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Empirical evidence about inconsistency
among studies in a pair-wise meta-

analysis
Kirsty M. Rhodes,a* Rebecca M. Turnera and Julian P. T. Higginsb
This paper investigates how inconsistency (as measured by the I2 statistic) among studies in a meta-analysis
may differ, according to the type of outcome data and effect measure.We used hierarchical models to analyse
data from 3873 binary, 5132 continuous and 880 mixed outcome meta-analyses within the Cochrane
Database of Systematic Reviews. Predictive distributions for inconsistency expected in future meta-analyses
were obtained, which can inform priors for between-study variance. Inconsistency estimates were highest
on average for binary outcome meta-analyses of risk differences and continuous outcome meta-analyses.
For a planned binary outcome meta-analysis in a general research setting, the predictive distribution for
inconsistency among log odds ratios had median 22% and 95% CI: 12% to 39%. For a continuous outcome
meta-analysis, the predictive distribution for inconsistency among standardized mean differences had
median 40% and 95% CI: 15% to 73%. Levels of inconsistency were similar for binary data measured by log
odds ratios and log relative risks. Fitted distributions for inconsistency expected in continuous outcome
meta-analyses using mean differences were almost identical to those using standardized mean differences.
The empirical evidence on inconsistency gives guidance on which outcome measures are most likely to be
consistent in particular circumstances and facilitates Bayesian meta-analysis with an informative prior for
heterogeneity. © 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd.
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1. Introduction

A meta-analysis combines results of multiple studies to summarize evidence in a specific research area. The
combined results are reported with greater precision than the results of the individual studies, and so are more
influential.

Variation among the results of individual studies in a meta-analysis, known as heterogeneity, is inevitable when
the studies have been conducted using various methods, at various times and by various research groups. We can
allow for unexplained heterogeneity in a random-effects meta-analysis, estimating a between-study variance and
a summary effect (Higgins et al, 2009). Higgins and Thompson (2002) proposed I2 as a statistic to measure the
impact of between-study heterogeneity. Throughout this paper, we refer to I2 as a quantifier of inconsistency
across results of included studies in a meta-analysis, because it depends on the extent of overlap in confidence
intervals across studies. The I2 statistic directly relates to the between-study heterogeneity variance τ2 but has a
similar interpretation regardless of the type of outcome data and the outcome metric used to perform the
meta-analysis. I2 has an intuitive interpretation as the proportion of total variation in the estimates of intervention
effect that is due to heterogeneity among studies. A number of papers have presented empirical investigations of
heterogeneity between studies in meta-analyses (Higgins and Whitehead, 1996; Engels et al, 2000; Deeks, 2002;
Pullenayegum, 2011; Turner et al, 2012; Rhodes et al, 2015). However, despite extensive use of I2 as a measure
of the impact of heterogeneity, no large study has empirically examined typical values of inconsistency among
results of included studies in a meta-analysis.
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An important consideration for meta-analysis is the selection of a metric to measure the intervention effects of
individual studies. When performing meta-analysis of binary outcome data, Cochrane review authors may choose
to use the relative risk scale for ease of interpretation (Sackett et al, 1996; Deeks, 1998). However, statisticians
working in meta-analysis often prefer to use the odds ratio scale for mathematical convenience (Senn, 1998; Olkin,
1998). For meta-analysis of continuous outcome data, we typically use difference measures (mean difference or
standardized mean difference [SMD]) for comparison of treatment arms. However, in principle, we could use
relative effects by computing a ratio of mean values (RoM) (Friedrich et al, 2008). To date, little is known in regard
to whether SMDs are more or less consistent than mean differences or whether difference measures exhibit lower
or higher levels of inconsistency than relative measures.

Another important consideration for random-effects meta-analysis concerns the estimation of between-study
heterogeneity. Numerous meta-analyses in healthcare research combine results from only a small number of studies,
for which between-study heterogeneity is estimated imprecisely. Of 22 453 meta-analyses from the Cochrane
Database of Systematic Reviews (CDSR), containing at least two studies, almost 75% contained five or fewer studies
(Davey et al, 2011). A Bayesian approach tometa-analysis is beneficial in allowing an analyst to incorporate information
on the likely extent of heterogeneity by drawing on relevant external evidence (Higgins and Whitehead, 1996;
Pullenayegum, 2011; Turner et al, 2012; Rhodes et al, 2015).

This paper presents large-scale empirical evidence, from published meta-analyses, on inconsistency across
studies in meta-analyses using binary, continuous and mixed outcome data (including data from time-to-event
outcomes, ordinal outcomes and binary or continuous data from studies with complex designs). Three binary
outcome measures are considered: odds ratio (OR); relative risk (RR) and risk difference (RD). For continuous
outcome data, we consider the SMD and mean difference. We also explore the sensitivity of inconsistency to
switching the event for the relative risk and opting for a relative measure (the ratio of means) as opposed to a
commonly used difference measure for continuous outcome meta-analysis. To assist Bayesian meta-analysis, we
provide predictive distributions for the degree of inconsistency expected among studies in future meta-analyses
in specific research settings. These distributions can be used in new meta-analyses to inform prior distributions for
the between-study variance.

This paper has three main sections. Section 2 introduces the data set and describes our methods of statistical
analysis. Section 3 presents the findings of this research, focusing on three primary objectives: (i) to compare
levels of inconsistency across meta-analyses using various types of outcome data; (ii) to investigate how
inconsistency among studies may differ according to the scale on which the meta-analysis is performed; and
(iii) to illustrate the use of empirical evidence on inconsistency, in order to facilitate Bayesian meta-analysis with
an informative prior for the between-study variance. We conclude with a discussion in Section 4.
2. Methods

2.1. Data description

The Cochrane Database of Systematic Reviews (CDSR) is a rich resource of systematic reviews in areas of health care.
These reviews have been prepared by the Cochrane Collaboration, with the objective to make the most up to date
and reliable evidence conveniently available to healthcare consumers, professionals and providers (Davey et al, 2011).
For the purpose of this research, data from the CDSR (Issue 1, 2008) were provided by the Nordic Cochrane Centre.

Cochrane reviews typically include multiple meta-analyses, which correspond to comparisons of interventions
and the assessment of various outcomes within these comparisons. For example, a review examining antibiotics
could report separate meta-analyses comparing each of the several antibiotics against a placebo, with respect to
both infection severity and adverse effects. The structure of the data set is illustrated in Figure 1. Meta-analyses
were included in our analyses if they consisted of data from at least two studies. In some reviews, results from
Figure 1. Flow diagram illustrating the structure of the data set.
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studies eligible for a meta-analysis were available but no pooled results were published in the Cochrane review.
Such data were regarded in the same way as meta-analyses in order to maximise the amount of information
available. The review authors may have decided not to perform meta-analysis based on the degree of
heterogeneity between studies (Davey et al, 2011).

Reviews could present results for several subgroup analyses within each outcome (Figure 1). Because we are
interested in the overall degree of inconsistency in a meta-analysis, results for study data were combined across
subgroups. In some reviews, the subgroups presented within an outcome were not mutually exclusive; therefore,
we checked for study duplications and used data for only the first occurrence of each study in each meta-analysis
(Davey et al, 2011).

The database contains four types of data: binary data, continuous data, generic results and “O-E and variance”
data. Binary data arise when each participant in a study can have one of two possible outcomes (event or no
event), for example, death or survival. We refer to “continuous” data as numerical data that can take any value
in a specified range, for example, height and weight. As well as binary or continuous data from studies with
complex designs, generic results include ordinal outcomes and time-to-event outcomes. Ordinal outcome data
occur when participants in a study are classified into ordered categories, for example, disease severity is often
classified into categories of “mild”, “moderate” or “severe”. Studies with “O-E and variance” data tend to represent
time-to-event outcomes. Time-to-event data arise when interest lies in the time to elapse until an event occurs, for
example, time from diagnosis or start of treatment to death, time to re-admission to hospital after discharge or
time to healing of a wound.

In the CDSR database, binary data are numbers of events, and continuous data are means and standard
deviations, together with the number of participants in each intervention arm in each study. Generic results are
an effect estimate, such as a hazard ratio, and corresponding standard error for each study, and “O-E and variance”
data are the observed-minus-expected number of events and variance for each study.

All meta-analyses in the database had been classified according to the type of outcome, types of interventions
evaluated and therapeutic area, as described in an earlier paper (Davey et al, 2011). The outcomes, intervention
comparisons and therapeutic areas were assigned to fairly narrow categories, which we later grouped together.
When grouping outcomes for analyses of binary and continuous outcome data, we chose the same categories
as for empirical investigations of between-study heterogeneity using the same data set (Turner et al, 2012; Rhodes
et al, 2015). Based on the distribution of outcomes in the original CDSR data set, it seemed appropriate to group
outcomes for analysis of mixed outcome data in the same way as for the binary data (Table 1). For each meta-
analysis in the data set, we are given the scale on which the Cochrane review authors performed meta-analysis
(e.g. RR, RD and SMD). The classifications of outcome types, types of intervention comparison and therapeutic area
enabled Turner et al (2012) and Rhodes et al (2015) to explore how meta-analysis characteristics influence the
extent of between-study heterogeneity in meta-analyses of binary and continuous outcome data. Likewise, they
allow us to investigate the impact of meta-analysis characteristics on the degree of inconsistency among studies
in a meta-analysis.

An objective of this paper is to provide predictive distributions for the degree of inconsistency expected
among studies in future meta-analyses. In the sections to follow, the predictive distributions are reported so that
they can be conveniently selected for use as priors in future meta-analyses. This was a difficult task because of the
dependency of I2 on the precisions of the individual studies (Rücker et al, 2008) that are specific to each analysis.
We placed meta-analyses into categories for mean study size that were chosen to approximate 25th and 75th
quantiles across all outcome types. We assigned meta-analyses to a few sample size regions for computational
convenience and also to keep prior selection simple for other researchers. We categorised binary and mixed
outcome meta-analyses into the following categories for mean study size: fewer than 50 participants, 50 to 200
participants and more than 200 participants. When analysing continuous outcome data, we combined categories
of mean study size: 50 to 200 participants and more than 200 participants. As demonstrated in Table 2, studies
tend to have smaller sample sizes when the outcome is continuous.

2.2. Statistical analysis

In this work, we focused on I2 to quantify the impact of between-study heterogeneity in a meta-analysis. I2

describes the proportion of variation among results of included studies in a meta-analysis that is due to
heterogeneity rather than within-study errors. In our analyses, we make use of the relationship I2 = τ2/
(τ2 + σ2), where τ2 is the between-study variance and σ2 is the “typical” within-study variance for each meta-
analysis (Higgins and Thompson, 2002).

Initial descriptive analyses were based upon the method of moments estimates of between-study
heterogeneity τ2 for each meta-analysis. I2 values computed this way are equivalent to the formulation
I2 = (Q� df)/Q, where Q is the usual heterogeneity test statistic and df the number of studies less 1. The initial
analyses were conducted to explore what the I2 data can tell us about how levels of inconsistency among studies
in a meta-analysis may differ according to the type of outcome data and outcome measure used.

In a more formal statistical analysis, we investigated the distributional form of I2 under a fully Bayesian
framework, incorporating all sources of parameter uncertainty. Previous research suggests a log-normal or log-t
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 346–370



Table 1. Frequencies of outcome types, intervention comparison types and therapeutic areas among
meta-analyses (MAs).

No. of meta-analyses (%)

Outcome type Binary outcome
MAs

Continuous
outcome MAs

Mixed outcome
MAs

All-cause mortality 508 (13%) 145 (16%)
Semi-objective outcomes a 1078 (28%) 122 (14%)
Subjective outcomes b 2287 (59%) 613 (70%)
Obstetric outcomes 165 (3%)
Resource use and hospital stay/process 417 (8%)
Internal and external structure-related outcome 125 (2%)
General physical health-related outcomes c 2006 (39%)
Signs/symptoms reflecting continuation/end of
condition and Infection/onset of new acute/chronic
disease

845 (16%)

Mental health outcomes 306 (6%)
Biological-markers d 996 (19%)
Various subjectively measured outcomes e 272 (5%)

Intervention comparison type
Pharmacological versus placebo/control 1394 (36%) 2030 (39%) 315 (36%)
Pharmacological versus pharmacological 1014 (26%) 1004 (20%) 203 (23%)
Non-pharmacological versus any intervention f 1465 (38%) 2098 (41%) 362 (41%)

Therapeutic area
Cancer 186 (5%) 21 (0.4%) 187 (21%)
Cardiovascular 278 (7%) 354 (7%) 14 (2%)
Central nervous system/ musculoskeletal 337 (9%) 544 (11%) 35 (4%)
Digestive system 429 (11%) 1028 (20%) 70 (8%)
Infectious diseases 273 (7%) 138 (3%) 38 (4%)
Mental health and behavioural conditions 534 (14%) 538 (10%) 36 (4%)
Obstetrics and gynaecology 703 (18%) 626 (12%) 74 (8%)
Pathological conditions 157 (4%) 149 (3%) 21 (2%)
Respiratory diseases 327 (8%) 1050 (20%) 297 (34%)
Urogenital 236 (6%) 337 (7%) 9 (1%)
Other 413 (11%) 347 (7%) 99 (11%)

MAs, meta-analyses.
aSemi-objective outcomes include cause-specific mortality, composite mortality/morbidity, major morbidity event,
obstetric outcomes, internal structure, external structure, surgical device success/failure, withdrawals/drop outs,
resource use and hospital stay/process measures.
bSubjective outcomes include pain, mental health outcomes, dichotomous biologicalmarkers, quality of life/functioning,
consumption, satisfaction with care, general physical health, adverse events, infection/new disease, continuation/
termination of condition being treated and composite endpoint (including at most one mortality/morbidity endpoint).
cGeneral health-related outcomes include general physical health, adverse events, pain and quality of life/functioning.
dBiological-markers include quantifiable biological parameters, typicallymeasured in a laboratory, such as blood components.
eVarious subjectively measured outcomes include consumption, satisfaction with care, composite endpoint
(including at most one mortality/morbidity endpoint) and surgical device related success/failure.
fNon-pharmacological interventions include interventions classified as medical devices, surgical, complex,
resources and infrastructure, behavioural, psychological, physical, complementary, educational, radiotherapy,
vaccines, cellular and gene and screening.
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distribution with 5 degrees of freedom for underlying values of between-study heterogeneity τ2 (Pullenayegum,
2011; Turner et al, 2012; Rhodes et al, 2015). Therefore, the logit-normal and logit-t5 distributions were natural
candidate distributions for I2. We also considered an inverse-gamma distribution for I2/(1� I2) in order to imply
an inverse-gamma distribution for τ2. Higgins and Whitehead (1996) found the inverse-gamma distribution to
be good fit to values of τ2. We visually compared the empirical distribution of the method of moments-based
estimates for I2 to I2 values obtained under a Bayesian framework. After adjusting for meta-analysis characteristics
as covariates, a comparison of model fit based on deviance information criteria (Spiegelhalter et al, 2002;
Spiegelhalter et al, 2014) led to the choice of the logit-t5 model for I2, implying a log-t distribution with 5 degrees
of freedom for τ2. We assessed the fit of the logit-t5 model for I2 using a quantile–quantile plot of posterior
medians for I2 versus the fitted logit-t5 distribution. To demonstrate our model selection procedure, we provide
the results based on binary outcome meta-analyses of log odds ratios in Supplementary Information Section A.3.
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 346–370



Table 2. Structure of the data set.

N Min Median Max IQR 95% range

Binary outcome meta-analysesa

No. of comparisons per
review

1967 reviews 1 1 20 1 to 2 1 to 8

No. of studies per meta-
analysis

3873 meta-analyses 2 3 270 2 to 6 2 to 22

Sample size 21902 studies 2 90 1 242 000 46 to 200 16 to 1827
Continuous outcome meta-analysesb

No. of comparisons per
review

1000 reviews 1 1 12 1 to 2 1 to 5

No. of meta-analyses per
comparison

1605 comparisons 1 2 31 1 to 4 1 to 14

No. of studiesc per meta-
analysis

5132 meta-analyses 2 3 98 2 to 5 2 to 15

Sample size 21612 studies 5 65 18 850 34 to 150 14 to 687
Mixed outcome meta-analysesd

No. of comparisons per
review

193 reviews 1 1 9 1 to 2 1 to 5

No. of meta-analyses per
comparison

318 comparisons 1 2 20 1 to 3 1 to 10

No. of studiese per meta-
analysis

880 meta-analyses 2 3 133 2 to 7 2 to 23

Sample size 5263 studies 2 88 36 510 20 to 254 2 to 1417

IQR, inter-quartile range.
aSixty two binary outcome meta-analyses were excluded where the outcome type did not fit into any of our pre-
defined categories and was classified as “Other”.
bThirty continuous outcome meta-analyses were excluded where the outcome type did not fit into any of our pre-
defined categories and was classified as “Other”.
cAmong continuous outcome meta-analyses, 726 studies were excluded due to missing standard deviations.
dSix mixed outcome meta-analyses were excluded where the outcome type did not fit into any of our pre-defined
categories and was classified as “Other”.
eMixed outcome data from 81 studies with generic results were excluded because of missing standard deviations,
and 101 studies with “O-E and variance” data were omitted from our analyses because variances of zero do not
represent real data (Davey et al, 2011).
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We used hierarchical models to analyse study data from each binary outcomemeta-analysis, whilst investigating the
influence of meta-analysis characteristics on the degree of inconsistency among results of included studies. We use raij
to denote the number of events in treatment arm a (a=C, T for Control and Treatment arm being compared) in study i
of meta-analysis j, from a total number of naij patients, each assumed to have probability πaij of having the event. Within

each meta-analysis j, a random-effects model with binomial within-study likelihoods was fitted to binary outcome data
raij=n

a
ij from each study. We analysed data on each of the log OR, log RR and RD scales. Each of these effect measures for

binary outcome data are defined in Supplementary Information Section A.1.1. The Bayesian random-effects model of
Smith et al (1995) was used for analyses of log odds ratios. Models for meta-analysis using the log relative risk and risk
difference were developed on the basis of methods proposed by Warn et al (2002). We assumed

rCij ∼ Binomial πCij ; nCij

� �

rTij ∼ Binomial πTij ; nTij

� �

On the log OR scale:

logit πCij
� �

¼ αij � θij=2

logit πTij
� �

¼ αij þ θij=2

θij ∼ N μj; τ2j
� �

;

where the αij are the baseline log odds and the underlying treatment effects (log odds ratios) θij have normal
random-effects distributions. In the defined model, μj corresponds to the summary intervention effect for meta-
analysis j, and τ2j is the underlying between-study heterogeneity.
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 346–370



K. M. RHODES ET AL.

3
5
1

To ensure that the models for the log relative risk and risk difference have appropriate parameter values, we
need to constrain θij so that πTij lies in the interval [0, 1]. In the log relative risk model, this is the same as

constraining log(πTij ) to the interval (�∞, 0], achieved by confining θij to be less than �log πCij
� �

. Each θij can take

any value in the range (�∞,∞), because it is drawn from a normal distribution with mean μj and variance τ2j .

Denote by θLij and θUij the lower and upper bounds for θij, respectively. In the log relative risk models, we let θUij

be the minimum of θij and �log πCij
� �

, so that θUij can take any value in the required range �∞;�log πCij
� �� �

. In

the models for the risk difference, we confine θij to the interval �πCij ; 1� πCij
h i

so that πTij∈ 0; 1½ � . We let θLij be

the maximum of θij and �πCij , so that it can take any value in the range �πCij ;∞
h �

. Similarly, we let θUij be the

minimum of θLij and 1� πCij , so that θUij is confined to the required range �πCij ; 1� πCij
h i

(see Warn et al (2002)

for additional details).
The equivalent model on the log RR scale replaces the logits of the treatment group risks πTij and the control

group risks πCij by logs so that θij are the log relative risks:

log πCij
� �

¼ αij � θUij =2

log πTij
� �

¼ αij þ θUij =2

θUij ¼ min θij; � log πCij
� �� �

;

θij ∼ N μj; τ2j
� �

For the RD scale, we replace the logits in the model on the log odds ratio scale by the risks themselves:

πCij ¼ αij � θUij =2

πTij ¼ αij þ θUij =2

θUij ¼ min θLij; 1 � πCij
� �

θLij ¼ max θij; � πCij
� �

θij ∼ N μj; τ2j
� �

;

where θij are now risk differences.
I2j describes the proportion of variation in study results of meta-analysis j that is due to heterogeneity rather

than within-study errors. We considered a statistic of the form

I2j ¼ τ2j
τ2j þ σ2j

;

as proposed by Higgins and Thompson (2002).
All Bayesian hierarchical models fitted to the CDSR data set make use of the definition:

log τ2j
� �

¼ logit I2j

� �
þ log σ2j

� �

Although this definition explicitly involves a fixed within-study variance σ2j , which will vary between studies in

practise, we computed a “typical” within-study variance in meta-analysis j as

bσ2
j ¼ ∑ibσ�2

ij kj � 1
� �

∑ibσ�2
ij

� �2
� ∑ibσ�2

ij

;

where bσ2
ij are within-study precisions and kj is the number of studies included in meta-analysis j (bσ2

j is equation 9 in
Higgins and Thompson (2002)). Each bσ2

ij was computed outside WinBUGS using the observed data (rCij ; n
C
ij ; r

T
ij ; n

T
ij ).

Mittlböck and Heinzl (2006) performed a simulation study to examine measures of heterogeneity in a meta-
analysis. They argued that the use of this within-study variance estimate bσ2

j is preferable to using the reciprocal

of the arithmetic mean weight as it better explains the effect of heterogeneity. Ideally, we would have
incorporated uncertainty in the estimated within-study variances bσ�2

ij , but this proved too computationally

intensive, with many parameters in the model being very imprecisely estimated.
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 346–370
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In an earlier stage of this research, we fitted a hierarchical regression model to underlying values of log-
transformed between-study variance τ2j across binary outcome meta-analyses, assuming a normal distribution

for the residual variation (Turner et al, 2012). Here, the hierarchical regression model was fitted to underlying

values of logit I2j

� �
, assuming the preferred t-distribution with 5 degrees of freedom. We crudely adjusted for

the important dependency of I2 on within-study precisions, as well as between-study variation τ2, by including
a categorical covariate for mean study size in the regression model.

In the defined regression model, x1j and x2j are indicators for whether the binary outcome meta-analysis
indexed j had an outcome that was all-cause mortality or semi-objective, respectively. Likewise, z1j and z2j are
binary indicators for whether the intervention comparison was pharmacological versus placebo/control or
pharmacological versus pharmacological, respectively. Here, s1j and s2j are indicators for whether meta-analysis j
had a mean study size fewer than 50 participants or more than 200 participants, respectively. After adjustment
for other predictors of inconsistency I2 in the model, regression coefficients represent average differences in I2

on the logit scale among meta-analyses of different characteristics. β1 and β2 are regression coefficients that
represent average differences between each outcome type and the reference group of subjective outcomes,
whereas the fixed effects γ1 and γ2 denote the average differences between each intervention comparison type
and the reference group of non-pharmacological intervention comparisons. Similarly, we included fixed effects
ξ1 and ξ2 in the regression model to represent average differences between meta-analyses grouped by mean
study size and the reference group of meta-analyses with mean study size between 50 and 200 participants.
Additional fixed effects δ1,…, δ10 were added to the regression model to investigate differences between each
therapeutic area and the largest group of meta-analyses related to obstetrics and gynaecology. Error terms εuvj
allow for residual variation across meta-analyses, with separate variances for each pairwise combination of
outcome types u and intervention comparison types v.

logit I2j

� �
¼ α þ β1x1j þ β2x2j þ γ1z1j þ γ2z2j þ ξ1s1j þξ2s2j þ ∑

10

p¼1
δpapj þ ∈uvj;

where ∈uvj ∼ t 0;ϕ2
uv ; 5

� �
, for all u = 1, 2, 3 and υ = 1, 2, 3.

A fully Bayesian meta-analysis requires prior distributions to be specified for unknown parameters. Vague
normal(0,10) prior distributions were assigned to summary effects μj and all regression coefficients as
recommended by Spiegelhalter et al. (2004), whilst we specified uniform(0,1) prior distributions for underlying
probabilities of events πCij in the same way as Warn et al (2002). As priors for variance parameters of the random

effects, we used inverse-gamma(0.1,0.1) distributions as in previous work (Rhodes et al, 2015).
When analysing data from continuous outcome meta-analyses, we used similar Bayesian hierarchical models.

However, in these cases, we assumed normality of observed study-level effects because we do not have
patient-level data. Study data were analysed on both the mean difference and SMD scales. Definitions of the mean
difference and SMD are provided in Supplementary Information Section A.1.2 together with the mathematical
forms of all fitted models. Analyses of mixed outcome data similarly assumed that the summary statistics (e.g. log
hazard ratios) had an approximate normal distribution.

All models were fitted using the Markov chain Monte Carlo within the WinBUGS (Version 1.4.3) software (Lunn
et al, 2000), and results were based on 50 000 iterations following an initial period of 10 000 iterations. This was
sufficient to achieve convergence. Convergence diagnostics were run on the 50 000 monitored iterations. We
monitored convergence using the Brooks–Gelman–Rubin statistic (Brooks and Gelman, 1998), as implemented
in WinBUGS, with three chains starting from widely dispersed initial values. For Markov chain Monte Carlo with
a single chain, convergence was checked graphically via trace plots and autocorrelation plots.

For each research setting defined by outcome type, type of intervention comparison, therapeutic area and
mean study size, we obtained a predictive distribution for inconsistency I2new in a new meta-analysis in that setting,
within the full Bayesian model. For example, the predictive distribution for I2 in a new binary outcome
meta-analysis assessing a semi-objective outcome (x2new = 1), comparing a pharmacological intervention with
a placebo (x1new = 1) in the reference therapeutic area, with a mean study size of less than 50 participants
(s1new = 1), is found by monitoring the following:

logit I2new
� �

∼ t α þβ2 þ γ1 þξ1;ϕ2
21; 5

� �

In our initial analyses, we compared the fit of various models that differed according to the meta-analysis
characteristics included as covariates. The inclusion of indicators for therapeutic area led to improvement in
model fit based on deviance information criteria. However, the obtained predictive distributions tended to be very
similar across therapeutic areas. Where the distributions were very close, we report a set of predictive distributions
for I2 expected in research settings defined only by outcome type, type of intervention comparison and mean
study size. These distributions were obtained by fixing each indicator for therapeutic area equal to the
corresponding proportion of meta-analyses in the data. We consider it undesirable to report more predictive
distributions than necessary.
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 346–370
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We used WinBUGS to obtain 50 000 samples from the posterior distribution of logit I2new
� �

after convergence. To
allow us to summarize the distributions easily, we report t distributions with 5 degrees of freedom fitted to each
sample of values for logit(I2new), using the R function fitdistr in library MASS. This provided parametric distributions
approximating the predictive distributions obtained under the full Bayesian model. These distributions can serve
to inform priors for the between-study variance τ2 in new meta-analyses.
3. Results

3.1. Descriptive analysis

The data set used for our statistical analyses includes 3873 binary outcome, 5132 continuous outcome and 880
mixed outcome meta-analyses, including at least two studies. For computational convenience, we analysed data
from a subset of binary outcome meta-analyses in the original CDSR data set. Our data set includes the first
reported binary outcome meta-analysis for each comparison of interventions within each Cochrane review. The
original CDSR database includes far fewer continuous outcome meta-analyses than meta-analyses of binary
outcomes. We therefore decided not to take one continuous outcome meta-analysis per intervention comparison
but, instead, to take all those that were originally published in Cochrane reviews on the mean difference scale. For
these meta-analyses, we could compare the mean difference and standardized mean difference. Of the mixed
outcome meta-analyses, 79% (692 meta-analyses) combine studies with generic results, whilst the remaining
21% (188 meta-analyses) combine studies with “O-E and variance” data. Table 2 shows the structure of the data
set.

Table 1 displays the frequencies of outcome types, intervention comparison types and therapeutic areas
among the meta-analyses included in our statistical analyses. Each meta-analysis compares two types of
intervention, which we classified according to three broad categories (pharmacological, placebo or control, and
non-pharmacological). Meta-analyses comparing pharmacological interventions dominate the data set; 38%
compare a pharmacological intervention against a placebo or control, and 22% compare two pharmacological
interventions. The frequencies of therapeutic areas are shown in Table 1. Among binary outcome meta-analyses,
obstetrics and gynaecology are the most frequently occurring category (18% of meta-analyses). Meta-analyses
specializing in respiratory diseases (20% of meta-analyses) and the digestive system (20% of meta-analyses) are
most frequent among continuous data. Meta-analyses in respiratory disease are also most frequent among the
mixed outcome data (34% of meta-analyses).
3.2. Comparing inconsistency across types of outcome data

A primary aim of this investigation is to compare levels of inconsistency across meta-analyses using various types
of outcome data. Initial descriptive analyses were based upon the method of moments estimates of between-
study heterogeneity τ2 for each meta-analysis, from which we derived estimates for I2 values. For each type of
outcome data, a histogram representing the empirical distribution of positive estimates for I2 on the logit scale
is provided in Supplementary Information Section A.2. Provided in Supplementary Information Section A.2.1 are
empirical quantile–quantile plots that compare the distributions for the three types of outcome data.

Initial analyses based on the method of moments estimation demonstrate that the data may tell us useful
information about how inconsistency across studies can differ according to the type of outcome data. As formal
statistical analysis, we used Bayesian hierarchical modelling, allowing for all sources of parameter uncertainty. For
each type of outcome data and outcome metric, we report a predictive distribution for inconsistency across
studies in a future meta-analysis in a general research setting. These were obtained from hierarchical models fitted
to all meta-analyses in the data set, including no meta-analysis characteristics as covariates. The estimated fitted
distributions for logit I2new

� �
are reported in Table 3, together with summary statistics for I2new on the untransformed

scale. Density plots representing fitted distributions for I2new on the logit scale are displayed in Figure 2.
There are clear differences across the three types of outcome data irrespective of the scale of analysis; the fitted

distributions for binary outcome meta-analyses of log odds ratios and log relative risks have lower medians, 25%,
75% and 97% quantiles, compared with the predictive distributions for inconsistency expected in continuous
outcome meta-analyses (Table 3). The fitted distribution based on analyses of binary outcome data on the risk
difference scale has a similar median to those based on analyses of continuous outcome data, but gives support
to a narrower range of I2 values. The fitted distribution for a mixed outcome meta-analysis has the lowest median
and a considerably higher probability of a very low degree of inconsistency across studies (I2< 5%).
3
5
3

3.3. Assessing the sensitivity of I2 to the choice of outcome measure

This section seeks to investigate how inconsistency among studies may differ according to the scale on which
meta-analysis is performed.
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Table 3. Predictive distributions for logit(I2) expected in a future meta-analysis in a general setting.

Outcome data
Outcome
metric

Predictive t5
a

distribution Median IQR 95% range Pr (I2< 5%)

μ σ
Binary Log odds ratio �1.25 1.42 22% 12% to 39% 2% to 82% 0.093
Binary Log relative risk �1.35 1.68 21% 9% to 39% 9% to 88% 0.136
Binary Risk difference �0.37 1.47 41% 24% to 61% 4% to 92% 0.038
Continuous Mean

difference
�0.16 2.31 46% 18% to 77% 0.8% to 99% 0.096

Continuous Standardized
mean
difference

�0.38 2.33 40% 15% to 73% 0.6% to 99% 0.112

Mixed outcome �1.85 3.43 13% 2% to 53% 0.02% to 99% 0.362

IQR, inter-quartile range.
at-distribution with location μ, scale σ and 5 degrees of freedom.

Figure 2. Predictive distributions for logit(I
2
) expected in future meta-analyses in a general research setting.
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3.3.1. Binary outcome meta-analyses. We first focus on results from analysing binary outcome data in the CDSR
data set. The inconsistency of the study results for each meta-analysis was initially measured using I2 statistics
that were each obtained from the method of moment based estimate for between-study variance τ2. In 2084
(54%) binary outcome meta-analyses performed on the log odds ratio scale, the method of moments estimates
for τ2 and I2 were negative and hence set to zero. Positive estimates for I2 have a median of 50% and inter-
quartile range (IQR) 28% to 68%. Results give some indication that I2 could be reduced substantially by using
an alternative outcome metric. For all 2084 meta-analyses with I2 estimated as zero when based on the log odds
ratio scale, a plot of the inconsistency statistics for the comparison of the risk difference with the log relative risk
is given in Figure 3(a). Seemingly, re-analysing the data on the log RR or the RD scale could result in a
considerably higher estimate for I2.

There is evidence that increases in the average and range of control group event rates that are associated with the
increasing degree of inconsistency I2 (Table 4). Positive I2 estimates for the Log OR and Log RR-based analyses have
similar medians when event rates are low but differ when average events rates are considerably high (> 80%). I2

estimates of zero are more frequent when the average and range of control group event rates are lower. The RD is less
consistent than both the OR and RR under all scenarios, and I2 estimates of zero are less frequent for the RD analyses.

In our formal statistical analyses, we investigated the influences of meta-analysis characteristics on levels
of inconsistency among studies in a meta-analysis, under a fully Bayesian framework. Inferences regarding
associations between meta-analysis characteristics and the impact of heterogeneity were similar for analyses
conducted on the log odds ratio, log relative risk or risk difference scale. The section to follow reports
predictive distributions for inconsistency expected in various research settings. Table 5 summarizes the
predictive distributions for logit(I2) expected in meta-analyses of log odds ratios. The predictive distributions
for inconsistency expected in meta-analyses of log relative risks and risk differences can be found in
Supplementary Information Section A.4. The fitted distributions for logit(I2new ) based on analyses of log odds
ratios and log relative risks are similar, but the distributions based on analyses of risk differences give greater
support to higher levels of inconsistency. The density plots in Figure 3(b), representing the predictive distributions
for logit(I2), illustrate these findings. These densities correspond to the predictive distributions for pharmacological
versus placebo/control meta-analyses, with an all-cause mortality outcome and a mean study size between 50 and
200 participants.
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 346–370



Figure 3. Results to assess the sensitivity of I
2
to the choice of binary outcome metric. (a) For all 2084 meta-analyses with I

2
=0 on the log odds

ratio scale, a scatter plot for comparison of the risk difference and the log relative risk. In 1566 (75%) of these meta-analyses I
2
=0 on both the log

relative risk and risk difference scales. 375 (18%) of the 2084 meta-analyses have I
2
>0 on the risk difference scale while I

2
=0 on the log relative risk

scale. 55 (3%) of the 2084 meta-analyses have I
2
>0 on the log relative risk scale while I

2
=0 on the risk difference scale. (b) Predictive distributions

for logit(I
2
) expected in pharmacological vs placebo/control meta-analyses with an all-cause mortality outcome and mean study size 50 to 200

participants. (c) A scatter plot for comparison of the log relative risk of death (RR(H)) and log relative risk of survival (RR(B)). 59 (12%) meta-analyses
have I

2
>0 on the log(RR(B)) scale while I

2
=0 on the log(RR(H)) scale. 14 (3%) meta-analyses have I

2
=0 on the log(RR(B)) scale while I

2
>0 on the log

(RR(H)) scale. Filled points in scatter plots correspond to meta-analyses with at least six studies.

Table 4. Summary of the method of moments-based estimates of inconsistency I2 observed in 3873 binary
outcome meta-analyses, comparing log OR, log RR and RD based analyses. N denotes the number of meta-
analyses; mean CGER is the unweighted mean of the observed control group event rates in each meta-analysis;
range CGER is the difference between the highest and lowest observed control group event rates.

Median non-zero I2 (% where I2 = 0%)

CGER N Log OR Log RR RD

Mean
0 to 20% 1727 43% (68%) 41% (68%) 52% (56%)
>20% to 40% 959 50% (46%) 49% (48%) 59% (40%)
>40% to 60% 593 53% (40%) 52% (41%) 61% (35%)
>60% to 80% 399 55% (31%) 58% (30%) 66% (27%)
>80% 195 53% (52%) 62% (44%) 62% (39%)

Range
0 to 20% 1952 47% (68%) 48% (68%) 54% (60%)
>20% to 40% 1003 48% (48%) 51% (48%) 56% (38%)
>40% to 60% 545 51% (33%) 49% (35%) 62% (23%)
>60% to 80% 281 52% (30%) 55% (27%) 66% (17%)
>80% 92 52% (18%) 57% (18%) 71% (7%)

OR, odds ratio; RR, relative risk; RD, risk difference.
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In our initial descriptive analyses, we used I2 values based on the method of moments estimates for τ2 and the

definition τ2/(τ2 + σ2). Our formal statistical analyses were conducted under a fully Bayesian framework; therefore,
it would be useful to explore the relationship between our initial descriptive estimates for I2 and Bayesian estimates.
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Table 5. Binary outcome data: predictive distributions for logit(I2) expected in future meta-analyses of log
odds ratios, together with summary statistics for I2 on the untransformed scale. A t(μ, σ2, 5) distribution
represents a t-distribution with location μ, scale σ and 5 degrees of freedom. N denotes the total number of
meta-analyses contributing in each category.

Pharmacological versus
placebo/control

Pharmacological versus
pharmacological

Non-pharmacological
(any)

Mean study size< 50 participants
All-cause
mortality

t(�4.02, 1.482, 5) t(�4.44, 0.662, 5) t(�3.78, 1.7132, 5)

Median = 2% Median = 1% Median = 2%
IQR= 1% to 4% IQR = 1% to 2% IQR= 1% to 5%
95% range= 0.09% to
23%

95% range= 0.3% to 4% 95% range = 0.06% to
38%

Pr(I2< 5%) = 0.810 Pr(I2< 5%) = 0.982 Pr(I2< 5%) = 0.729
N=39 N= 17 N= 29

Semi-objective t(�2.25, 1.272, 5) t(�2.67, 1.352, 5) t(�2.06, 1.812, 5)
Median = 10% Median = 6% Median = 12%
IQR= 5% to 18% IQR = 3% to 13% IQR= 5% to 25%
95% range= 0.7% to
55%

95% range= 0.4% to 50% 95% range= 0.3% to
82%

Pr(I2< 5%) = 0.234 Pr(I2< 5%) = 0.397 Pr(I2< 5%) = 0.272
N=70 N= 29 N= 90

Subjective t(�1.34, 1.112, 5) t(�1.77, 1.202, 5) t(�1.14, 0.822, 5)
Median = 21% Median = 15% Median = 24%
IQR= 12% to 33% IQR = 8% to 25% IQR= 2% to 34%
95% range= 3% to 70% 95% range= 2% to 63% 95% range= 6% to 64%
Pr(I2< 5%) = 0.061 Pr(I2< 5%) = 0.123 Pr(I2< 5%) = 0.016
N=154 N= 123 N= 140

Mean study size between 50 and 200 participants
All-cause
mortality

t(�3.52, 1.482, 5) t(�3.94, 0.662, 5) t(�3.28, 1.712, 5)

Median = 3% Median = 2% Median = 4%
IQR= 1% to 6% IQR = 1% to 3% IQR= 1% to 3%
95% range= 0.1% to
34%

95% range= 0.6% to 7% 95% range = 0.09% to
51%

Pr(I2< 5%) = 0.677 Pr(I2< 5%) = 0.951 Pr(I2< 5%) = 0.585
N=99 N= 55 N= 89

Semi-objective t(�1.75, 1.262, 5) t(�2.18, 1.352, 5) t(�1.57, 1.802, 5)
Median = 15% Median = 10% Median = 18%
IQR= 8% to 26% IQR = 5% to 19% IQR= 7% to 36%
95% range= 1% to 68% 95% range= 0.7% to 63% 95% range = 0.5% to

88%
Pr(I2< 5%) = 0.132 Pr(I2< 5%) = 0.235 Pr(I2< 5%) = 0.184
N=156 N= 152 N= 269

Subjective t(�0.84, 1.102, 5) t(�1.28, 1.202, 5) t(�0.65, 0.812, 5)
Median = 30% Median = 22% Median = 34%
IQR= 19% to 45% IQR = 13% to 35% IQR= 25% to 45%
95% range= 4% to 79% 95% range= 3% to 74% 95% range= 9% to 74%
Pr(I2< 5%) = 0.030 Pr(I2< 5%) = 0.062 Pr(I2< 5%) = 0.007
N=480 N= 354 N= 437

Mean study size> 200 participants
All-cause
mortality

t(�3.17, 1.482, 5) t(�3.59, 0.662, 5) t(�2.93, 1.712, 5)

Median = 4% Median = 3% Median = 5%
IQR= 2% to 9% IQR = 2% to 4% IQR= 2% to 12%
95% range= 0.2% to
42%

95% range= 0.8% to 9% 95% range = 0.1% to
60%

Pr(I2< 5%) = 0.569 Pr(I2< 5%) = 0.871 Pr(I2< 5%) = 0.486
N=78 N= 37 N= 65

(Continues)
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Table 5. (Continued)

Pharmacological versus
placebo/control

Pharmacological versus
pharmacological

Non-pharmacological
(any)

Semi-objective t(�1.40, 1.272, 5) t(�1.83, 1.352, 5) t(�1.22, 1.812, 5)
Median = 20% Median = 14% Median = 23%
IQR= 11% to 33% IQR= 7% to 25% IQR= 10% to 44%
95% range = 2% to 76% 95% range= 1% to 70% 95% range = 0.8% to

91%
Pr(I2< 5%) = 0.089 Pr(I2< 5%) = 0.164 Pr(I2< 5%) = 0.135
N= 81 N= 102 N= 129

Subjective t(�0.49, 1.112, 5) t(�0.93, 1.202, 5) t(�0.30, 0.822, 5)
Median = 38% Median = 29% Median = 43%
IQR= 25% to 53% IQR= 17% to 43% IQR= 32% to 54%
95% range = 6% to 84% 95% range= 4% to 80% 95% range = 13% to

80%
Pr(I2< 5%) = 0.017 Pr(I2< 5%) = 0.036 Pr(I2< 5%) = 0.003
N= 237 N= 145 N= 217

IQR, inter-quartile range.

Figure 4. For binary outcome meta-analyses of log odds ratios, a scatter plot for comparison of method-of-moments estimators for I
2
and

Bayesian estimates for I
2
. Bayesian estimates were obtained from a hierarchical model without covariates for meta-analysis characteristics. Filled

points in scatter plots correspond to meta-analyses with at least six studies.
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For each of the 3873 meta-analyses performed on the log odds ratio scale, we compare the method of moments
estimators for I2 and posterior medians for I2 obtained from the Bayesian hierarchical model fitted without covariates
for meta-analysis characteristics (Figure 4). For meta-analyses with more than five studies, the differences between
the two estimates for I2 range from 0.07% to 35% with median 14% (IQR: 9% to 17%). For meta-analyses with
at most five studies, the differences between the two estimates for I2 range from 0.08% to 52% with median
19% (IQR:18% to 21%).

The method of moments-based estimator for I2 is negative and hence set to zero in 2084 (54%) meta-
analyses, for which posterior medians of I2 range from 1% to 35% with median 19%. When the method of
moments-based estimate for I2 is considerably high, Bayesian estimation tends to yield a reduced estimate
for I2. When the method of moments-based estimate for I2 is low, Bayesian estimation typically leads to an
increased estimate for I2. In 1278 (71%) of the 1789 meta-analyses with a positive method of moments-based
estimate for I2, the posterior median of I2 is less than the initial descriptive estimator. The positive method of
moments estimators that are greater than the posterior medians of I2 range from 18% to 97% with median
56% (IQR: 40% to 71%). The positive method of moments estimators that are less than the posterior medians
of I2 range from 0.06% to 96% with a lower median of 13% (IQR: 6% to 18%). We note that the observed
discrepancies between the method of moments based estimates and Bayesian estimates for I2 could be
attributable to considerable bias in the method of moments estimator of τ2 that uses estimates of study-
specific variances (Böhning et al, 2002; Hamza et al, 2008). This bias may cause the method of moments-based
estimators of I2 to be lower than they should be.
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 346–370
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3.3.2. Exploring the impact of switching the event definition for relative risks. Many healthcare interventions are
designed to either reduce the risk of an adverse outcome or increase the chance of a desirable outcome. In the context
of binary outcomes, it is natural to refer to one of the outcome states as being an event (Deeks, 2002). It is possible to
switch events and non-events and focus on the proportion of participants not having the event. Here, we explore the
impact of switching the event definition on levels of inconsistency among relative risks.

We decided to focus on a subset of the CDSR data set inwhich beneficial and harmful events were easily distinguished.
A total of 508 binary outcomemeta-analyses examined all-causemortality. Thesemeta-analyses were classified according
towhether theymeasured survival or death as the outcome. Eachmeta-analysis was analysed twice on the log relative risk
scale with the event and non-event switched. We denote the relative risk of death as RR(H) and the relative risk of
survival as RR(B). Initial descriptive analyses used the method of moments-based estimates for between-study
variance τ2. A plot of I2 estimates for the comparison of log RR(H) and the log RR(B) is given in Figure 3(c). The I2

estimate is zero for 315 (62%) meta-analyses, irrespective of the definition of the event for the relative risk. Of the
remaining 193 meta-analyses, 140 (73%) are more consistent when death is treated as the event.

In meta-analyses where I2 on the log RR(H) scale and I2 on the log RR(B) scale are equivalent, the average
control group event rates have median 0.08 (IQR 0.04 to 0.17). The differences between the highest and lowest
observed control group event rates have median 0.11 (IQR 0.04 to 0.22). In the remaining 193 meta-analyses,
differences between I2 on the log RR(H) and the log RR(B) scales range from 0.06% to 90%, with median 11%
(95% range 0.3% to 61%). The meta-analyses where I2 on the log RR(H) scale and I2 on the log RR(B) scale differ
by more than 61% have average control group event rates with median 0.18 (IQR 0.11 to 0.29). The differences
between the highest and lowest observed control group event rates have median 0.28 (IQR 0.21 to 0.32).
3.3.3. Continuous outcome meta-analyses. An empirical investigation was conducted to assess inconsistency
among SMDs and mean differences across the CDSR data set. In our initial descriptive analyses, the inconsistency
of the study results for each of the 5132 meta-analyses was quantified using I2 statistics, derived from method of
moments-based estimates for τ2. We obtained negative estimates for I2 in 2230 (43%) meta-analyses on the SMD
scale and in 2245 (44%) meta-analyses on the mean difference scale. Positive estimates for I2 based on analyses of
SMDs have a median of 66% and IQR 40% to 84%. The positive estimates for I2 in meta-analyses combining mean
differences have a similar median of 66% and IQR 39% to 83%. A plot of I2 statistics for comparison of the SMD
with the mean difference scale is given in Figure 5(a). For some meta-analyses, it appears that I2 could be reduced
considerably by performing meta-analysis on the alternative scale.

In later analyses, we used Bayesian hierarchical models to analyse continuous outcome data from each meta-
analysis on both the SMD and mean difference scales, whilst exploring the influences of meta-analysis
characteristics on inconsistency among studies. Results reflecting comparisons of inconsistency across meta-
analyses of different characteristics were not very sensitive to the scale on which study data are analysed. We
obtained sets of predictive distributions for inconsistency expected among studies in future continuous outcome
meta-analyses in different research settings. There is empirical evidence to suggest that heterogeneity is
substantially lower in meta-analyses related to respiratory diseases and considerably higher in meta-analyses
related to cancer than in other therapeutic areas (Rhodes et al, 2015). For these reasons, we report separate
predictive distributions for I2 expected in future meta-analyses related to respiratory diseases and cancer. For
the largest group meta-analyses related to therapeutic areas other than cancer and respiratory, the predictive
distributions based on the SMD scale are summarized in Table 6. All fitted distributions based on the mean
Figure 5. Results to assess the sensitivity of I
2
to the choice of continuous outcome metric. (a) A scatter plot of I

2
statistics for comparison of the

SMD and the mean difference (MD) scales. Filled points correspond to meta-analyses with at least six studies. In 1934 (38%) meta-analyses I
2
=0 on

both scales. 311 (6%) meta-analyses have I
2
>0 on the SMD scale where I

2
=0 on the mean difference scale. 296 (6%) meta-analyses have I

2
>0 on

the mean difference scale where I
2
=0 on the SMD scale. (b) Example predictive distributions for logit(I

2
) expected in future non-pharmacological

meta-analyses of general health-related outcomes with a mean study size greater than or equal to 50 participants.
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K. M. RHODES ET AL.
difference scale are available in Supplementary Information Section A.4, together with the distributions for
SMD-based analyses related to cancer and respiratory diseases. For comparison of inconsistency among SMDs
and mean differences, we contrast the fitted distributions for I2new . With the exception of the very small group
of meta-analyses for cancer, it appears that inconsistency across SMDs tends to be marginally lower, or very
similar, to inconsistency across mean differences. The overall strong similarities between the predictive
distributions for logit(I2) based on the SMD and mean difference scales are illustrated in the example density plots
displayed in Figure 5(b). These density plots represent the fitted distributions for logit(I2new) in non-pharmacological
meta-analyses with general health-related outcomes and mean study size greater than or equal to 50 participants.

3.3.4. Investigating the use of a relativemeasure for continuous outcomemeta-analysis. Results suggest that SMDs tend to
be slightly more consistent than mean differences. However, levels of inconsistency among difference measures for
continuous data are very similar. To explore whether relative measures exhibit lower levels of inconsistency than
difference measures for continuous outcome meta-analysis, we analyse study data from all 165 meta-analyses assessing
an obstetric outcome. Thesemeta-analyses were chosen because the RoM can be calculated for all included studies in the
data set. The RoM is restricted to use in studies where the means on the two treatment arms are either both positive or
both negative. This is because we compute the RoM on the natural logarithm scale for mathematical convenience
(Friedrich et al., 2008).

For descriptive purposes, we computed estimates for I2 for each continuous outcome meta-analysis assessing
an obstetric outcome using the method of moments estimates for the between-study variance τ2. Plots of
inconsistency statistics for comparisons of the ratio of means with the SMD and of the ratio of means with the
mean difference are given in Figures 6(a) and (b), respectively. Discrepancies between I2 statistics are most
apparent for small meta-analyses including at most five studies.

We fitted hierarchical models that performed Bayesian random-effects meta-analysis for each meta-analysis with
an obstetric outcome on each of the mean difference, SMD and log(RoM) scales. Each of these metrics are defined in
Supplementary Information Section A.1.2. Predictive t5 distributions for logit(I

2) expected in future meta-analyses are
displayed graphically in Figure 6(c) and summarized numerically in Table 7. The fitted distributions based on the SMD
andmean difference scales resemble each other strongly, and the distribution based on the log RoM scale is also very
Figure 6. Results for comparison of the log RoM with the SMD and mean difference (MD). Scatter plots for comparison of (a) the log RoM and the
SMD and (b) the log RoM and the mean difference. Filled points in scatter plots correspond to meta-analyses with at least six studies. (c) Predictive

distributions for logit(I
2
) expected in future meta-analyses of obstetric outcomes.
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Table 7. Predictive distributions for logit(I2) expected in a future continuous meta-analysis assessing an
obstetric outcome.

Outcome metric
Predictive t5

a

distribution Median IQR 95% range Pr (I2< 5%)

μ σ
Log ratio of Means 0.199 1.610 55% 33% to 75% 4% to 97% 0.031
Mean difference 0.123 2.190 53% 25% to 80% 1% to 99% 0.068
Standardized mean difference 0.155 2.060 54% 26% to 79% 2% to 99% 0.055

at-distribution with location μ, scale σ and 5 degrees of freedom.

K. M. RHODES ET AL.

3
6
2

similar. This distribution does however seem to give support to a slightly narrower range of I2 values. We find that the
estimated predictive distributions for I2 expected in future meta-analyses assessing an obstetric outcome have similar
quantiles, regardless of the scale on which the meta-analysis is performed.

3.4. Incorporating empirical evidence on inconsistency in meta-analysis

The purpose of this section is to facilitate the incorporation of external evidence on inconsistency among studies in
a meta-analysis. We summarize predictive distributions for inconsistency expected across studies in future meta-
analyses, across research settings, together with summary statistics for I2 on the untransformed scale. These
distributions can be used to inform priors for the between-study variance τ2 in future meta-analyses. In an earlier
stage of this research project, we conducted empirical investigations of between-study variance τ2. Analyses of
binary outcome data found no evidence of differences in between-study heterogeneity between therapeutic areas
(Turner et al, 2012). However, analyses of continuous outcome data showed that heterogeneity was substantially
lower in meta-analyses related to respiratory diseases and considerably higher in meta-analyses related to cancer
(Rhodes et al, 2015). There was no evidence of a difference between the remaining therapeutic areas not related to
respiratory disease or cancer. Exploratory data analysis revealed low frequencies of mixed outcome meta-analyses
for many therapeutic areas. For these reasons, meta-analysis settings for binary and mixed outcome data were
described according to outcome type, intervention comparison type andmean study size. For continuous outcome
data, meta-analysis setting was additionally described according to the therapeutic area.

For each meta-analysis setting, a predictive t5 distribution for logit(I2) expected in binary outcome meta-
analyses using the log odds ratio is given in Table 5. The predictive distributions for inconsistency expected
among log relative risks and risk differences are available in Supplementary Information Section A.4. We report
predictive distributions for logit(I2) expected in mixed outcome meta-analyses in Table 8.

Table 6 provides predictive t5 distributions for logit(I
2) expected in future continuous outcome meta-analyses

combining SMDs. Predictive distributions for inconsistency expected among mean differences are given in the
Supplementary Information Section A.4. The predictive distributions reported in this paper are for inconsistency
expected across studies in 4061 (79%) continuous outcome meta-analyses that are not related to respiratory
disease or cancer. The obtained fitted distributions for I2new in meta-analyses related to respiratory diseases and
cancer are reported in Supplementary Information Section A.4.

Discrepancies among fitted distributions for I2new suggest differences in levels of inconsistency acrossmeta-analyses
of different characteristics. There are notable differences across outcome types; the fitted distributions for binary and
mixed outcomemeta-analyses of an all-cause mortality outcome have much lower medians and quantiles, whilst the
distributions for subjective outcomes have the highest medians and quantiles. Predictive distributions for continuous
outcome meta-analyses of obstetric outcomes and biological markers have much lower medians and 75% quantiles,
with the fitted distributions for structure-related outcomes having the highest medians and 75% quantiles. Within
outcome types, differences among the three types of intervention comparisons seem small, but levels of
inconsistency are consistently higher for meta-analyses comparing a non-pharmacological intervention. Figure 7
illustrates differences between the predictive distributions for inconsistency expected in meta-analyses of log odds
ratios, on the logit scale. These densities correspond to the fitted t5 distributions for logit(I

2
new ) in binary outcome

meta-analyses combining studies with a mean sample size between 50 and 200 participants.

3.4.1. Applications to example meta-analyses

To demonstrate the use of a predictive distribution for I2 to inform a prior for the between-study variance in a
new meta-analysis, we re-analysed data from two published meta-analyses. Each of the two examples
represents the common situation where there are only a small number of studies in the meta-analysis and
Bayesian estimation is particularly beneficial. The first example includes just five studies with a mean sample
size of 45.8 participants (Roqué i Figuls et al, 2011). This binary outcome meta-analysis assesses radioisotopes
against a placebo for relieving metastatic bone pain. The DerSimonian and Laird (DL) procedure (DerSimonian
and Laird, 1986) is most commonly used to estimate the random-effects model and is the default method in
many statistical software packages. In a conventional random-effects meta-analysis by the DL procedure,
estimates for heterogeneity are high (τ2 = 1.06 [95% CI : 0.11 to 20.6], I2 = 71%), but imprecisely estimated. The
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 346–370



Table 8. Mixed outcome data: predictive distributions for logit(I2) expected in future meta-analyses, together
with summary statistics for I2 on the untransformed scale. A t(μ, σ2, 5) distribution represents a t-distribution
with location μ, scale σ and 5 degrees of freedom. N denotes the total number of meta-analyses contributing
in each category.

Pharmacological versus
placebo/control

Pharmacological versus
pharmacological

Non-pharmacological
(any)

Mean study size< 50 participants
All-cause
mortality

t(�7.34,4.812,5) t(�7.84,4.602,5) t(�7.41,4.922,5)
Median = 0.07% Median = 0.04% Median = 0.07%
IQR = 0.004% to 1% IQR= 0.003% to 0.5% IQR= 0.004% to 1%
95% range =<0.0001% to
91%

95% range=<0.0001% to 76% 95% range=<0.0001%
to 87%

Pr(I2< 5%) = 0.856 Pr(I2< 5%) = 0.891 Pr(I2< 5%) = 0.844
N= 11 N=11 N=4

Semi-objective t(�2.81,3.212,5) t(�3.31,2.922,5) t(�2.88,3.412,5)
Median = 6% Median = 4% Median = 6%
IQR = 1% to 28% IQR= 0.8% to 16% IQR= 0.8% to 29%
95% range = 0.008% to 97% 95% range= 0.009% to 89% 95% range= 0.006% to

98%
Pr(I2< 5%) = 0.473 Pr(I2< 5%) = 0.548 Pr(I2< 5%) = 0.483
N= 8 N=0 N=73

Subjective t(�1.12,2.042,5) t(�1.62,1.522,5) t(�1.19,2.352,5)
Median = 25% Median = 16% Median = 24%
IQR = 9% to 53% IQR= 8% to 32% IQR= 7% to 55%
95% range = 0.6% to 94% 95% range= 1% to 80% 95% range= 0.3% to

97%
Pr(I2< 5%) = 0.157 Pr(I2< 5%) = 0.161 Pr(I2< 5%) = 0.195
N= 149 N=46 N=131

Mean study size between 50 and 200 participants
All-cause
mortality

t(�7.36,4.812,5) t(�7.87,4.602,5) t(�7.43,4.932,5)
Median = 0.07% Median = 0.04% Median = 0.07%
IQR = 0.005% to 1% IQR= 0.003% to 0.5% IQR= 0.004% to 1%
95% range =<0.0001% to
89%

95% range=<0.0001% to 74% 95% range=<0.0001%
to 86%

Pr(I2< 5%) = 0.859 Pr(I2< 5%) = 0.892 Pr(I2< 5%) = 0.848
N= 16 N=25 N=25

Semi-objective t(�2.83,3.232,5) t(�3.33,2.952,5) t(�2.90,3.442,5)
Median = 6% Median = 4% Median = 6%
IQR = 1% to 27% IQR= 0.8% to 16% IQR= 0.8% to 29%
95% range = 0.008% to 97% 95% range= 0.007% to 90% 95% range= 0.005% to

98%
Pr(I2< 5%) = 0.472 Pr(I2< 5%) = 0.550 Pr(I2< 5%) = 0.483
N= 4 N=7 N=7

Subjective t(�1.14,2.032,5) t(�1.64,1.522,5) t(�1.21,2.362,5)
Median = 25% Median = 16% Median = 23%
IQR = 9% to 52% IQR= 7% to 32% IQR= 7% to 55%
95% range = 0.5% to 94% 95% range= 1% to 79% 95% range= 0.3% to

97%
Pr(I2< 5%) = 0.160 Pr(I2< 5%) = 0.171 Pr(I2< 5%) = 0.202
N= 51 N=34 N=72

Mean study size> 200 participants
All-cause
mortality

t(�7.21,4.802,5) t(�7.71,4.592,5) t(�7.28,4.922,5)
Median = 0.08% Median = 0.05% Median = 0.07%
IQR = 0.005% to 1% IQR= 0.004% to 0.6% IQR= 0.004% to 1%
95% range =< 0.0001% to
91%

95% range=< 0.0001% to
75%

95% range=< 0.0001%
to 88%

Pr(I2< 5%) = 0.850 Pr(I2< 5%) = 0.888 Pr(I2< 5%) = 0.839
N= 15 N=15 N=23

(Continues)
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Figure 7. Predictive distributions for logit(I
2
) expected in future binary outcome meta-analyses combining log odds ratios, with a mean study size

between 50 and 200 participants.

Table 8. (Continued)

Pharmacological versus
placebo/control

Pharmacological versus
pharmacological

Non-pharmacological
(any)

Semi-objective t(�2.68,3.212,5) t(�3.18,2.912,5) t(�2.75,3.422,5)
Median = 7% Median = 4% Median = 6%
IQR= 1% to 30% IQR= 0.9% to 18% IQR= 0.9% to 33%
95% range = 0.01% to 97% 95% range= 0.009% to 91% 95% range= 0.006% to

98%
Pr(I2< 5%) = 0.454 Pr(I2< 5%) = 0.523 Pr(I2< 5%) = 0.462
N= 11 N=6 N=6

Subjective t(�0.99,2.042,5) t(�1.49,1.512,5) t(�1.06,2.372,5)
Median = 28% Median = 18% Median = 26%
IQR= 10% to 56% IQR= 9% to 35% IQR= 8% to 58%
95% range = 0.06% to 95% 95% range= 1% to 82% 95% range= 0.3% to

97%
Pr(I2< 5%=0.141) Pr(I2< 5%=0.19) Pr(I2< 5%=0.185)
N= 50 N=59 N=21

IQR, inter-quartile range.
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combined odds ratio is estimated as 1.98 (95% CI: 0.65 to 6.01). The confidence interval for the conventional
estimate of τ2 was obtained iteratively via the Q-profile method (Viechtbauer, 2007).

A number of simulation studies have demonstrated that the DL procedure is likely to underestimate the
between-study variance, particularly when the number of studies is small and there is substantial heterogeneity
between studies (Brockwell and Gordon, 2001, Brockwell and Gordon, 2007; Sidik and Jonkman, 2005; Sidik and
Jonkman, 2007; Hartung and Makambi, 2003). When between-study variance is underestimated, the p-value for
the combined intervention effect may become artificially small and the confidence bounds produced for
combined intervention effects may be too narrow. For this reason, many meta-analysts may draw false
conclusions that an intervention is effective. When it is appropriate to combine studies whose estimates differ
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 346–370
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considerably, methods that better account for uncertainty than the DL procedure are recommended (Cornell et al,
2014). The Knapp and Hartung adjustment (Knapp and Hartung, 2003) and Bayesian modelling provide
approaches that better capture the uncertainty associated with statistical heterogeneity. The use of the Knapp
and Hartung adjustment leads to a considerably wider confidence interval for the combined odds ratio than that
obtained using the DL method alone (Table 9).

Results for performing Bayesian random-effects meta-analysis with non-informative priors for the between-
study heterogeneity are provided in Table 9. As a non-informative prior for the between-study standard deviation
Table 9. Results from re-analysing data from published meta-analyses using conventional and Bayesian
approaches.

Radioisotopes against a placebo. Binary outcome: metastatic bone pain relief

Summary OR
(95% CI) bτ2 (95% CI) I2 (95% CI)

Conventional random-effects
meta-analysis (using DerSimonian
and Laird estimation)

1.98 (0.65, 6.01)a 1.06 (0.11, 20.6)a 71% (20%, 98%)a

Conventional random-effects
meta-analysis (Knapp–Hartung
adjustment, based on
DerSimonian and Laird estimation)

1.98 (0.35, 11.3)a 1.06 (0.11, 20.6)a 71% (20%, 98%)a

Bayesian random-effects meta-analysis
with a non-informative uniform(0,5)
prior for τ

2.10 (0.36, 17.8)b 2.28 (0.14, 17.7)b 84% (25%, 98%)b

Bayesian random-effects meta-analysis
with a non-informative half-normal(0,10)
prior for τ

2.06 (0.41, 14.9)b 1.91 (0.12, 14.9)b 82% (22%, 97%)b

Bayesian random-effects meta-analysis
with an informative t(�2.00, 0.822, 5) c

prior for log(τ2)

1.96 (0.83, 4.23)b 0.41 (0.04, 1.81)b 39% (8%, 81%)b

Standard lower dose of risperidone against any dose. Continuous outcome: mental state

Summary SMD
(95% CI) bτ2 (95% CI) I2 (95% CI)

Conventional random-effects
meta-analysis (using DerSimonian
and Laird estimation)

0.61 (0.19, 1.03)a 0.14 (0.02, 3.73)a 76% (31%, 99%)a

Conventional random-effects
meta-analysis (Knapp–Hartung
adjustment, based on
DerSimonian and Laird estimation)

0.61 (�0.18, 1.39)a 0.14 (0.02, 3.73)a 76% (31%, 99%)a

Bayesian random-effects meta-analysis
with a non-informative uniform(0,5)
prior for τ

0.61 (�0.55, 1.64)b 0.39 (0.02, 8.67)b 90% (28%, 99.5%)b

Bayesian random-effects meta-analysis
with a non-informative half-normal(0,10)
prior for τ

0.61 (�0.46, 1.57)b 0.36 (0.01, 6.15)b 89% (25%, 99%)b

Bayesian random-effects meta-analysis
with an informative t(�2.88, 1.702, 5) d

prior for log(τ2)

0.63 (0.11, 1.07)b 0.10 (0.004, 0.87)b 70% (8%, 95%)b

OR, odds ratio; SMD, standardized mean difference.
a95% confidence interval. For τ2, this is obtained iteratively via the Q-profile method (Viechtbauer, 2007). The
interval for I2 is obtained by monotonic transformation of τ2 (Higgins and Thompson (2002)).
bPosterior medians and 95% credible intervals are reported.
cPredictive distribution for log(τ2) based on the “typical” within-study variance bσ2 ¼ 0:42 and the predictive
t(�1.14, 0.822, 5) distribution for logit(I2) for a non-pharmacological binary outcome meta-analysis with a
subjective outcome.
dPredictive distribution for log(τ2) based on the “typical” within-study variance bσ2 ¼ 0:04 and the predictive
t(0.25, 1.702, 5) distribution for logit(I2) for a pharmacological vs pharmacologicalcontinuous outcome meta-
analysis assessing mental health.
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τ, we applied a uniform(0, 5) prior, as recommended by Spiegelhalter et al (2004). We also used a positive half-
normal(0,10) prior for τ, which has been used in previous applications to meta-analysis (Thompson et al, 1997).
Clearly, the between-study variance τ2 is estimated subject to substantial uncertainty in each case, and this is
reflected by the considerably wide intervals for the summary intervention effect. The example binary outcome
meta-analysis compares a non-pharmacological intervention against a placebo with respect to a subjective outcome.
Using a t(�1.14, 0.822, 5) distribution as an informative prior for logit(I2) (and hence a log t(�2.00, 0.822, 5) prior for τ2,
based on the “typical” within-study variance bσ2 ¼ 0:42), the central estimates for both I2 and τ2 decrease. Evidently,
the corresponding 95% CIs for the summary OR and the between-study heterogeneity variance are narrower in
comparison with those obtained using conventional methods for random-effects meta-analysis.

As a contrasting example, we re-analysed data from a continuous outcome meta-analysis combining four
studies to assess the standard lower dose of risperidone in comparison with any dose with respect to the mental
state of schizophrenia patients (Li et al., 2009). This meta-analysis has a mean study size of 103 patients. Symptom
severity was measured using a Positive and Negative Syndrome Scale score where a reduction in Positive and
Negative Syndrome Scale score represents an improvement in mental state. In a conventional random-effects
meta-analysis by the DL method combining standardized mean differences, the heterogeneity estimates are high
and again imprecisely estimated (τ2 = 0.14 [95% CI : 0.02 to 3.73], I2 = 76%). The use of the Knapp and Hartung
adjustment shows a somewhat wider confidence interval for the combined SMD. Bayesian meta-analysis using
an informative logit t( 0.25, 1.702, 5) prior for I2 (and hence a log t(�2.88, 1.702, 5) prior for τ2, based on the

“typical” within-study variance bσ2 ¼ 0:04) leads to a slightly reduced estimate for the between-study variance
of 0.10 and a noticeably narrower 95% credible interval (0.004 to 0.87). Although the central estimate for τ2 has
reduced only slightly from the conventional estimate of 0.14, the 95% interval for the combined SMD has widened
because the Bayesian approach accounts for the uncertainty in τ2.

The Bayesian approaches implementing informative priors for I2 incorporate our beliefs about the likely
inconsistency across studies in the meta-analysis. Therefore, we consider these results to be more appropriate than
those obtained using conventional methods for meta-analysis. The basic code to perform each of the example Bayesian
random-effects meta-analyses, using informative priors for inconsistency, is available in Supplementary Information
Section A.6, together with the study data. Code is available to perform binary outcome meta-analysis on the log OR,
log RR or RD scale and to undertake continuous outcome meta-analysis on the SMD or mean difference scale.
4. Discussion

This paper has presented an empirical investigation of 3873 binary outcome, 5132 continuous outcome and 880
mixed outcome meta-analyses from the CDSR. Our investigation has demonstrated that analyses may exhibit
contrasting levels of inconsistency according to the type of outcome data and the scale on which the meta-
analysis is performed.

Measures for binary outcomes have already been compared in terms of the statistical significance of heterogeneity
in a pair-wise meta-analysis. Engels et al (2000) compared analyses of odds ratios and risk differences in 125 meta-
analyses, and Deeks (2002) additionally explored heterogeneity among relative risks in 551 meta-analyses. In our
work, we computed the scale-invariant I2 statistics for a very large collection of publishedmeta-analyses. Our analyses
allowed us to compare outcome measures with respect to consistency across studies. We have shown that the
analyses of odds ratios and relative risks exhibit similar levels of inconsistency on average, with analyses of risk
differences yielding higher levels of inconsistency. These findings confirm the comparisons of binary outcome
measures by Engels et al and Deeks. Our results show a number of cases where an I2 estimate close to zero based
on one metric corresponds to an extremely large I2 estimate based on an alternative metric. In situations where
inconsistency among risk differences is substantially different to inconsistency among relative risks or odds ratios,
there are likely to be high discrepancies among the study sizes and event rates (Engels et al, 2000). Likewise,
differences between odds ratios and relative risks are likely to occur, if there is a wide range of absolute event rates.
This is particularly important in network meta-analyses comparing three or more interventions, where more varied
absolute risks might be expected, because of the greater number of included interventions.

To our knowledge, this paper represents the first empirical investigation of inconsistency across studies in
continuous outcome meta-analyses. Friedrich et al (2008) used simulated data sets to assess the performance
characteristics of the mean difference and SMD. Our findings corroborate those of Friedrich et al, which suggest
that mean differences are generally as consistent as SMDs. Nonetheless, there is evidence to suggest that, in some
situations, I2 might be reduced substantially by using the alternative scale. As a possible explanation for this,
Friedrich et al (2008) showed that the mean difference has minimal bias, whereas the SMD is biased towards zero
(no intervention effect) when the number of participants in each study is small. When the SMD is biased, I2 is
smaller than in the mean difference-based analysis because the bias decreases the weighting of the studies with
effects further away from zero, reducing I2. Under scenarios with less bias, the simulation study showed I2 values
to compare favourably between metrics.

The selection of an outcome measure for meta-analysis depends on balancing three factors (Deeks 2002).
First, we would like an outcome measure that gives similar results for all studies included in the meta-analysis.
© 2015 The Authors. Research Synthesis Methods published by John Wiley & Sons, Ltd. Res. Syn. Meth. 2016, 7 346–370
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When there is substantial variation among study results and there is inconsistency in the direction of effect, it
would be misleading to give an average estimate for the intervention effect, particularly if study designs, within-
study biases, and reporting biases are not taken into account (Turner et al, 2009; Welton et al, 2009; Dwan et al,
2013). Second, it is important that the outcome measure has the mathematical properties required for
conducting a sound meta-analysis. Third, it would be desirable to use an outcome measure that is easy for
meta-analysts to interpret and compute. For binary data analysis, there is no single metric that is best for all
criteria, and the choice of an outcome measure therefore involves a trade-off. We recommend performing a
sensitivity analysis to investigate whether choice of effect metric influences the conclusions of the meta-
analysis. We suggest selecting the outcome metric for analysis on the basis of homogeneity and
mathematical properties alone and then using empirical evidence on heterogeneity to compute results on
the scale desired for interpretation (van Valkenhoef and Ades, 2013; Dias et al, 2013). Choice of an outcome
measure is especially important in network meta-analysis, because it can affect the ranking of treatments
(Norton et al, 2012). Caldwell et al (2012) discussed selecting the scale of measurement in network meta-
analysis and showed that the larger evidence base in such analyses may enable a data driven approach
to selecting the scale.

This research set out to compare consistency across studies in meta-analyses using various types of outcome
data. We have demonstrated that analyses of relative measures for binary data and analyses of mixed outcome
data tend be more consistent than analyses of continuous data. We have analysed data from continuous outcome
meta-analyses assessing an obstetric outcome for which we could calculate the RoM for each individual study. Our
results suggest that the logarithm of RoM compares favourably with the mean difference and SMD in terms of
inconsistency among results of included studies in a meta-analysis. However, these findings are limited by the
normal approximation to the logarithm of RoM, which may not be entirely appropriate. It is therefore unclear
whether the observed high levels of inconsistency are associated with the use of difference measures as opposed
to relative measures. A possible explanation may be that continuous data analysis is more susceptible to errors in
the data. For instance, the standard error and standard deviation are often confused. Further empirical research
could explore this issue by manually searching published articles and noting the inappropriate use of the term
“standard error”, in a similar way to Nagele (2003).

A secondary objective of this work was to facilitate the incorporation of external evidence on heterogeneity in
meta-analysis. This paper has provided sets of predictive distributions for I2 in a wide range of specific research
settings, which can be used directly to inform priors for the between-study heterogeneity variance in future
meta-analyses of binary, continuous and mixed outcomes. The distributions would be very useful in future
meta-analyses including only a small number of studies. We have demonstrated how a predictive distribution
for I2 can be implemented in a Bayesian random-effects meta-analysis, in order to inform a prior for the
between-study variance τ2. In each of the two examples, the precision of heterogeneity improved with use of
an informative prior for τ2. We note that without validation that the coverage rate of the credible interval for
heterogeneity is closer to optimal, the narrower intervals obtained do not necessarily mean that the estimation
is more accurate. A simulation study could inform this question in future work.

In other work, Turner et al (2012) have suggested informative priors for the between-study variance τ2 for
use in binary outcome meta-analyses on the log odds ratio scale, and Rhodes et al (2015) have reported priors
for continuous outcome meta-analyses using the SMD scale. The present study provides predictive
distributions for I2 that would serve to provide informative prior distributions for τ2 in binary outcome meta-
analyses using the log OR, log RR and RD scales, continuous outcome meta-analyses using the SMD and mean
difference scales, and mixed outcome meta-analyses. The discrepancies between our priors across different
settings reflect the associations between meta-analysis characteristics and heterogeneity identified by Turner
et al and Rhodes et al. The implications are that Bayesian meta-analysis with an informative prior for I2 should
lead to comparable inference to meta-analysis assigning an informative prior to τ2. We recommend to assign a
prior distribution directly to τ2, where available, because this parameter is used in the analysis. Otherwise, for
example, in meta-analyses of mean differences, a predictive distribution for I2 can be used to inform a prior for
τ2. We recommend using the predictive distributions for specific research settings if the new meta-analysis fits
directly into the category. In situations where the new meta-analysis is suited to a number of different research
settings, we suggest that the predictive distribution reported for a general healthcare setting may be an
appropriate prior.

The findings of this paper are subject to the limitations of I2 as a measure of heterogeneity. In our analyses, we
estimated I2 using the definition τ2/(τ2 + σ2). We applied this equation to the general case, by replacing σ2 by an
estimate of the “typical” within-study variance in the same way as Higgins and Thompson (2002). In our
exploratory data analyses, we used I2 values derived from the method of moments-based estimates of the
between-study variance τ2. The derivation of the method of moments estimate of τ2, which is part of the
DerSimonian and Laird procedure, is dependent on the unknown true within-study variances from each study.
This estimate of τ2 can have non-trivial negative bias (Böhning et al, 2002; Hamza et al, 2008), and so the I2 values
obtained in this way may be smaller than they should be. Furthermore, Wetterslev et al (2009) have criticised I2

because of the dependency on an estimate for a “typical” within-study variance. Estimation of the “typical”
within-study variance may mislead, because it gives less emphasis to larger studies with larger numbers of events.
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If the “typical” within-study variance overestimates the sampling error then I2 will be underestimated and vice
versa. Another limitation of our analyses is that they did not account for uncertainty in the estimate of the “typical”
within-study variance, which we treated as fixed and known.

A further limitation of I2 concerns the dependency of the statistic on within-study precisions. Our initial
descriptive analyses did not allow for this dependency, and our formal statistical analyses using a Bayesian
framework only crudely adjusted for it. If the included studies are very large such that the within-study variances
are very small, then even though the estimate for the between-study heterogeneity variance τ2 may be small, the
estimate for I2 could be large. In view of the limitations of I2, Higgins and Thompson (2002) recommend using τ2 to
best describe the underlying between-study variation in a meta-analysis. I2 essentially compares the estimated

value of τ2 with the “typical” within-study variance bσ2 (Higgins and Thompson, 2002), which is dependent on
the design characteristics of included studies. For this reason, I2 cannot be used to measure the extent of the
between-study heterogeneity in a meta-analysis. In this paper, focus on the I2 statistic was useful to compare
different types of outcome data and outcome measures in terms of consistency across studies in a meta-analysis.
Such comparisons could not be made using only the between-study variance τ2 that is defined on the outcome
metric scale.

A number of caveats need to be mentioned regarding the use of our informative priors for I2. First, for
computational convenience, we classified meta-analyses into just two or three categories for mean study size.
Guidelines are needed for use of our priors in practise, for example, what to recommend for a meta-analysis
combining studies with a large mean sample size greater than say 10 000 participants. Second, we note that
our analyses include insufficient data for certain types of meta-analyses such as continuous outcome meta-
analyses for cancer and pharmacological versus pharmacological meta-analyses of mixed outcomes examining
a semi-objective outcome (Supplementary Information Section A.5). In case there is no sufficient data on a similar
outcome, intervention comparison or therapeutic area, we suggest considering several prior distributions as
sensitivity analysis. In addition to using the prior for the specific meta-analysis setting, an analyst could apply
the prior for a general research setting. Where no relevant data-based prior is available, it would be possible to
use elicited opinion from experts to construct an informative prior for inconsistency among studies in the
meta-analysis. For example, Turner et al (2009) used elicited opinion to construct prior distributions representing
biases in each study and perform a bias-adjusted meta-analysis.

The data set includes only meta-analyses in Cochrane reviews. These include a wide range of application areas
but may not be representative of all healthcare meta-analyses. Automated data extraction was used to obtain the
data from each meta-analysis in the CDSR. For this reason, a limitation of our work is that the data set only
includes data that were entered numerically in tables or figures by the Cochrane review authors, and meta-
analyses reported only in the main text are excluded. This could cause us to underestimate the true levels of
heterogeneity, because meta-analyses described in the main text alone may tend to include more heterogeneous
studies. On the other hand, we included data sets in which authors had chosen not to combine the study data
numerically, so our priors might support higher values of between-study variance than would apply to many
syntheses in practise. Another limitation is that the classifications of meta-analysis characteristics were extremely
time-consuming and were therefore undertaken by just one person.

In summary, levels of inconsistency among results of included studies were found to be sensitive to the type of
outcome data used and the scale on which the meta-analysis is performed. Predictive distributions for
inconsistency would be useful to inform priors for the between-study variance in meta-analyses including few
studies (particularly for continuous outcome meta-analysis on the mean difference scale where we do not have
“off the shelf” prior distributions for the between-study variance). For meta-analysis of binary and continuous
outcome data, our investigation provides some guidance on which outcome measures are likely to be most
consistent in particular settings.
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