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Abstract 

Background: The circadian system is responsible for regulating various physiological activities and behaviors and has 
been gaining recognition. The circadian rhythm is adjusted in a 24‑h cycle and has transcriptional–translational feed‑
back loops. When the circadian rhythm is interrupted, affecting the expression of circadian genes, the phenotypes of 
diseases could amplify. For example, the importance of maintaining the internal temporal homeostasis conferred by 
the circadian system is revealed as mutations in genes coding for core components of the clock result in diseases. This 
study will investigate the association between circadian genes and metabolic syndromes in a Taiwanese population.

Methods: We performed analysis using whole‑genome sequencing, read vcf files and set target circadian genes to 
determine if there were variants on target genes. In this study, we have investigated genetic contribution of circadian‑
related diseases using population‑based next generation whole genome sequencing. We also used significant SNPs 
to create a metabolic syndrome prediction model. Logistic regression, random forest, adaboost, and neural network 
were used to predict metabolic syndrome. In addition, we used random forest model variables importance matrix to 
select 40 more significant SNPs, which were subsequently incorporated to create new prediction models and to com‑
pare with previous models. The data was then utilized for training set and testing set using five‑fold cross validation. 
Each model was evaluated with the following criteria: area under the receiver operating characteristics curve (AUC), 
precision, F1 score, and average precision (the area under the precision recall curve).

Results: After searching significant variants, we used Chi‑Square tests to find some variants. We found 186 significant 
SNPs, and four predicting models which used 186 SNPs (logistic regression, random forest, adaboost and neural net‑
work), AUC were 0.68, 0.8, 0.82, 0.81 respectively. The F1 scores were 0.412, 0.078, 0.295, 0.552, respectively. The other 
three models which used the 40 SNPs (logistic regression, adaboost and neural network), AUC were 0.82, 0.81, 0.81 
respectively. The F1 scores were 0.584, 0.395, 0.574, respectively.

Conclusions: Circadian gene defect may also contribute to metabolic syndrome. Our study found several related 
genes and building a simple model to predict metabolic syndrome.
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Background
Metabolic syndrome (MetS) is a cluster of commonly 
concurrent metabolic risk factors associated with cardi-
ovascular disease and type 2 diabetes mellitus, includ-
ing: elevated blood pressure, atherogenic dyslipidemia, 
insulin resistance, and central obesity (measured as 
waist circumference with ethnic specific values). Thus, 
metabolic syndrome can eventually lead to conditions 
such as Chronic Kidney Disease (CKD) and atheroscle-
rotic cardiovascular disease [1].

Risk factors of metabolic syndrome include family 
history, smoking, obesity, lack of physical activity and 
lifestyle factors [2, 3]. Sugar-sweetened soft drinks have 
been reported to increase risk [4, 5]. Children who have 
an increased body mass index (BMI), systolic blood 
pressure (SBP) and triglyceride levels are believed to be 
at higher risk of developing MetS in middle age [6].

The prevalence of metabolic syndrome is highest 
among those who are overweight and obese. The Inter-
national Diabetes Federation (IDF) estimated that one-
quarter of the world’s population suffers from metabolic 
syndrome. Taking age into consideration, metabolic 
syndrome appears to be most common in the elderly in 
those who are over 60 of age [2]. On average, the preva-
lence of metabolic syndrome in adults is about 23% [7]. 
A national survey done in Taiwan, the Nutrition and 
Health Survey in Taiwan (NAHSIT) 2005–2008 showed 
a significant increase in the prevalence of MetS from 
13.6% (1993–1996) to 25.5% (2005–2008) for males, 
and 26.4% to 31.5% in females respectively over a 
period of 10–15 years. The relationship between diabe-
tes, high blood pressure, heart disease, cerebrovascular 
disease and metabolic syndrome is inseparable, as these 
conditions and or their associations are among the top 
ten causes of death in Taiwan [8].

Circadian rhythm plays an important role in endo-
crine secretion, body temperature [9]. An important 
aspect of circadian rhythms is that they persist in the 
absence of external cues [10]. Circadian genes which 
express periodically in an approximate 24- hour period 
help to regulate the genes of metabolism [11–13]. Pre-
vious animal models have showed that knockout of 
specific circadian gene will influence the circadian 
behavior. The recognition that multiple transcription 
factors function in the circadian gene, and that each 
of these has thousands of genomic DNA binding sites. 
Each of the circadian genes contributes directly to 
individual gene regulation in addition to its role in the 
reciprocal and homeostatic regulation of other clock 

genes by transcriptional-translational feedback loops 
that define the clock itself [14]. Many disease have been 
found to related to circadian genes including Alzhei-
mer’s diseases, Parkinson disease [15], atherosclerotic 
disease [16] or viral infection.

Circadian rhythm also affects oxidative stress, too. If 
the human body or cells experience significant stress, 
their ability to regulate internal systems, includ-
ing redox levels and circadian rhythms, may become 
impaired [17]. Animal studies have showed that risperi-
done may reset circadian rhythm [18]. Risperidone was 
found to induce cytotoxicity via rising reactive oxygen 
species (ROS), mitochondrial potential collapse, lyso-
somal membrane leakiness, GSH depletion and lipid 
peroxidation, and some antioxidant like coenzyme Q10 
or N-acetyl cysteine may have a role as a therapeutic 
options [19]. Circadian rhythm also has played a role 
in liver lipid metabolism and renin angiotensin system 
[20] and chronic fatigue syndrome [21, 22]. The timing 
of statins therapy may influence the effect [23]. Renin 
angiotensin system was found to induce oxidative stress 
and fibrogenic cytokine [24]. Altering circadian rhythm 
may have a huge amount of influence over treatment of 
chronic liver diseases.

Increasing evidence shows that circadian clock genes 
may contribute to the development of metabolic syn-
drome [25, 26]. Circadian clocks regulate the timing 
of biological events including the sleep–wake cycle, 
energy metabolism, and secretion of hormones, etc. In 
an association and interaction analysis from Lin et al., 
the study proposed that many of these core circadian 
clock genes impacts metabolic activity and metabo-
lism, which may lead to metabolic syndrome [27]. We 
targeted the core circadian clock genes that have been 
potentially linked with MetS.

Method
Study population
We used Taiwan Biobank (TWB) NGS cohort as our 
study population. TWB collects lifestyle, genomic 
data, and represent diseases from Taiwan residents. 
TWB recruits community-based volunteers who are 30 
to 70  years of age and have no history of cancer. This 
cohort was based on the recruitment and monitoring 
from the general Taiwanese population, and has been 
utilized in previous genetic studies [28]. Our study 
included 642 TWB individuals who have whole genome 
sequence (WGS) data.
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Metabolic syndrome definition
According to the new International Diabetes Federation 
(IDF) definition, metabolic syndrome must meet the cri-
teria of having central obesity (measured in waist circum-
ference specific to the ethnic values, see below) plus 2 of 
the following 4 factors:

• Triglycerides ≥ 150  mg/dL (1.7  mmol/L) or taking 
drug treatment for elevated triglycerides

• Fasting glucose ≥ 100  mg//dL or previously diag-
nosed Type 2 Diabetes Mellitus

• Reduced high-density lipoprotein (HDL) cholesterol 
or drug treatment for reduced HDL cholesterol:

• in men, < 40 mg/dL (1.0 mmol/L)
• in women, < 50 mg/dL (1.3 mmol/L)

Elevated blood pressure demonstrated by any of the 
following:

• systolic blood pressure ≥ 130 mm Hg or
• diastolic blood pressure ≥ 85 mm Hg or
• antihypertensive drug treatment in a patient with a 

history of hypertension.

As our study took place in Taiwan and our data from 
the Taiwan Biobank, we used the ethnic specific values 
for waist circumference according to the “South Asians” 
and “Chinese” groups, where central obesity was defined 
as having a waist circumference of ≥ 90  cm in males 
and ≥ 80 cm in females.

Finding suspected single nucleotide polymorphisms
This analysis analyzed a total of 642 cases of WGS with 
the illumina platform (of which 123 were defined as 
metabolic syndrome patients) with target genes: ALAS1, 
APOA5, ARNTL, BUD13, CETP, CLOCK, CRY1, CRY2, 
CSNK1D, CSNK1E, GSK3B, LIPA, NPAS2, NR1D1, 
PER1, PER2, PER3, RORA, RORB, RORC, SMAD2, 
SMAD3, SMAD4, TGFB2, TGFB3, TGFBR2 and other 
genes within the range of SNPs for analysis. The range 
of SNP was set between 17 and 37 (average of > 30) with 
Qual >  = 30 [29].

However, during this experiment, the range of data 
analysis was larger than originally expected due to a 
problem of the single nucleotide polymorphism (SNP) 
range set for CSNK1E. The definition of metabolic syn-
drome was primarily based on the physiological data of 
Taiwan’s BioBank database. After it was imported into 
the SQL server, the patients were grouped with the data-
base language as the basis for subsequent analysis.

The frequency of occurrence of single-strand, dou-
ble-strand variation or non-variation in each group 

was counted. Subsequently the mathematical formula 
was written in Python and statistical analysis was 
applied to calculate the 95% confidence interval and 
the chi-square or Fisher’s Exact test to calculate the 
p value. After identifying significant SNPs, we con-
ducted subgroup analysis to find out whether these 
SNPs are related to hypertension, low HDL level, dia-
betes or high TG level. Bonferroni Correction was 
used to tackle Multiple hypothesis testing, due to there 
are 5 category of metabolic syndrome, alpha value was 
set to 0.5/5 = 0.1.

Statistical analyses
P values for continuous variables were calculated 
using student’s t test. Categorical variables were com-
pared using the chi-square test or exact test. Given the 
exploratory nature of this study, P < 0.05 was considered 
statistically significant. We use caret package in R soft-
ware version 4.04 for model prediction. We also use C#, 
python and MySQL for data manipulation.

Creation of genome‑based prediction model
We use significant SNPs to create a metabolic syndrome 
prediction model. Logistic regression, random forest, 
adaboost, and neural network were used to predict meta-
bolic syndrome. The data was used for training set and 
testing set using five-fold cross validation. We assumed 
that there was a cumulative effect on SNPs, so we take 
homozygous equal to 2, heterozygous equal to 1 and wild 
type as 0. Since weight may be influenced by these genes, 
weights are not use as a covariate [30]. Besides the four 
models mentioned above, we selected 40 importance 
SNPs according to random forest important matrix, 
then using them to create another three model using the 
logistic regression, adaboost and neural network method 
(Fig. 1). We used a simple neural network with one layer 
and size 10 units in the hidden layer and decay equals to 
0. Each model was evaluated with the following criteria: 
area under the receiver operating characteristics curve 
(AUC), precision, F1 score, and average precision (the 
area under the precision recall curve).

Results
Baseline characteristic of metabolic syndrome individuals 
and control group
Among 642 study population, there were 124 individu-
als with metabolic syndrome and 518 individuals without 
metabolic syndrome. The mean age of metabolic syn-
drome cohort was 51 years old, and the mean age of non-
metabolic syndrome cohort was 44  years old. We have 
found that the values of waistline, blood pressure, triglyc-
eride level, hemoglobin A1C, fasting glucose and diabe-
tes mellitus percentage in metabolic syndrome patient is 
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higher than those without metabolic syndrome. In addi-
tion, the high-density lipoprotein value in metabolic syn-
drome is lower than those without metabolic syndrome 

which is corresponding to metabolic syndrome definition 
(Table 1).

Table 1 show the metabolic syndrome baseline value.

Fig. 1 Flow diagram for model building
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Spectrum of metabolic syndrome mutant alleles
We searched all alleles in the reference circadian gene 
and used chi-square test to find whether heterogenous 
or homogenous genotype is related to metabolic syn-
drome. Among the genes searched, we found 186 sig-
nificant SNPs in circadian gene which is associated with 
metabolic syndrome. (Table  2). In the 186 SNP alleles, 
we identified 47 alleles associated with hypertension 
(Table  3), 27 alleles associated with diabetes mellitus 
(Table 4), 10 alleles associated with low HDL-C (Table 5) 
and 46 alleles associated with high TG level (Table 6).

Gene based prediction model
We applied different machine learning models including 
logistic regression, random forest, adaboost and neural 
network to predict metabolic syndrome which is based 
on gene data. Using our four predicting models (logistic 
regression, random forest, adaboost and neural network), 
AUC were 0.68, 0.8, 0.82, 0.8, respectively. The F1 score 
were 0.424, 0.525, 0.528, 0.526 respectively (for details 
see Table 7). We chose 40 most significant SNPs in ran-
dom forest model and used them as the new variable. We 
compared the 40 most significant OR value with the 40 

most important SNPs in random forest model. We found 
that there are only 11 SNPs overlapping (Table  8) The 
SNP selected models ((logistic regression, adaboost and 
neural network) AUC were 0.82, 0.81, 0.85 respectively. 
The F1 score were 0.578, 0.415, 0.5, respectively (Table 9). 
Feature selecting models had better performance than 
original models. The AUC and F1 value are better than 
previous model.

Discussion
In this study, we found 186 circadian gene SNPs related 
to metabolic syndrome. Of that there were 8 SNPs related 
to apolipoprotein. Previous studies have shown that 
apolipoprotein E knocked out mice will be more likely to 
developed cardiovascular disease after circadian rhythm 
was interrupted [31, 32]. Circadian rhythm disorders 
can alter our body’s metabolic factors including choles-
terol profile and apolipoprotein [33]. Another animal 
study also found that apolipoprotein-E knocked out mice 
could develop cardiac vascular disease more rapidly after 
circadian rhythm alteration [34]. Our study also showed 
that apolipoprotein is related to high TG level, low HDL 
level and HTN. Rs132759 in APOL2 is both correlated 
with HTN and low HDL level. Previous studies have 
shown that APOL2 may be related to acute inflammation 
response and lipid metabolic processes [35, 36]. To our 
knowledge, our study is the first to identify that APOL2 is 
correlated to HTN.

There are 5 SNPs located at BMS1P20 which are long 
non-coding RNAs (lnc RNA). Previous studies have 
shown that BMS1P20 is positively corelated to cancer 
patients’ overall survival especially lung adenocarcinoma 
[37]. There is also a hypothesis where lnc-RNA regulates 
our cell by lncRNA-miRNA-mRNA ceRNA network 
[38]. There are some lnc-RNA reported to be in corre-
lation with metabolism like 116HG, H19, HOTAIR and 
MIAT [39–41]. We have found rs403517 and rs405570 in 
BMS1P20 is related to DM, and we believe our study is 
the first to report BMS1P20 lnc-RNA is related to meta-
bolic syndrome.

MYO18B gene expresses myosin heavy chain that is 
expressed in human cardiac and skeletal muscle [42]. 
Some studies showed that MYO18B mutation is asso-
ciated with myopathy or cardiomyopathy diseases in 
animal model or in humans [43, 44]. One animal study 
also show that MYO18B gene expression is regulated 
by circadian rhythm [45]. In our study, we find that 
MYO18B is also associated with metabolic syndrome 
especially rs6004865 which is associated with low HDL 
levels. Although the SNPs which we find in MYO18B 
are all intronic or intergenic, we still need more studies 
to find the relationship between MYO18B and metabolic 
syndrome.

Table 1 Baseline characteristic of the patients

P values are calculated from t-test for continuous variables or from chi-square 
test for categorical

Variables. SBP, systolic blood pressure; DBP, diastolic blood pressure; HDL_C, 
high density lipoprotein; LDL_C, low density lipoprotein; BUN, blood urea 
nitrogen

No metabolic 
syndrome 
(N = 518)

Metabolic 
syndrome 
(N = 124)

P‑value

AGE(Years) 44.48 ± 10.19 51.76 ± 10.02 < 0.001

HEIGHT(cm) 165.44 ± 7.89 165.26 ± 8.63 0.831

WEIGHT(Kg) 64.7 ± 11.44 75.92 ± 12.89 < 0.001

WAISTLINE(cm) 81.61 ± 9.11 93.03 ± 8.81 < 0.001

SBP(mmHg) 111.43 ± 13.86 130.28 ± 16.89 < 0.001

DBP(mmHg) 70.76 ± 9.69 81.92 ± 12 < 0.001

HBA1C(%) 5.57 ± 0.51 6.28 ± 1.21 < 0.001

FASTING_GLU‑
COSE

91.56 ± 11.69 111.7 ± 31.5 < 0.001

Total cholesterol 190.68 ± 33.28 199.02 ± 40.62 0.036

TG 93.39 ± 54.47 211.32 ± 151.67 < 0.001

HDL_C 55.47 ± 13.8 42.23 ± 9.95 < 0.001

LDL_C 120.61 ± 31.01 122.8 ± 38.01 0.553

BUN 11.98 ± 3.29 13.68 ± 3.87 < 0.001

CREATININE 0.73 ± 0.19 0.81 ± 0.28 0.005

URIC_ACID 5.43 ± 1.39 6.43 ± 1.52 < 0.001

SEX(female) 231(45%) 49(40%) 0.402

Diabetes(%) 0(0%) 15(12%) < 0.001
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There are many studies exploring the RORA gene and 
its relation to circadian rhythm, associated with many 
psychiatry disorders including major depressive disorder, 
bipolar disorder, or sleep disturbance disorder [46–48]. 
RORA gene mutations also affect substance use like alco-
hol, tea, tobacco or caffeine [47]. This is on a background 

of the widely accepted knowledge that smoking and 
alcohol.

consumption will increase the risk of developing meta-
bolic syndrome. The result of an animal system study 
sees that suppression of RORA gene activity improves 
metabolic functions and reduces inflammation [49].

Table 2 Significant SNPs and odds ratio

HO_CI, homozygous confidence interval; HE_CI, heterozygous confidence interval

P values are calculated from chi square test

Gene refGene rsId HO_CI HO_pvalues HE_CI HE_pvalues

GGTLC2;MIR650 rs4050506 1.72–29.82 0.0006 0.01–0.55 0.0003

GGTLC2;MIR650 rs2904924 1.49–15.72 0.0027 0.01–0.65 0.0012

APOL3 rs132653 1.54–82.85 0.0012 0.01–0.65 0.0012

APOL3 rs132651 1.54–82.85 0.0012 0.01–0.67 0.0012

APOL3 rs4821460 1.5–80.84 0.0012 0.01–0.67 0.0012

GGTLC2;MIR650 rs4822280 1.36–6.72 0.0072 0.01–0.74 0.003

GGTLC2;MIR650 rs455194 1.65–28.64 0.001 0.04–0.62 0.001

HPS4 rs56782074 1.37–9.17 0.0138 0.34–0.92 0.0271

TMEM211 rs61643572 1.07–2.4 0.0282 0.37–0.84 0.0061

TMEM211 rs73879166 0.25–0.67 0.0005 1.49–4.03 0.0005

EMID1 rs2857463 0.07–0.81 0.0265 1.24–15.29 0.0265

POM121L1P rs6003123 1.18–2.62 0.0069 0.35–0.81 0.0038

GGTLC2 rs12484632 1.24–8 0.0122 0.09–0.74 0.004

POM121L1P rs3876045 1.12–5.1 0.0303 0.21–0.94 0.0428

MYO18B rs6004865 0.17–0.75 0.0079 1.14–2.52 0.0114

APOL3 rs132650 1.29–7.17 0.0123 0.11–0.71 0.0039

PVALB rs34262500 1.39–10.92 0.004 0.09–0.72 0.004

APOL3 rs35041494 1.16–3.96 0.0184 0.12–0.75 0.0057

APOL4 rs132718 1.04–11.27 0.0288 0.09–0.96 0.0288

PRAMENP;VPREB1 rs2330036 1.28–8.29 0.0083 0.1–0.78 0.0089

CSF2RB;LL22NC01‑81G9.3 rs3950040 1.14–5.26 0.0329 0.38–0.95 0.0382

MYO18B rs2269635 1.1–2.44 0.0198 0.4–0.92 0.0254

APOL3;APOL4 rs132665 1.35–7.52 0.0084 0.13–0.74 0.0084

LL22NC03‑63E9.3;POM121L1P rs964465 1.24–8 0.0122 0.13–0.84 0.012

POM121L1P rs3876046 1.02–2.35 0.0479 0.34–0.82 0.0061

RORA rs11430762 1.08–3.46 0.0324 0.3–0.96 0.0442

LL22NC03‑63E9.3;POM121L1P rs457560 1.24–8 0.0122 0.13–0.86 0.0173

LINC00895;SEPT5 rs5746814 0.19–0.93 0.0405 1.15–2.53 0.0106

LINC00895;SEPT5 rs8143055 0.19–0.93 0.0405 1.13–2.49 0.0134

NULL rs62228082 1.21–7.85 0.0119 0.09–0.72 0.004

CACNG2 rs4821508 1.13–3.72 0.0254 0.35–0.84 0.0069

GGTLC2;MIR650 rs5759468 1.14–6.38 0.0296 0.16–0.88 0.0296

APOL2 rs132759 1.26–4.95 0.0103 0.18–0.76 0.0076

CACNG2 rs2013924 1.13–3.72 0.0254 0.38–0.89 0.0153

SCARF2 rs759609 1.07–2.52 0.0283 0.34–0.83 0.0075

CACNG2 rs4821506 1.07–3.9 0.0432 0.4–0.94 0.0325

CACNG2 rs2283981 1.13–3.72 0.0254 0.4–0.91 0.0217

NULL rs60580698 1.1–3.1 0.0254 0.34–0.97 0.047

CES5AP1 rs5751643 1.14–6.38 0.0296 0.17–0.93 0.0425

GGTLC2;MIR650 rs4820531 1.07–6.04 0.0425 0.17–0.93 0.0425
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Many studies have found that SMARCB1 is a tumor 
suppressor gene and related to different types of can-
cer [50]. Recent studies have shown that the circadian 
clock oscillation was developed during cell differ-
entiation and some cancer cells lack the circadian 
gene which given the similarity between embryonic 
stem cell and cancer cell types [51]. Our study found 
that multiple SNPs in SMARCB1 gene (rs5751740, 
rs5751741, rs5760038, rs5760046, rs5760057, 
rs5996620) are both related to high TG level and 
hypertension. However, the definite mechanism is still 
unknown.

ZNF280B is an oncogene in the prostate cancer and 
gastric cancer [52]. Our study is the first to point out that 
ZNF280B mutation is related to metabolic syndrome. 
Rs142445063 and rs2051488 are related with diabetes 
mellitus in our study.

Table 3 Hypertension related SNPs

OR, odds ratio; lower, lower confidence interval; upper, upper confidence 
interval

SNP OR lower upper refGene

rs132759 1.871 1.095 3.423 APOL2

rs132665 1.893 1.011 3.879 APOL3;APOL4

rs2522291 0.696 0.514 0.945 CECR2

rs4820001 1.366 1.023 1.841 CECR3;CECR2

rs5747068 1.367 1.018 1.857 CECR3;CECR2

rs35305666 1.46 1.064 2.035 DERL3

rs5760061 1.454 1.1 1.939 DERL3

rs5760062 1.488 1.079 2.084 DERL3

rs443678 0.466 0.296 0.74 DGCR8

rs2078973 1.473 1.02 2.176 DUSP18;SLC35E4

rs4822280 1.507 1.031 2.347 GGTLC2;MIR650

rs4822932 1.385 1.008 1.891 LOC100507657;MN1

rs66786460 1.409 1.01 1.95 LOC100507657;MN1

rs9612154 1.337 1.03 1.742 MIR650;MIR5571

rs2070455 1.475 1.071 2.062 MMP11

rs5760012 1.502 1.09 2.101 MMP11

rs7289794 1.475 1.071 2.062 MMP11

rs738789 1.466 1.063 2.053 MMP11

rs738789 1.466 1.063 2.053 MMP11

rs60580698 0.793 0.647 0.97 NULL

rs61408070 1.493 1.083 2.088 NULL

Unknow06495 1.868 1.295 2.699 NULL

rs395446 0.459 0.298 0.71 RANBP1;TRMT2A

rs395446 0.459 0.298 0.71 RANBP1;TRMT2A

rs759609 2.164 1.021 5.329 SCARF2

rs6494635 1.875 1.102 3.421 SMAD3

rs10681786 1.46 1.064 2.035 SMARCB1

rs1573277 1.488 1.079 2.084 SMARCB1

rs1972257 1.493 1.083 2.088 SMARCB1

rs1972257 1.493 1.083 2.088 SMARCB1

rs2070458 1.454 1.1 1.939 SMARCB1

rs2073392 1.488 1.079 2.084 SMARCB1

rs2186370 1.454 1.1 1.939 SMARCB1

rs2267039 1.454 1.1 1.939 SMARCB1

rs34378449 1.493 1.083 2.088 SMARCB1

rs5751740 1.502 1.09 2.101 SMARCB1

rs5751741 1.492 1.085 2.083 SMARCB1

rs5760038 1.479 1.075 2.066 SMARCB1

rs5760046 1.508 1.091 2.117 SMARCB1

rs5760046 1.508 1.091 2.117 SMARCB1

rs5760053 1.434 1.03 2.028 SMARCB1

rs5760057 1.51 1.098 2.109 SMARCB1

rs5996620 1.488 1.079 2.084 SMARCB1

rs9608201 1.454 1.1 1.939 SMARCB1

rs174877 0.486 0.3 0.799 TANGO2

rs61643572 1.616 1.06 2.43 TMEM211

rs73879166 1.616 1.06 2.43 TMEM211

Table 4 Diabetes mellitus related SNPs

OR, odds ratio; lower, lower confidence interval; upper, upper confidence 
interval

SNP OR lower upper refGene HO

rs403517 1.441 1.049 2.008 BMS1P20;ZNF280B G/G

rs405570 1.422 1.045 1.96 BMS1P20;ZNF280B T/T

rs443678 0.599 0.375 0.975 DGCR8 C/C

rs5749150 1.96 1.252 3.215 DUSP18;SLC35E4 G/G

rs12484632 2.398 1.169 5.798 GGTLC2 G/G

rs455194 2.831 1.226 8.232 GGTLC2;MIR650 G/G

rs9623964 0.704 0.511 0.974 IGLL5 C/C

rs457560 3.511 1.54 10.139 LL22NC03‑
63E9.3;POM121L1P

C/C

rs964465 3.556 1.539 10.335 LL22NC03‑
63E9.3;POM121L1P

C/C

rs4822932 1.442 1.045 1.978 LOC100507657;MN1 T/T

rs66786460 1.582 1.133 2.194 LOC100507657;MN1 T/T

rs62228082 3.51 1.569 10.034 NULL G/G

Unknow06495 1.828 1.258 2.66 NULL T/T

rs140428 3.729 1.742 9.705 POM121L1P C/C

rs140428 3.729 1.742 9.705 POM121L1P C/C

rs3876045 2.9 1.397 7.413 POM121L1P C/C

rs3876046 3.596 1.597 10.313 POM121L1P G/G

rs6003123 3.424 1.48 9.959 POM121L1P G/G

rs2330036 0.33 0.121 0.941 PRAMENP;VPREB1 T/T

rs6003527 1.89 1.128 3.355 RAB36 A/A

rs395446 0.6 0.386 0.949 RANBP1;TRMT2A C/C

rs395446 0.6 0.386 0.949 RANBP1;TRMT2A C/C

rs61643572 1.681 1.098 2.539 TMEM211 G/G

rs73879166 1.681 1.098 2.539 TMEM211 A/A

rs5993853 2.446 1.183 5.941 TXNRD2 C/C

rs142445063 1.378 1.014 1.898 ZNF280B A/A

rs2051488 1.369 1.008 1.886 ZNF280B T/T
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A previous study has used different machine learn-
ing method to predict metabolic syndrome. Both 
clinical information and genetic information were 

included in the model [53]. In our study, entire data-
set or selected SNPs were chosen in different models. 
The accuracy, AUC value and F1 value were improved 

Table 5 Low HDL‑C related SNPs

OR, odds ratio; lower, lower confidence interval; upper, upper confidence interval

SNP OR lower upper refGene HO

rs132651 5.443 1.664 33.543 APOL3 C/C

rs132653 5.522 1.671 34.152 APOL3 T/T

rs4821460 5.382 1.627 33.302 APOL3 G/G

rs132718 5.382 1.627 33.302 APOL4 G/G

rs2522291 0.716 0.522 0.988 CECR2 C/C

rs133119 0.643 0.451 0.927 CRYBB2;IGLL3P C/C

rs635361 1.644 1.038 2.722 CRYBB2P1;GRK3 G/G

rs35305666 1.461 1.045 2.078 DERL3 C/C

rs5760062 1.448 1.033 2.066 DERL3 G/G

rs28411685 2.038 1.255 3.513 DGCR6L;LOC101927859 A/A

rs6518604 1.803 1.141 3.007 DGCR6L;LOC101927859 A/A

rs901790 2.036 1.25 3.516 DGCR6L;LOC101927859 T/T

rs443678 0.443 0.278 0.715 DGCR8 C/C

rs42928 0.676 0.484 0.948 GAL3ST1 T/T

rs4050506 2.151 1.024 5.533 GGTLC2;MIR650 T/T

rs4822280 1.815 1.164 3.14 GGTLC2;MIR650 A/A

rs1005558 0.701 0.531 0.924 ISX;LINC01399 A/A

rs457560 2.564 1.187 6.707 LL22NC03‑63E9.3;POM121L1P C/C

rs964465 2.576 1.174 6.801 LL22NC03‑63E9.3;POM121L1P C/C

rs9617876 2.132 1.265 3.798 LOC101927859 T/T

rs9617876 2.132 1.265 3.798 LOC101927859 T/T

rs5760012 1.417 1.013 2.014 MMP11 A/A

rs33910051 1.493 1.041 2.22 NULL CCT/CCT 

rs61408070 1.452 1.037 2.07 NULL AC/AC

rs62228082 2.591 1.227 6.691 NULL G/G

rs28437864 1.578 1.102 2.307 POM121L1P T/T

rs3876045 1.934 1.013 4.3 POM121L1P C/C

rs3876046 2.644 1.243 6.858 POM121L1P G/G

rs6003123 2.48 1.128 6.552 POM121L1P G/G

rs395446 0.506 0.325 0.799 RANBP1;TRMT2A C/C

rs395446 0.506 0.325 0.799 RANBP1;TRMT2A C/C

rs10681786 1.461 1.045 2.078 SMARCB1 ATA TCT /ATA TCT 

rs1573277 1.448 1.033 2.066 SMARCB1 C/C

rs2073392 1.448 1.033 2.066 SMARCB1 G/G

rs34378449 1.452 1.037 2.07 SMARCB1 G/G

rs5751740 1.417 1.013 2.014 SMARCB1 A/A

rs5751741 1.452 1.039 2.066 SMARCB1 A/A

rs5760038 1.44 1.03 2.049 SMARCB1 C/C

rs5760046 1.473 1.048 2.108 SMARCB1 A/A

rs5760046 1.473 1.048 2.108 SMARCB1 A/A

rs5760057 1.469 1.051 2.091 SMARCB1 C/C

rs5996620 1.448 1.033 2.066 SMARCB1 G/G

rs3827341 0.647 0.484 0.864 SYN3 T/T

rs174877 0.387 0.238 0.641 TANGO2 C/C
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in SNPs selected model. Previous studies have showed 
that feature selection model will have a better perfor-
mance [54].

The advantage of this study is as follows. First, we 
examined multiple circadian genes and found multi-
ple SNPs associated with metabolic syndrome. Some 
SNPs were first found related to metabolic syndrome. 
Among the significant SNPs, we did subgroup analy-
sis to find out which SNPs corresponds to different 
metabolic syndrome criteria. Second, based on genetic 
information; we used four machine learning model to 
predict metabolic syndrome which to our knowledge 
has never been performed in previous studies and the 
AUC value can achieve 0.85 in SNPs selected model.

Nevertheless, there are several limitations in our 
study. First, the sample size is small and only includes 
healthy and aware Taiwanese participants. There-
fore, this study should be replicated and validated in 
other populations. Second, this was a cross sectional 
study. It is difficult for us to find out causal relation-
ships in this study. Third, we only used circadian gene 
SNPs in our prediction model. Other metabolic syn-
drome related SNPs or biomarkers can be included to 
increase accuracy.

Conclusion
We identified 186 circadian gene SNPs which were 
related to metabolic syndrome. Among these SNPs, there 
are 47 alleles associated with hypertension, 46 alleles 

Table 6 Triglyceride level related SNPs

OR, odds ratio; lower, lower confidence interval; upper, upper confidence 
interval

SNP OR lower upper refGene HO

rs132759 2.046 1.227 3.621 APOL2 C/C

rs2283809 0.68 0.51 0.909 CRYBB3 T/T

rs2097195 1.999 1.411 2.89 GGTLC2;MIR650 C/C

rs4822932 1.426 1.056 1.919 LOC100507657;MN1 T/T

rs66786460 1.408 1.026 1.921 LOC100507657;MN1 T/T

rs6004865 0.647 0.455 0.904 MYO18B C/C

rs200852194 1.497 1.018 2.262 NULL G/G

rs139726 1.557 1.198 2.035 SGSM1 A/A

rs139728 1.489 1.152 1.935 SGSM1 G/G

rs174877 0.604 0.376 0.983 TANGO2 C/C

Table 7 Prediction model using all significant SNPs

AUC, area under curve; Sens, sensitivity; Spec, specificity; Prec, precision value; 
F1, F1 score

AUC Sens Spec Prec F1

logistic 0.68 0.74 0.586 0.297 0.424

random forest 0.8 0.675 0.788 0.43 0.525

adaboost 0.82 0.764 0.732 0.403 0.528

Neural network 0.8 0.748 0.74 0.405 0.526

Table 8 40 most important SNPs in random forest model and 
OR value

RF_SNP, Random forest model 40 most important SNP; OR_SNP, 40 most 
important SNPs according to odds ratio value

RF_SNP OR_SNP

rs4006261 rs4050506

rs60580698 rs2904924

rs9612154 rs132653

rs66786460 rs132651

rs9605406 rs4821460

rs56782074 rs4822280

rs11430762 rs455194

rs174877 rs56782074

rs2857463 rs61643572

rs133122 rs73879166

rs2283809 rs2857463

rs2331158 rs6003123

rs35251008 rs12484632

rs9606328 rs3876045

rs469995 rs6004865

rs34262500 rs132650

rs6003230 rs34262500

rs377976 rs35041494

rs61643572 rs132718

rs3950040 rs2330036

rs5756977 rs3950040

Unknow06495 rs2269635

rs5998659 rs132665

rs73879166 rs964465

rs131837 rs3876046

rs2254747 rs11430762

rs5748561 rs457560

rs2330036 rs5746814

rs4822689 rs8143055

rs1153417 rs62228082

rs2097195 rs4821508

rs2269635 rs5759468

rs2522291 rs132759

rs17209532 rs2013924

rs9944250 rs759609

rs737855 rs4821506

rs5746814 rs2283981

rs28437864 rs60580698

rs1059142 rs5751643

rs4822932 rs4820531
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associated with high serum TG levels, 27 alleles asso-
ciated with diabetes mellitus and 10 alleles associated 
with low serum HDL levels. Some SNPs are first found 
to related with metabolic syndrome. Additional research 
is needed to confirm these SNPs. In addition, we applied 
several machine learning models to predict metabolic 
syndrome based on circadian gene data. We found that 
it is difficult to produce a high sensitivity model. Other 
clinical data should be added in to create a higher sensi-
tivity model (Additional files 1, 2, 3, 4, 5, 6, 7, 8).
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