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Esophageal adenocarcinoma (EAC) is a highly malignant type of digestive tract cancers
with a poor prognosis despite therapeutic advances. Pyroptosis is an inflammatory form of
programmed cell death, whereas the role of pyroptosis in EAC remains largely unknown.
Herein, we identified a pyroptosis-related five-gene signature that was significantly
correlated with the survival of EAC patients in The Cancer Genome Atlas (TCGA)
cohort and an independent validation dataset. In addition, a nomogram based on the
signature was constructed with novel prognostic values. Moreover, the downregulation of
GSDMB within the signature is notably correlated with enhanced DNA methylation. The
pyroptosis-related signature might be related to the immune response and regulation of
the tumor microenvironment. Several inhibitors including GDC-0879 and PD-0325901 are
promising in reversing the altered differentially expressed genes in high-risk patients. Our
findings provide insights into the involvement of pyroptosis in EAC progression and are
promising in the risk assessment as well as the prognosis for EAC patients in clinical
practice.
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INTRODUCTION

Esophageal cancer is one of the most common malignancies worldwide, accounting for approximately
604,100 new cases and 544,076 deaths per year over the world (Sung et al., 2021). Esophageal
adenocarcinoma (EAC) and esophageal squamous cell carcinoma (ESCC) composite the principle
histologic subtypes of esophageal cancer, in which the incidence of EAC in western countries has
increased dramatically in the last decades (Klingelhöfer et al., 2019). Despite therapeutic advances in
surgery, radiotherapy, chemotherapy, and targeted drugs, the 5-year survival of esophageal cancer
remains less than 20% (Alsop and Sharma, 2016). In consequence, biomarkers and effective models are
urgently needed to predict the prognosis of EAC and provide insights into targeted therapy.

Pyroptosis is a proinflammatory form of regulated cell death, relying on the enzymatic activity of
inflammatory proteases that belong to the caspase family (VandeWalle and Lamkanfi, 2016). Pyroptosis
is featured with swift plasma-membrane rupture and subsequent release of proinflammatory intracellular
contents, which is distinct from apoptosis (Bergsbaken et al., 2009). Studies evaluating the role of
pyroptosis in neurological, infectious, autoimmune, cardiovascular, and oncologic disorders have been
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emerging in recent years (Yu et al., 2021). Activation of the canonical
inflammasome pathway is the basis of pyroptosis, in which pattern-
recognition receptors (PRRs), for example, Toll-like receptors
(TLRs), nucleotide-binding oligomerization domain-like receptors
(NLRs), and absent in melanoma 2 like-receptors (ALRs) recognize
pathogen-associated molecular patterns (PAMPs) or nonpathogen-
related damage-associated molecular patterns (DAMPs) to activate
inflammasomes and facilitate caspase-1 activation (Xia et al., 2019).
Direct activation of caspase-4/5/11 under lipopolysaccharide (LPS) is
involved in the noncanonical pyroptosis pathway, which is
independent of the inflammasome complex (Shi et al., 2014). The
gasdermin (GSDM) family proteins serve as the main mediators of
pyroptosis, which are proteolytically activated by proteases and
induce the formation of plasma membrane pores, leading to cell
swelling and lysis (Van Opdenbosch and Lamkanfi, 2019; Tsuchiya,
2020). Due to the pivotal role of GSDM family proteins, pyroptosis is
defined by some researchers as gasdermin-mediated programmed
cell death (Shi et al., 2017).

However, despite the fact that research is emerging in ESCC,
the role of pyroptosis in esophageal cancer remains largely
unknown, and none of the previous publications have
comprehensively evaluated the pyroptosis-related genes in
EAC. Therefore, we performed a comprehensive evaluation of
pyroptosis-related genes in EAC, in order to develop a
pyroptosis-gene-based modality to predict the prognosis of the
patients, and provide insights into the correlations between
pyroptosis and tumor immune microenvironment.

MATERIALS AND METHODS

Datasets
The RNA-sequencing (RNA-seq) data of 87 patients (78 with
EAC; 9 normal samples) and the corresponding clinical
information from The Cancer Genome Atlas (TCGA) database
were retrieved on May 20, 2021 (https://portal.gdc.cancer.gov/
repository). The DNA microarray and clinical features of the
validation cohort were downloaded from the Gene Expression
Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/,
ID: GSE13898). The initial inclusion criteria were as follows:
1) patients with EAC; 2) patients with clear data for overall
survival and survival status; and 3) patients with available gene
expression data. The exclusion criteria were as follows: 1) patients
with ESCC; 2) patients with incomplete data for overall survival,
survival status; and 3) patients without gene expression data. As
described in the following sections, further analysis based on
clinicopathological characteristics was performed in patients with
complete clinical data including age, gender, and stage. Patients
with survival time of less than 30 days were excluded.

Identification of Differentially Expressed
Genes in Pyroptosis-Related Gene Set
The 58 pyroptosis-related genes were derived from prior literature
and the Gene Ontology (GO) term pyroptosis (ID: GO0070269;
Supplementary Table S1) (Man and Kanneganti, 2015; Wang and

FIGURE 1 | Expressions of 10 differentially expressed pyroptosis-related genes and interaction. (A) Heatmap of gene expression between the tumor (T, red color)
and normal (N, blue color) groups. Higher expression: red color. Lower expression: blue color. (B) Correlation network of 10 differentially expressed pyroptosis-related
genes. Nonsignificant correlations (p > 0.05) were not shown in the figure. Orange: higher levels of correlation; blue: lower levels of correlation. (C) Protein–protein
interaction (PPI) network of proteins encoded by selected genes.
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Yin, 2017; Karki and Kanneganti, 2019; Xia et al., 2019). The
microarray data from the GSE13898 cohort were normalized
using the quantile normalization method, and the expression
levels of genes were transformed to a log2 base for further
analysis (Kim et al., 2010). The package “limma” was used to
explore DEGs with the threshold of p value <0.05 (Ritchie et al.,
2015). Probes with missing information for gene expressions in
>20% samples were removed. The correlations of selected genes were
evaluated by the “ggcorrplot” package (Kassambara and
Kassambara, 2019). Protein–protein interaction (PPI) networks
were created by Search Tool for the Retrieval of Interacting
Genes (STRING) and the “igraph” package (Csardi and Nepusz,
2006; Szklarczyk et al., 2019).

Development and Validation of the
Pyroptosis-Correlated Gene Prediction
Model for Prognosis
Cox regression analysis was employed to evaluate the value of
pyroptosis-related genes for prognosis. The DEGs were identified
for further analysis. The LASSO Cox regression analysis was
employed to construct a refined model for prognosis using the R

package “glmnet” (Friedman et al., 2010). The calculation of the
risk score was performed using the following formula: risk score �
∑i

(n�1) Coef ipXi (Coef i indicates the coefficient, and Xi
indicates the gene expression levels after standardization). The
EAC patients were classified into low- and high-risk groups based
on the median risk score, and Kaplan–Meier analysis was used to
compare the overall survival (OS) between the two groups.
Principal component analysis (PCA) was used to assess the
separability of the two groups by the “prcomp” function. The
R packages “survival,” “survminer,” “timeROC,” and
“riskRegression” were utilized for receiver operating
characteristic (ROC) curve graphing and area under curve
(AUC) calculation for 1, 2, and 5 years (Blanche et al., 2013;
Therneau and Lumley, 2015; Kassambara et al., 2017; Ozenne
et al., 2017). A nomogram model with clinical features including
stage and risk score was constructed by the R packages “rms,”
“foreign,” and “survival” (Therneau and Lumley, 2015; Harrell
et al., 2017; Team et al., 2020). The calibration curve and
detrended correspondence analysis (DCA) were performed
using the “rms” package (Harrell et al., 2017). An EAC cohort
(GSE13898) from the GEO database was used for validation, and
the risk score was calculated by the same methods described

FIGURE 2 |Construction of pyroptosis-related gene risk signature in the TCGA cohort. (A)Univariate Cox regression analysis of overall survival (OS) for the selected
genes. (B) LASSO regression of the 10 selected genes. (C) Cross-validation for tuning the parameter selection in LASSO regression.
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above to divide the cohort into two subgroups (low risk and high
risk).

Prognostic Analysis of the Variables
Clinical data (age, gender, and stage) were extracted from patients
in the TCGA and GSE13898 cohorts. The clinicopathological
characteristics of EAC patients with complete data for further
analysis were described in Supplementary Table S2. Variables
including gender, stage, and risk score were analyzed in the
regression model by univariate and multivariate Cox
regression analysis.

Methylation Analysis
For the genes included in the signature, the cBio Cancer
Genomics Portal (cBioPortal) database (http://www.cbioportal.
org/) was used for exploring the correlation between methylation
alterations and gene expressions in the TCGA esophageal
adenocarcinoma cohort. The MEXPRESS database (http://
mexpress.be/) was utilized for further assessment of the
correlation between the precise genomic location of DNA

methylation and altered levels of gene expression. p < 0.05
and R2 > 0.25 were considered as significant correlation.

Tumor Microenvironment Analysis
The Tumor Immune Estimation Resource (TIMER) database
(https://cistrome.shinyapps.io/timer/) was utilized to assess the
correlation between tumor-infiltrating immune cells and
expressions of selected genes (Li et al., 2017). Estimation
Resource (TIMER) was used to compare the immune scores of
the four subtypes. The CIBERSORT algorithm was used to
further explore the composition and differences in the fraction
of 22 immune cell types between two subgroups classified by risk
scores (Chen et al., 2018).

Enrichment Analysis
Patients with EAC in the TCGA cohort were divided into two
groups based on the median risk score. The DEGs between the
low- and high-risk groups were extracted by |log2FC| ≥ 1 and p
value <0.05. GO and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment was performed by the R package

FIGURE3 | Prediction of prognosis using the pyroptosis-related five-gene signature in the TCGA cohort. (A)Heatmap of five selected gene expressions with clinical
features ordered by risk score (red: higher expression; blue: lower expression). (B) Principal component analysis (PCA) of the risk groups. (C) Distribution of patients
according to risk scores. (D) Survival time and status of patients. (E) Kaplan–Meier curves for the survival of patients in the low- and high-risk groups. (F–H) Receiver
operating characteristic (ROC) curve for 1-, 2-, and 5-year survival of patients. (I) Univariate Cox analysis. (J) Multivariate Cox analysis.
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“clusterProfiler,” and the results were visualized using the
“GOplot” package (Yu et al., 2012; Walter et al., 2015).

Connectivity Map Analysis
CMap analysis was performed and visualized in https://clue.io/
(Lamb et al., 2006), The top 150 upregulated and downregulated
genes were selected according to the |logFC| values of DEGs for
CMap analysis to identify a shortlist of drugs. According to the
pattern-matching algorithms, positive scores indicate the
induction effect of the small molecules on the signature, while
negative scores indicate the inhibition effect. The drugs were
further selected based on the negative scores.

Statistical Analysis
Statistical analyses were performed by R (version 4.1.0). Student’s
t-test was applied to compare the differences in gene expression
between tumor and normal tissues, while categorical variables
were compared using Pearson’s chi-square test. The OS of
patients between low- and high-risk groups were compared by
the Kaplan–Meier method with log-rank test. The Cox regression
analysis was performed to evaluate the independent prognostic
factors for survival. The Wilcoxon test was used to compare the
immune cell infiltration between groups.

Code Availability
The R code used in this study is available from the corresponding
author upon reasonable request.

RESULTS

Identification of DEGs Between EAC and
Normal Tissues
The expression levels of 58 pyroptosis-correlated genes were
examined in the TCGA data of 78 EAC and 9 normal tissues.
Ten DEGs were identified (|log2FC| ≥ 1 and p value <0.05), and
all of them (CASP1, CASP5, GSDMB, GZMB, IL1B, NLRP6,
PYCARD, TNF, TREM2, and ZBP1) were upregulated in the
tumor group. The expression profiles of DEGs were
demonstrated in Figure 1A (red color represents a higher
expression level; blue color represents a lower expression
level). Figure 1B showed the correlation network of DEGs in
the TCGA data, indicating that GSDMB expressions are strongly
correlated with CASP1 (r � 0.80, p < 0.05) and TREM2 (r � 0.67,
p < 0.05) expressions. In addition, the expression of CASP1 is
significantly correlated with that of CASP5 (r � 0.64, p < 0.05).
The PPIs of DEGs were presented in Figure 1C, in which the
interaction score was set as 0.4. The correlation between CASP1
and CASP5 was consistent in the protein level.

Construction of Prognostic Model Based on
DEGs
A total of 65 EAC patients with available survival data were
included in our study. Univariate Cox regression analysis was
initially performed to assess the prognostic value of DEGs

FIGURE 4 | Validation of the pyroptosis-related five-gene signature in the GSE13898 cohort. (A) Principal component analysis (PCA) of the risk groups. (B)
Distribution of patients according to risk scores. (C) Survival time and status of patients. (D) Kaplan–Meier curves for the survival of patients in the low- and high-risk
groups. (E, F) Receiver operating characteristic (ROC) curve for 1-, 2-, and 5-year survival of patients. (G) Univariate Cox analysis. (H) Multivariate Cox analysis.
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(Figure 2A). Among them, six genes (CASP1, CASP5, GSDMB,
IL1B, PYCARD, and ZBP1) were with p value <0.2, and higher
expressions of CASP1, CASP5, and IL1B were associated with
increased risk (HR > 1), while upregulated expressions of
GSDMB, PYCARD, and ZBP1 were correlated with lower risk
(HR < 1). Subsequently, LASSO Cox regression analysis retrieved
five genes for prognostic model construction based on the
optimum λ value (Figures 2B,C). The calculation of the risk
score was as follows: Risk score � (0.042 × expCASP1)＋(−0.025
× expGSDMB) + (0.021 × expIL1B) + (−0.037 × expPYCARD) +
(−0.243 × expZBP1). According to the calculated median risk
score, 65 patients were divided into two groups (32 in the high-
risk group and 33 in the low-risk group), and the clinical
information is shown in Figure 3A. The PCA illustrated that
patients were well divided into two clusters (Figure 3B). The
distributions of the risk score and survival time are shown in
Figures 3C,D. The OS of the high-risk group was significantly
worse than that of the low-risk group (p � 0.0012, Figure 3E).
ROC analysis of the risk model indicated that the AUC for 1, 2,
and 5-year survival was 0.708, 0.815, and 0.952, respectively
(Figures 3F–H). Both of the univariate and multivariate Cox
regression analyses showed that the pyroptosis-related gene

signature independently predicted the prognosis of EAC
patients (Figures 3I,J).

Verification of the Gene Signature by the
External Dataset
Information of 60 EAC patients from the GSE13898 dataset of
GEO with available survival data was used for the validation of
the gene signature. The expressions of the available
differentially expressed pyroptosis-related genes are shown
in Supplementary Figure S1. The patients were subdivided
into the low- and high-risk groups, respectively, as described
above. PCA illustrated well the separation of patients between
the two groups (Figure 4A). The distribution of the risk score
and the survival time is demonstrated in Figures 4B,C.
Patients in the low-risk group were with significantly higher
survival rates than those in the high-risk group (p � 0.003;
Figure 4D). According to the ROC curve, the 1- and 2-year
survival prediction models were with AUCs of 0.678 and 0.663
(Figures 4E,F), respectively, while the 5-year survival
prediction model could not be generated due to insufficient
data. The risk score in our model could also serve as an

FIGURE 5 | Construction of nomogram based on the pyroptosis-related five-gene signature. (A) Nomogram for predicting 1-, 2-, and 5-year survival of EAC
patients. (B–D) Receiver operating characteristic (ROC) curve evaluating the efficiency of nomogram for 1-, 2-, and 5-year survival of patients. (E) Calibration curve of
nomogram. (F) Decision curve analysis (DCA) curve of the nomogram.
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independent prognostic factor in the validation cohort
(Figures 4G,H).

Construction of Nomogram Based on the
Gene Signature and Clinical Data
In order to more precisely predict the prognosis of EAC patients,
the TNM stage was used to construct a nomogram model as
shown in Figure 5A (C-index � 0.764 ± 0.046). The AUCs of the
nomogram for predicting 1-, 2-, and 5-year survival were 0.722,
0.884, and 1.000, respectively (Figures 5B–D). The calibration
curve indicated an ideal prediction of the nomogram (Figure 5E).
Figure 5F shows that when the nomogram-predicted probability
ranged from 15% to 80%, the nomogram provided extra value
relative to the treat-all-patients scheme or the treat-none scheme.

The Expressions of GSDMB and ZBP1
Within the Signature Are Downregulated by
Hypermethylation
Epigenetic regulations including DNA methylation affect gene
expression and modulate various cellular responses in
tumorigenesis. Therefore, we further explored the
mechanisms that might be involved in controlling the
expressions of genes involved in the signature. We found
that the RNA expressions of GSDMB (Spearman: −0.81, p �
2.09e-44; Pearson: −0.80, p � 5.62e-42, R2 � 0.64) and ZBP1
(Spearman: −0.54, p � 1.57e-15; Pearson: −0.58, p � 2.59e-18,

R2 � 0.34) were significantly correlated with the DNA
methylation status (Figures 6A,B), whereas the association
between RNA expressions of CASP1, IL1B, and PYCARD and
DNA methylation was nonsignificant (Supplementary Figure
S2). Analysis by the MEXPRESS database further identified the
detailed information of the methylated probes and their
correlation with GSDMB (Figure 6C) and ZBP1
(Figure 6D) RNA expressions, suggesting that the
expressions of GSDMB and ZBP1 could be regulated by
epigenetic mechanisms.

Differential Expression Analysis Reveals
Immune-Correlated Pathways
A total of 527 DEGs between the low- and high-risk groups
were extracted according to the threshold described above. A
total of 310 genes were downregulated in the high-risk group,
while 217 genes were upregulated in the low-risk group. On the
basis of the DEGs, GO enrichment and KEGG pathway
analyses were performed. The results from GO enrichment
analysis demonstrated that the DEGs were mainly associated
with the regulation of cytokine production, cytokine activity,
and humoral immune response pathways (Figures 7A,B) in
the TCGA cohort. KEGG pathway analysis showed that the
DEGs were principally associated with the cytokine–cytokine
receptor interaction and IL-17 signaling pathways (Figures
7C,D) in the TCGA cohort. Detailed information for the
deregulated pathways is shown in Supplementary Figures

FIGURE 6 | Gene expression and methylation status in EAC. The correlation between GSDMB (A) and ZBP1 (B) methylation with RNA expressions by analysis
using the cBioPortal database. Detailed information on methylated probes of GSDMB (C) and ZBP1 (D) by analysis using the MEXPRESS database.
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FIGURE 7 | Functional enrichment analysis of differentially regulated genes (DEGs) between low- and high-risk groups. (A, B)Chord plot demonstrating the linkage
of genes and assigned term by GO (A) and KEGG (B) pathway enrichment analysis. (C, D) Cluster plot of the expression profiles. The inner ring shows the color-coded
logFC, while the outer ring illustrates the assigned functional terms by GO (C) and KEGG (D) pathway enrichment analysis.

TABLE 1 | List of the five most significant small molecular compounds to potentially reverse altered expression of differentially expressed genes (DEGs) in the high-risk group.

Name Score Description Target MOA

GDC-0879 −93.76 RAF inhibitor BRAF RAF inhibitor
PD-0325901 −91.95 MEK inhibitor MAP2K1, MAP2K2 MEK inhibitor, MAP kinase inhibitor, Protein kinase inhibitor
VER-155008 −89.75 HSP inhibitor HSPA1A HSP inhibitor
torin-2 −87.13 MTOR inhibitor MTOR MTOR inhibitor
GR-206 −86.62 Aryl hydrocarbon receptor ligand — Aryl hydrocarbon receptor ligand

MOA, mechanisms of action; MEK, mitogen-activated protein kinase kinase; MAP, mitogen-activated protein; HSP, heat shock protein; MTOR, mammalian target of rapamycin.

FIGURE 8 | Correlations between immune cells and selected genes. ZBP1 and immune cells in esophageal cancer.
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S3A–D. Similarly, the GO analysis in the GSE13898 cohort
demonstrated that immune-related pathways, including
neutrophil activation for immune response, neutrophil-
mediated immunity, and cytokine and chemokine receptor
binding pathways, were deregulated between the two groups
divided by the risk score (Supplementary Figures S4A, 3B).
The DEGs in the GSE13898 cohort were also associated with
the IL-17 signaling pathway (Supplementary Fig. S4C, 3D).

Pyroptosis-Related Gene Signature Is
Related to the Immune Status of EAC
The CMap analysis was performed to screen for small-molecular
drugs that are able to revert the pyroptosis signature-related
pathways, which contribute to a high-risk state. A total of 730
drugs with negative scores were identified (Supplementary Table
S3). The RAF inhibitor GDC-0879 (score: −93.76), mitogen-
activated protein kinase kinase (MEK) inhibitor PD-0325901
(score: −91.95), heat shock protein (HSP) inhibitor VER-
155008 (score: −89.75), mitogen-activated protein (MTOR)
inhibitor torin-2 (score: −87.13), and aryl hydrocarbon

receptor ligand GR-206 (score: −86.62) were the top five
small-molecular drugs based on inhibition scores (Table 1).

Pyroptosis-Related Gene Signature Is
Related to the Immune Status of EAC
To explore the correlation between the selected pyroptosis-
related genes and gene-based signature with the immune
microenvironment of EAC, analysis by the TIMER database
for each gene was initially performed. The results indicated
that ZBP1 expression was most significantly correlated with
the infiltration signature of esophageal cancer, in which
infiltrations of B cells (correlation coefficient � 0.366, p �
4.72e-07) and CD4+ T cells (correlation coefficient � 0.381,
p � 1.41e-07) were with the most remarkable correlations
(Figure 8A, Supplementary Figure S5). In addition, somatic
copy number alterations of ZBP1 were correlated with the
infiltration levels of B cells, CD8+ T cells, macrophages, and
dendritic cells (Figure 8B).

The variations in the abundance of immune cell infiltration
between low- and high-risk groups were further explored. The

FIGURE 9 | Tumor microenvironment immune cell composition in low- and high-risk groups. (A) Overview of immune cell composition in the TCGA cohort. (B)
Overview of immune cell composition in the GSE13898 cohort. (C, D) Differences in immune cell composition in the TCGA cohort classified by risk groups by Wilcoxon
test. (E, F) Differences in immune cell composition in the GSE13898 cohort classified by risk groups by Wilcoxon test.
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immune cells were analyzed in the TCGA (Supplementary Table
S4) and GSE13898 cohorts (Supplementary Table S5). The
overview of immune cell compositions is illustrated in
Figure 9A for the TCGA cohort and in Figure 9B for the
GSE13898 cohort. The high-risk group in the TCGA cohort
possessed significantly higher infiltration levels of M2
macrophages, activated mast cells, and eosinophils, whereas
the infiltration levels of plasma cells were significantly lower
(Figures 9C,D). By contrast, the infiltration levels of memory
B cells and M1 macrophages were upregulated in the high-risk
group of the GSE13898 cohort, while those of naïve B cells were
significantly downregulated (Figures 9E,F).

DISCUSSION

Cell death serves as an essential barrier against the development
of cancer, and pyroptosis is one of the major forms of
programmed cell death (Bertheloot et al., 2021). However, the
role of pyroptosis in EAC remains largely unclear. In the present
study, we comprehensively evaluated the pyroptosis-related gene
profiles in EAC and constructed a novel five-gene risk signature
(CASP1, GSDMB, IL1B, PYCARD, and ZBP1) by LASSO Cox
regression analysis. The five-gene signature showed good
performance for predicting EAC prognosis in both the internal
and external validation cohorts. Within the signature, GSDMB
expression is distinctly correlated with the methylation status.
Further enrichment analyses revealed that the DEGs between the
low- and high-risk groups were correlated with immune-related
pathways. The RAF inhibitor GDC-0879 and the MEK inhibitor
PD-0325901 might be promising in reverting the pyroptosis-
related pathways in the high-risk EAC patients. Tumor immune
microenvironment analyses indicated that high-risk patients had
decreased levels of infiltrating active immune cells and higher
proportions of quiescent immune-cell infiltration.

For the components within the signature, Gasdermin B
(GSDMB) belongs to the GSDM family and is more broadly
expressed compared to other GSDM family members (Saeki et al.,
2009). The cleavage of GSDMB induced by lymphocyte-derived
granzyme A triggers pyroptosis (Zhou et al., 2020). Therefore, the
downregulation of GSDMB is associated with poorer prognosis of
the patients. Caspase 1 encoded by CASP1 is a member of the
caspase family, which is activated by inflammasomes and induces
pyroptosis (Miao et al., 2011). By contrast, caspase 1 can direct T
cell-independent tumor proliferation and correlates with a poorer
prognosis (Zeng et al., 2018). Interleukin 1 beta (IL-1β) is a
proinflammatory cytokine involved in pyroptosis. CASP-1
directly cleaves GSMD and precursor cytokines into pro-IL-1β,
which initiates pyroptosis and maturation of IL-1β, respectively
(Man et al., 2017). IL-1β has pro-tumorigenic effects by
promoting proliferation, migration, metastasis, and
angiogenesis (Gelfo et al., 2020; Rébé and Ghiringhelli, 2020).
In the present study, CASP1 and IL1B upregulation is associated
with a worse prognosis of EAC patients. Apoptosis-associated
speck-like protein containing a CARD (ASC/PYCARD) is
encoded by the PYCARD gene and contains a caspase
activation and recruitment domain (CARD) for binding and

facilitating the activation of caspase 1 (Bergsbaken et al.,
2009). The dual role of the inflammasome adaptor PYCARD
is identified in cancer cells, and therefore, PYCARD can be
associated with lower cancer risks (Protti and De Monte,
2020). Z-DNA-binding protein 1 (ZBP1)-NLR Family Pyrin
Domain Containing 3 (NLRP3) is critical in inducing
pyroptosis by leading to cytokine maturation and GSDMD
cleavage (Zheng and Kanneganti, 2020). ZBP1 expression was
found to reduce tumor cell motility and chemotaxis, which
decreased the potential of metastasis of tumor cells (Lapidus
et al., 2007). ZBP1 stabilizes intercellular connections and focal
adhesions, which suppresses breast cancer cell invasion (Gu et al.,
2012). PYCARD and ZBP1 were identified as downregulated in
the high-risk EAC populations. Therefore, inflammasome
components might exert different effects in tumor
development and progression depending on the biological
context, and further investigations are needed.

Epigenetic regulation mechanisms, particularly DNA
methylation, modify gene expression and regulate various
cellular responses in cancer including proliferation, invasion,
apoptosis, and senescence (Cheng et al., 2019). Our study
reveals that GSDMB promoter hypermethylation most notably
induces decreased expression levels, indicating that methylation
is essential for the regulation of pyroptosis in EAC. In recent
years, epigenetic drugs are emerging, and hundreds of clinical
trials are ongoing for investigating the effects of anti-DNA
methylation therapies (Cheng et al., 2019). Therefore, our
results suggest that epigenetics-targeted therapy is a promising
strategy for future anticancer therapeutics in part by modulating
the pyroptosis-related genes. Nomograms are promising for use
in clinical practice for evaluating the prognosis of EAC patients,
in which the survival can be predicted using specific parameters.
As indicated by the ROC curves, the nomogram demonstrates
high predictive accuracy and sensitivity. Compared to the
conventional TNM staging and a previously developed
ferroptosis-related gene signature (AUC � 0.744) in EAC (Zhu
et al., 2021), the pyroptosis-related gene signature-based
nomogram, which integrates gene expression profiles and
clinical parameters, more effectively predicts the prognosis of
EAC patients. In addition, the prognostic value of our signature is
better than the DNA repair-based gene signature (AUC � 0.759)
in esophageal cancer (Wang et al., 2021). The prognostic value for
3- and 5-year survival is also higher than a recently developed
signature based on nine immune-related genes for esophageal
cancer (AUC � 0.826) (Zhang et al., 2021). The use of nomogram
based on integrated information can facilitate the prediction of
prognosis, clinical decision-making, and patient counseling
(Bobdey et al., 2018).

The tumor immune microenvironment is diverge and complex,
which contributes to tumorigenesis and modulates the effects of
immunotherapy to a large extent. Current studies on lymphocytes in
tumor immunity predominantly focus on T cells, while the
protective effect of B cells has also been revealed (Wang et al.,
2019). By contrast, mast cells have been reported to induce cancer
growth (Maciel et al., 2015). Activated T cells, natural killer cells, and
macrophages are potent suppressors that mediate the tumor
microenvironment and exert antitumor functions (Lin et al.,
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2013; Nurieva et al., 2019; Cózar et al., 2021). Although some of the
comparisons were not statistically different andmight be contributed
by the limited number of samples in both cohorts, accumulation of
immune cells that promote cancer in the tumor microenvironment
was generally observed in the high-risk group in both the TCGA and
GEO cohorts, while the compositions of tumor-protective immune
cells were reduced compared to the low-risk group.

The strength of our study is that a systemic analysis was
performed based on the TCGA and GEO cohorts, and the
pyroptosis-related genes were assessed for the first time.
Limitations also exist in our study. Current publicly available
datasets are limited in both number and size, and therefore,
validation of our prediction model in large-scale EAC cohorts
could be performed in future studies. In addition, based on the
information of our study, further in vitro and in vivo studies could
be conducted to evaluate the function and mechanisms of
pyroptotic regulation in EAC. Despite the limitations, our
study has provided a comprehensive overview of pyroptosis-
related gene profiles in EAC.

In summary, we identified differentially expressed pyroptosis-
related genes and developed a novel five-gene pyroptosis signature
that significantly correlates with the survival of EAC patients. The
pyroptosis-based signature is an independent prognostic factor and
performs better than the TNM stage, which is promising for clinical
application. Moreover, GSDMB expression is notably correlated
with methylation status, and the signature is related to antitumor
immunity in the tumor microenvironment. Modulating pyroptosis,
epigenetic mechanisms, and immune microenvironment by drug
discovery might be promising for improving the prognosis of
patients. Further studies exploring the regulating patterns are
warranted.
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