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Stereoscopic endoscopes have been used increasingly in minimally invasive surgery to visualise the organ surface and manipulate various
surgical tools. However, insufficient and irregular light sources become major challenges for endoscopic surgery. Not only do these
conditions hinder image processing algorithms, sometimes surgical tools are barely visible when operating within low-light regions. In
addition, low-light regions have low signal-to-noise ratio and metrication artefacts due to quantisation errors. As a result, present image
enhancement methods usually suffer from heavy noise amplification in low-light regions. In this Letter, the authors propose an effective
method for endoscopic image enhancement by identifying different illumination regions and designing the enhancement design criteria for
desired image quality. Compared with existing image enhancement methods, the proposed method is able to enhance the low-light region
while preventing noise amplification during image enhancement process. The proposed method is tested with 200 images acquired
by endoscopic surgeries. Computed results show that the proposed algorithm can outperform state-of-the-art algorithms for image
enhancement, in terms of naturalness image quality evaluator and illumination index.
1. Introduction: Endoscopic surgery is increasingly performed for
minimally invasive procedures. During the operation, the surgeon
uses stereoscopic endoscopes to visualise organ surfaces in the
body and manipulate various surgical tools. In principle, the data
acquired are high-quality HD stereoscopic images, with the
potential to provide secondary information to the surgeons, such
as 3D reconstructed scenes, tool tracking, and object recognition.
Nevertheless, all these applications assume that the images
are acquired under an ideal environment that is free of artefacts,
noise, and illumination non-uniformities. In practice, the
endoscopic images suffer from some serious problems, such as
insufficient illumination and a relatively narrow field of view [1].
Since the illumination distribution is extremely non-linear, such
problems cannot be easily resolved by adjusting the light source
intensity. As a result, algorithms such as 3D scene reconstruction
and object recognition can suffer greatly in terms of robustness
and produce erroneous results. Moreover, when surgeons are
operating within low-light regions, the visibility of tools is often
poor, severely increasing the risk of damaging and even
puncturing important organs, such as liver and spleen. Therefore,
there is a clinical need for endoscopic image enhancement to
reduce surgical risks.

1.1. Related work: Image enhancement is an active technique
and widely used in the field of the computer vision community.
Many image enhancement methods were presented to address
different issues for natural images. Most of them focus on
contrast enhancement and dynamic range compression instead of
illumination enhancement. Thus, these methods are not suitable
for endoscopic image enhancements.

Classical approaches including the gamma correction-based
method [2] and Retinex theory-based method [3] provide the
fundamentals of the image enhancement algorithms. In gamma
correction, the pixels with low-intensity values are mapped to
higher intensity values following a non-linear projection operator.
This method can effectively improve the visibility of low-light
regions but suffer from contrast degradation and visual inconsist-
ency. In retinex theory, the perceived image is often modelled
with the illumination and reflectance components, where the illu-
mination is assumed to be piece-wise linear. Earlier algorithms
such as single-scale Retinex [4] and multi-scale Retinex algorithms
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[5, 6] use a centre-surround function to mimic the illumination gain
of human visual system. These methods improve the lightness as
well as the image contrast but they also suffer from over-
enhancement, which degrades the naturalness of the image, as
well as heavy colour distortions, which requires additional post-
processing techniques such as colour restoration and histogram
equalisation. To reduce over-enhancement and colour degradation,
Wang et al. [7] proposed a image enhancement method by enhan-
cing contrast and preserving the naturalness of the illumination.
Recently, Guo et al. [8] proposed an effective low-light image en-
hancement algorithm, where an improved illumination map is esti-
mated by imposing a structure prior on the maximum values in R,
G, and B channels.

Although the existing methods are able to improve the illumin-
ation of dark images while preserving details, there is still a
major challenge to be overcome. In low-light regions, the image
pixels tend to suffer from low signal-to-noise ratio. Since image en-
hancement is a scaling operation by nature, the enhancement algo-
rithm often amplify image noise in the process. Recently, Su and
Jung [9] tried to address this problem by introducing a two-step
perceptual enhancement algorithm to suppress camera noise in
low-light images, but the algorithm seems to be less effective for
endoscopic images.

1.2. Contribution: This Letter proposes a new image enhancement
method based on identification in three illumination regions. The
proposed method can enhance the visibility of the low light
region of endoscopic images, preserve the naturalness of the
image, and reduce noise/artifact amplification. The proposed
method thus improves the image quality of endoscopic images,
and can be used as an important pre-processing step for other
image processing algorithms.

2. Method: We consider the Retinex model defined as

L = R ◦ T , (1)

where R represents the natural reflectance of the true scene,
T the illumination map, and ◦ denotes the element-wise productor
operator. Given the observed endoscopic image L, there are
generally two ways. One way is to estimate an approximate
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illumination T∗ such that the reflectance R can be well recovered by
using L/T∗, where / denotes the element-wise division operator.
Alternatively, (1) can be rewritten as

R∗ = L ◦ E, (2)

where E = 1/T∗ represents the enhancement factor. Instead of
estimating T, another way is to design the enhancement factor E
for an enhanced image R∗ so that it can achieve a visual quality
that is expected for R. This Letter focuses on the second way.
Our enhancement factor E is designed to achieve the following

goals: (i) For image region with good illumination, it aims to pre-
serve its visual appearance and local contrast. (ii) For image
region with low illumination but intact details, it aims to improve
its luminance, as well as enhancing local contrast. (iii) For
regions with extremely low illumination and lossy details, it aims
to improve its luminance, but suppress amplification of local
changes that are mainly contributed by noise and quantisation
errors. The workflow of the proposed method is displayed in Fig. 1.
To implement our method, we first partition the input endoscopic

image into three regions: well-lit, low-light, and lossy. Let
L(x) = (Lr(x), Lg(x), Lb(x)) and let V (x) be the V-space element
through converting L(x) from RGB space to HSV space by HSV
transformation. The illumination region sets are defined as

VWL(x) = {x|V (x) . t1}

VLo(x) = {x|V (x) ≤ t2, mI(x) , e}

VLL(x) = {x|else}

⎧⎪⎨
⎪⎩ , (3)

where VWL denotes the well-lit region, VLL denotes the low-light
region, VLo denotes the lossy region, V (x) represents the V-space
obtained, and mI(x) represents the well-known dark channel
image, defined as: mI(x) = minc[{r,g,b} Lc(x). Three threshold para-
meters t1, t2, and e satisfy 1 . t1 . t2 . e . 0.
After the three illumination regions are identified, the captured

image L(x) is decomposed into a base layer and a detail layer,
where the base layer B(x) would represent the smooth varying lumi-
nance of the image, and the detailed layer D(x) would capture local
details and contrasts. The two layers are processed and enhanced
differently in order to achieve the expected image quality. Similar
techniques have been employed with great success in other tone-
mapping algorithms such as [10] for user interactive detail enhance-
ment for artistic purposes. To extract the base and detail layers, we
use the edge preserving smooth filter as below:

B(x) = F{L(x)}

D(x) = L(x)− F{L(x)}

{
, (4)
Fig. 1 Proposed algorithm workflow for endoscopic image enhancement
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where F{x} is a edge-preserving filter. In this Letter, we employ the
tree filter [11] to extract detail and base layers since the tree filter
has linear time computational speed and strong edge-preserving
smoothing power.

For the base layer, a pseudo enhancement factor ÊB can be
constructed directly to ensure ÊB ◦ B, the overall luminance of
enhanced image R∗, will be close to t1. Since the base layer repre-
sents the smoothly varying luminance, and it is generally free of
noise and artifacts, we can directly apply strong scaling factors
to enhance its low-light region without worrying about noise am-
plification. In this case, we construct our enhancement factor ana-
logue to the classic gamma correction formulation, where pixels
with an intensity value less than t1 will be non-linearly mapped
to a higher intensity value close to t1. ÊB is given as follows:

ÊB(x) =
1, x [ VWL
t1
tg1

VB(x)
(g−1), x [ VLL

⋃
VLo

⎧⎨
⎩ , (5)

where VB(x) is the V-space of the base layer B(x) and g is a positive
parameter <1, which is also known as the gamma compression co-
efficient. The lower the gamma, the higher the compression, and as
a result, the image appears brighter. In general, this process would
also compress the local contrast and reduce local detail. However,
since the base layer is smooth and is expected to have a uniform dis-
tribution, the gamma compression does not cause any problem.

Similarly, we can also construct a pseudo enhancement factor ÊD
for the detail layer. Due to the extremely low-signal-to-noise ratio
and high degree of quantisation error present in VLo, the local
changes we observe in this region are mostly contributed by
noise and artefacts. As a result, unlike in gamma correction,
where there is a high gain for low-intensity pixels, we would like
to have a linear gain for low-intensity pixels in order to suppress
noise amplification while maintaining the natural appearance of
enhanced image. The construction of ÊD is given as follows:

ÊD(x) = 1, x [ VWL

min (b, ÊB(x)), x [ VLL

⋃
VLo

{
, (6)

where b is a constant parameter, representing the linear enhance-
ment factor.

To enforce the piece-wise linear assumption of the illumination
T, we smooth the pseudo enhancement factors ÊB and ÊD by
using a Gaussian function to yield EB and ED, respectively:

EB = ÊB∗h1
ED = ÊD∗h2

{
, (7)

where h1 and h2 are Gaussian kernels where h2 has a smaller size
than h1, and ∗ denotes the discrete linear convolution operation.
Finally, each enhancement factor will be applied to both the base
and detail layers, respectively. The enhanced image R∗ is obtained
by

R∗ = EB ◦ B+ ED ◦ D. (8)

3. Results
3.1. Experiment setup: In the experiments, we compare our
methods with three state-of-the-art image enhancement algorithms:
NPEA [7], LIME [8], and TwoStep [9]. All algorithms are
implemented and compared in MATLAB R2018a on a Windows
10 64-bit desktop with an Intel i7-4770 CPU. We evaluate our
algorithm on 200 images acquired by real endoscopic surgeries,
where the design parameters are t1 = 0.4, t2 = 0.05, e = 0.01,
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g = 0.2, b = 3. We chose t1 = 0.4 to separate well-lit region and
low-light region. We chose t2 = 0.05 and e = 0.01 as two reason-
ably small parameters to identify lossy region according to (3).
g = 0.2 and b = 3 are enhancement parameters, where g is
chosen for the non-linear enhancement of the low-light region
and b is chosen for the linear enhancement of lossy region. The
values of g and b are determined empirically, as they seem to
provide consistent and effective enhancements without visible
detail compression and noise amplification. As g decreases, the en-
hancement power at low-light region would increase and as b
increases, the enhancement power at lossy region would increase.
3.2. Quantitative validation: We use the naturalness image quality
evaluator (NIQE) to quantitatively measure the enhanced image
quality [12], which by default measures any deviations from
statistical regularities observed in natural images. In this study,
instead of using the default nature image model, we trained our
Table 2 Mean illumination uniformity index computed based on the 200
original endoscopy images and the enhanced images using different
algorithms

Original Proposed LIME [8] TwoStep [9] NPEA [7]

0.28 0.22 0.30 0.35 0.22

Table 1 Mean naturalness index computed based on the 200 enhanced
endoscopy images, represented as mean ± standard deviation, using four
different algorithms

Proposed LIME [8] TwoStep [9] NPEA [7]

2.46+ 0.12 3.01+ 0.15 2.91+ 0.34 2.93+ 0.15

Fig. 2 Visual comparisons of enhanced images using four algorithms
a Original input
b Results by our algorithm, showing enhanced images with natural appearance
c Results by LIME, showing good contrast but also amplified noise and over-enh
d Results by TwoStep, showing smooth image but also blur and weak enhanceme
e Results by NPEA, showing good enhancement but also amplified noise
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statistical model based on 50 hand-picked pristine endoscopic
images that are free of visible image noise/artefacts and have
relatively bright illumination. In a similar study, Luo et al. [13]
also used this approach to measure the image quality of
endoscopic images, which was shown to be effective. A smaller
score of NIQE would indicate better perceptual image quality.

As shown in Table 1, we listed the mean NIQE and standard
deviations for all enhanced images given by four different enhance-
ment algorithms. From the proposed method, we obtained a super-
ior NIQE of 2.46 ± 0.12, indicating that our results have
consistently higher image quality, compared with the other
methods. The higher naturalness index values, yielded by the
other methods, indicate increases in noise and blur during the en-
hancement process.

Aside from the naturalness of the image, we also evaluate the
enhanced images based on illumination uniformity. Following the
framework from [14–16], the illumination of the enhanced image
R∗ can be described by T̂R∗ = meany[V(x) maxc[{R,G,B} R

∗
c , where

V(x) is a region centred at pixel x, and y is the location index
within the regionV(x). When the illumination is uniform, the inten-
sity distribution of T̂R∗ should be close to uniform, which means the
standard deviation of T̂R∗ should be small. Thus, we let x denote the
standard deviation of the intensity of T̂R∗ (x) and use it as an index to
measure the illumination uniformity of enhanced image. In Table 2,
we have the average illumination uniformity index x of the original
input images and the enhanced images given by four different algo-
rithms. From this comparison, we can see that the proposed method
and NPEA yield the lowest x and thus provide better illumination
uniformity for the enhanced images.
3.3. Qualitative validation: To further illustrate the performance of
our algorithm, we also provide visual comparisons. Fig. 2 displays
the enhancement results of three endoscopic images obtained by the
proposed algorithm and three other state-of-the-art enhancement
algorithms. We observe that the proposed method effectively
ancement
nt
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enhances the visibility of the low-light region and reveals hidden
surgical tools and organ surface information, while preventing
noise amplification and providing a more natural surgical scene.
In comparison, LIME is also able to enhance the visibility and
contrast of the input images, however it causes over-enhancement,
under-enhancement, and noise amplification, as indicated in
Fig. 2c. From Fig. 2d, we can see that the TwoStep method demon-
strates good noise suppression ability. However, its illumination
enhancement ability is relatively weak and it may over smooth
image details as shown in the circled regions. Finally, the NPEA
method is able to improve the visibility of low-light image but
it also suffers from severe noise amplification and contrast degrad-
ation, shown in Fig. 2e.

4. Conclusions: In this Letter, an image enhancement algorithm
with effective noise suppression ability is proposed for
endoscopic images. The algorithm first identifies different
illumination regions and then processed the illumination and
detail layers separately to meet the enhancement design criteria
for desired image quality. From our experiments using 200 test
endoscopic images, the proposed algorithm yielded an average
NIQE of 2.46 and an average illumination index of 0.22,
quantitatively demonstrating superior performance than other
state-of-the-art algorithms. By visual inspection, the proposed
method is able to maintain the contrasts and colours in the
well-lit image regions, while significantly improving the visibility
of the low-light regions. By comparison, we can see visible
image artefacts amplified by other algorithms, while our approach
yields enhanced images with more natural appearances and higher
image quality. All the results confirm that our method has superior
performance than the other state-of-the-art algorithms, and can
effectively enhance the endoscopic image without amplifying
underlying noise/artefact in the low-light regions.
On average, the computational time for our algorithm to process

an endoscopic image with 480× 854 resolution is 1.02 s. The
computational time will be greatly reduced through parallel imple-
mentation in C++ using a GPU and enabling it to run in real time.
Although naturalness index is a good quantitative measurement, sur-
geons’ preferences are also important. In the future, a psychophysical
study will be carried out by recruiting surgeons to qualitatively evalu-
ate endoscopic images enhanced by different algorithms.
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