal spiral artery 
remodeling and fetal villi circulation is a leading cause of 

Figure 4. Mean optical density of the positive expression of the selected genes 
in the two groups. (a) Mean optical density of aFP, VeGF, TF, TuBB1 
and MT1G in the placental villus derived from iVF-eT and control group. 
(B) Mean optical density of Bcl2, GcM1, eGFr, PTen and lair2 in the 
placental villus derived from iVF-eT and control group.*P<0.05, **P<0.01. 
iVF-eT, in vitro fertilization and embryo transfer; AFP, α‑fetoprotein; VEGF, 
vascular endothelial growth factor; TF, transferrin; TUBB1, tubulin β1 
class VI; MT1G, metallothionein 1G; GCM1, glial cells missing transcrip-
tion factor 1; EGFR, epidermal growth factor receptor; LAIR2, leukocyte 
associated immunoglobulin like receptor 2.



Molecular Medicine rePorTS  21:  1897-1909,  2020 1905

preeclampsia (59). MT1G expression in the placenta is impor-
tant to the structural integrity and function of the placenta (60). 
although it does not ameliorate the oxidative stress-induced 
perturbation of a number of trophoblastic functions, MT1G 
expression is critical for protecting these similar cells against 

severe oxidative stress-induced apoptosis (61). Bcl2 is 
considered to be an antiapoptotic factor that is responsible for 
inhibiting apoptosis in the placenta (62). apoptosis plays a 
central role in placental development, homeostasis and immune 
defense in the placenta, and it is strictly controlled in part by 

Figure 5. Schematic representation and interaction network of differentially expressed genes in the placenta affected by IVF‑ET in the first trimester. 
(a) Schematic representation showing a number of the differentially expressed genes in the placenta affected by iVF-eT. dark green represents downregula-
tion; light green represents no significant change. (B) Gene interaction networks of differentially expressed genes in the placenta affected by IVF‑ET. All 
10 differentially expressed genes were used as input for Search Tool for the retrieval of interacting Genes analysis and a network was built. differentially 
expressed genes based on high confidence are shown. IVF‑ET, in vitro fertilization and embryo transfer; AFP, α‑fetoprotein; VEGF, vascular endothelial 
growth factor; TF, transferrin; TUBB1, tubulin β1 class VI; MT1G, metallothionein 1G; GCM1, glial cells missing transcription factor 1; EGFR, epidermal 
growth factor receptor; LAIR2, leukocyte associated immunoglobulin like receptor 2.
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members of the Bcl2 family (63). Previous independent studies 
have reported an association between reduced levels of Bcl2 
and the incidence of premature ruptures in the membranes 
and the pathogenesis of preterm birth (64,65). GcM1 is a key 
transcription factor in placental development, and is critical 
for trophoblastic fusion, placental vasculogenic and maternal 
vascular remodeling (66). decreased expression of GcM1, as 
well as its target genes, has been observed in preeclampsia and 
trophoblast cells under hypoxia, therefore indicating that GcM1 
activity may contribute to the pathogenesis of preeclampsia (67). 
The binding of eGF and eGFr on trophoblast cells has been 
shown to stimulate intracellular tyrosine kinase activity and 
trigger phosphorylation reactions, thereby increasing the 
nutritional intake of villi, promoting the proliferation and differ-
entiation of the placenta, promoting trophoblastic cell survival 
and increasing the secretion of placenta (68). a previous study 
showed that the expression of EGFR was significantly lower in 
a group of preeclampsia and intrauterine growth retardation 
cases than in placentas from normal pregnancies (69). PTen 
was originally identified as a tumor suppressor and upregula-
tion of PTen has been shown to increase cell apoptosis (70). 
in preeclampsia cases, it has been reported that PTen expres-
sion is increased in the placenta, which also leads to increased 
apoptosis, as well as impaired migration and invasion abilities 
of trophoblastic cells (71). in the present study, the expression of 
PTEN in IVF‑ET samples was significantly lower than in the 
control group, which could indicate that PTen is involved in the 
adaptive response to placental disturbance. lair2 may function 
to maintain the activation of decidual leukocytes, particularly 
nK cells at sites of trophoblast invasion (72). decreased lair2 
expression may decrease the decidual tolerance of trophoblasts 
and then result in shallow invasion, fostering the development 
of preeclampsia and other complications potentially associated 
with abnormal trophoblast invasion, such as fetal growth restric-
tion and preterm birth (73).

The KeGG pathway analysis of differentially expressed 
genes revealed >25 pathways that were disrupted in the first 
trimester placenta derived from iVF-eT. Taking the eGFr 
tyrosine kinase inhibitor resistance-signaling pathway 
in Fig. 5a as an example, differentially expressed genes and 
protein molecules interfere with the differentiation, growth, 
survival and angiogenesis of placental trophoblast cells. Further 
analysis showed that these pathways are widely involved in 
key events of early placental development and function, and 
previous research has shown that disruption of these pathways 
can lead to adverse outcomes (68). all ten genes were used as 
input for STrinG analysis and a network was built based on 
high confidence evidence from experimental protein‑protein 
interactions. Parallel approaches using STrinG analysis 
resulted in a total of five interactions between proteins 
encoded by differentially expressed genes. The present results 
suggested that iVF-eT treatment and associated processes 
may interfere with placental formation and function, resulting 
in placenta-related adverse pregnancy outcomes. However, in 
the majority of cases, pregnancies achieved via iVF-eT are 
able to continue without obvious immediate adverse outcomes. 
This supports the hypothesis that initial defective trophoblast 
functions could trigger placental adaptive responses during 
pregnancy. The present study showed that iVF-eT results 
in suboptimal placental conditions in the first trimester but 

counterbalancing mechanisms also occurred. The same 
phenomenon was previously verified in animal experiments. 
during early pregnancy in mice, iVF-eT placentas and 
embryos were smaller than those in the naturally conceived 
group (74). at a later stage, trophoblast cell proliferation was 
greater in iVF-eT placentas than in the control, in both the 
labyrinth and spongiotrophoblast layer (75). By birth, iVF-eT 
placentas were found to be heavier than the control group (76). 
likewise, placentas in humans following iVF-eT were over-
represented in the highest quartile of weight, and the placenta 
weight/birth weight ratio was frequently higher even after 
adjusting for potential confounding factors (77). a larger 
placenta is not necessarily synonymous with a higher effi-
ciency in oxygen and nutrient transfer. in response to certain 
stress factors that modify the early environment of iVF-eT, 
it is hypothesized that the placenta could amplify these 
compensatory mechanisms up to a certain point. in the present 
results, these modified genes and proteins after IVF‑ET could 
have consequences in infancy and adulthood, particularly in 
relation to metabolic and cardiovascular conditions. in addi-
tion, the size and shape of the placenta have been previously 
associated with life expectancy and risk for coronary heart 
disease (78). notably, the available data on the long-term 
follow-up of iVF-eT children has revealed cardiovascular and 
metabolic risk factors (79).

a limitation of the present study was the small number 
of samples investigated in each group. These samples were 
selected from a cohort of 40 samples collected prospectively 
for this work. although the sample size was small, only signif-
icant levels of variance in gene and protein expression levels 
were reported. These data allow future work to be directed 
towards altered placental formation and function, resulting in 
placenta-related adverse pregnancy outcomes in iVF-eT cases. 
another limitation of the present study is the small number of 
genes and proteins. due to the limited number of specimens, 
this study also lacked experiments to validate the rT-qPcr 
and iHc, and did not verify the function of candidate genes 
in cell lines. additional studies are needed to address these 
limitations. Further work is needed to determine the biological 
plausibility of the variations in gene expression, although if 
results of the present study are consistent across future studies 
and translate to protein expression in maternal serum, they 
may still be valuable in predicting abnormal outcomes in the 
later stages of pregnancy.

The present study indicated the differential gene and 
protein expression observed between placentas after iVF-eT 
and those from naturally conceived cases. in the majority of 
cases, efficient compensatory mechanisms ensure normal 
fetal growth up to term. When compensation mechanisms are 
unbalanced, pathological features such as miscarriages, low 
birth weight or preeclampsia can occur. However, whether 
this compensation could be a risk factor for certain diseases 
later in life remains to be determined. The present results will 
enable researchers to focus on a small number of key genes 
and proteins that require further investigation. Future studies 
with a larger sample size focusing on additional molecular 
mechanisms and proteins may lead to the development 
of molecular tests to predict adverse outcomes in the first 
trimester. understanding the impact on the placenta triggered 
by iVF-eT will increase the safety of future iVF-eT protocols.
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