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mRNA therapy is a novel anticancer strategy based on in vitro transcription (IVT), which
has potential for the treatment of malignant tumors. The outbreak of the COVID-19
pandemic in the early 21st century has promoted the application of mRNA technologies in
SARS-CoV-2 vaccines, and there has been a great deal of interest in the research and
development of mRNA cancer vaccines. There has been progress in a number of key
technologies, including mRNA production strategies, delivery systems, antitumor immune
strategies, etc. These technologies have accelerated the progress and clinical applications
of mRNA therapy, overcoming problems encountered in the past, such as instability,
inefficient delivery, and weak immunogenicity of mRNA vaccines. This review provides a
detailed overview of the production, delivery systems, immunological mechanisms, and
antitumor immune response strategies for mRNA cancer vaccines. We list some mRNA
cancer vaccines that are candidates for cancer treatment and discuss clinical trials in the
field of tumor immunotherapy. In addition, we discuss the immunological mechanism of
action by which mRNA vaccines destroy tumors as well as challenges and prospects for
the future.
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1 INTRODUCTION

Despite remarkable progress in oncology, malignant tumors remain the second leading cause of
mortality worldwide (1). Conventional clinical treatments for tumors include surgery, radiotherapy,
chemotherapy, targeted therapy, immunotherapy, and combination therapy. In addition, the
effective treatment of several malignancies with immune checkpoint inhibitors (CPIs) has
inspired new ideas about tumor immunotherapy (2). Tumor immunotherapy is aimed at
activating the host’s antitumor immunity, leading to a tumor-suppressive microenvironment
and, ultimately, achieving tumor shrinkage and improving the overall survival of patients.
Cancer vaccines are promising means of antitumor immunotherapy. Vaccines against tumor-
associated antigens (TAAs) or tumor-specific antigens (TSAs) can specifically attack and destroy
malignant tumor cells with high-level expression of these antigens, and achieve sustained tumor
killing through immune memory. Therefore, in comparison to other types of immunotherapy,
cancer vaccines could theoretically provide specific, safe, and well-tolerated therapy.

Despite considerable research effort regarding the development of cancer vaccines, translating
cancer vaccines into effective clinical therapies has remained challenging for several decades due to
org June 2022 | Volume 13 | Article 8871251
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the diversity of tumor antigens and relatively low immune
response (3). Since its discovery in 1961, mRNA gradually
became the subject of nucleic acid-encoded drug research
(Figure 1). The concept of nucleic acid-encoded drugs was
introduced more than 20 years ago when Wolff et al.
demonstrated that intramuscular injections of mRNA
produced by in vitro transcription (IVT) could express
encoded proteins in the muscle at the site of injection. At that
time, mRNA had been less well studied than DNA due to its
instability, and research was mainly focused on plasmid DNA
and viral DNA. During the first decades after the discovery of
mRNA, the focus was on determining its structure, function, and
metabolism in eukaryotic cells. In the 1990s, IVT mRNA was
applied to preclinical exploration as the main component of
vaccines for cancer and infectious diseases (4–10).

mRNA vaccines represent an important class of cancer vaccines
that are capable of encoding and expressing TAA, TSA, and their
associated cytokines. mRNA cancer vaccines can stimulate both
humoral and cellular immunity, increasing the adaptability of these
vaccines to different diseases and patients. mRNA cancer vaccines
have several advantages, including rapid production, flexibility,
relatively low cost, and the ability to generate a robust protective
immune response. More importantly, from the viewpoint of safety,
mRNA does not integrate into the host genome, in contrast to
DNA vaccines. Large quantities of accurate and personalized
mRNA cancer vaccines can be produced in a short period,
making them a promising therapeutic modality. This paper is
focused on manufacturing techniques, application, and
immunization strategies for mRNA cancer vaccines, and will
help us to understand more fully the progress and superiority of
these new therapeutic options.
2 STRATEGY FOR MRNA
VACCINE PREPARATION

The accepted method of mRNA cancer vaccine production
involves IVT followed by 5′ capping and polyadenylation at
the 3′ end, which resembles the natural process of mRNA
Frontiers in Immunology | www.frontiersin.org 2
maturation in the cytoplasm of eukaryotic cells (Figure 2).
IVT is a relatively simple process, but the production of high-
quality therapeutic mRNAs that do not cause severe
inflammation has been a major challenge. Recently, the
problems of inflammation and innate immunity have been
largely addressed by improvements in capping and tailing
techniques, incorporation of modified nucleosides (10)
(especially modified uridine), optimization of coding sequences
(11), and rigorous purification of IVT mRNA. These techniques
will help to reduce the signal of exogenous mRNAs, thus
reducing the inflammatory response and improving the
translation of mRNAs.

2.1 Sequence Construction of mRNA
Cancer Vaccines
The mRNA cancer vaccine production process begins with the
design of a DNA template for IVT. The template must contain at
least the open reading frame (ORF), flanking 5′-untranslated
region (5′-UTR), and 3′-UTR. A primer binding site containing
an available RNA polymerase recognition site(s) (e.g., T7, T3, or
SP6 phage RNA polymerase) (12) is required to initiate IVT.

The target protein encoded by the ORF itself can affect the
translation efficiency, and some rare codons can reduce the
efficiency. In addition, codon concurrency can be used to
optimize the codons corresponding to amino acids and thus
improve the efficiency of translation (13). Manipulation of the
original sequence, however, may have unfavorable results. In
addition, it has been shown that synonymous mutations can be
responsible for the occurrence of disease (14).

UTRs have important cellular functions in the regulation of
protein expression as well as in influencing the rates of
degradation and translation of mRNA. In addition, these
functions can be achieved through interactions with different
RNA-binding proteins (15). The RNA polymerase binding sites
in 5′-UTRs play a vital role in the initiation of translation and
formation of preinitiation complexes. In addition, 5′-UTRs
facilitate stabilization of mRNA. Shortening the length of the
3′-UTR can improve efficiency of translation, e.g., the 3′-UTRs
from a- and b-globins can be used (16). miRNA binding sites
FIGURE 1 | Timeline of mRNA vaccine development.
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can also be included to regulate the expression of target proteins
in different tissues or organs, e.g., miRNA-122 binding sites can
reduce hepatotoxicity by decreasing expression in normal liver
tissues (17). In addition, higher GC content and lower U content
not only help to optimize the stability but also reduce the
immunogenicity of RNA (18). In conclusion, it is necessary to
design an mRNA template sequence with high stability and that
can facilitate efficient translation.

2.2 In Vitro Transcription
IVT is the process of transcribing a designed template DNA strand
to an RNA strand according to the complementarity base pairing
rule or Chargaff’s rule. Transcription starts after recognition of the
promoter by RNA polymerase. During IVT, modified nucleotides
are normally applied to reduce immunogenicity (19), including use
of pseudouridine (y), N6-methyladenine (m6A), 5-methylcytosine
(m5C), 2-thiouracil (s2U), and5-methyluracil (m5U). Inparticular,
m5C and y have been reported not only to reduce the
immunogenicity of RNA after transcription in vitro but also to
improve the efficiency of translation.
Frontiers in Immunology | www.frontiersin.org 3
Synthetic single-stranded RNA contains a 5′ end, a coding
region, and a 3′ end. It is then capped and tailed to a mature
mRNA molecule, simulating the natural formation process
in cells.

2.3 5’ Cap Addition
In vitro posttranscriptional RNA has a highly immunogenic 5′
triphosphate fraction, which is recognized in the cytoplasm by
the pattern recognition receptor (PRR) and then elicits a type I
interferon (IFN I) response (20). To prevent the RNA from being
identified as exogenous nucleotides, the triphosphate should be
removed and a 5′ cap added.

In eukaryotic cells, the typical 5′ cap structure is an inverted
7-methylguanosine (m7G), which is usually co-transcribed with
the first nucleotide of RNA via a 5′–5′ triphosphate bridge. This
5′m7G cap or m7Gppp is commonly referred to as “Cap 0”. The
5′ cap structure is essential for initiation of translation, and forms
the preinitiation complex by recruiting eukaryotic translation
initiation factor 4E (EIF4E). Ribosomes initiate transcription by
identification of preinitiation complexes. In addition, the 5′ cap
FIGURE 2 | mRNA in vitro transcription strategy. The strategy for mRNA preparation consists of template preparation, in vitro transcription, 5′ cap addition, 3′ poly
(A) tailing, and purification.
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structures increase the stability of RNA and eliminate
its immunogenicity.

A 5′ cap can be added in several ways (21). For example, a cap
can be achieved by adding a cap analog to the reaction for co-
transcription. However, the addition is likely to be incorrectly
bound, causing the mRNA to be untranslatable, while anti-
reverse cap analog (ARCA) allows the polymerase to add to
the nucleotide strand in the correct orientation (22).
Posttranscriptional capping, such as Cap 0, is accomplished by
removing adenosine triphosphate with phosphatase and adding
an m7G cap with 2′-O-methyltransferase. Cap 0 is methylated to
Cap 1 viamethyltransferases to reduce immunogenicity. Neither
transcriptional nor posttranscriptional capping guarantees that
all RNAmolecules will be capped. Incorrect capping activates the
PRR leading to increased immunogenicity of exogenous mRNAs
(23). Therefore, the success of capping is related to the stability of
translation and the immunogenicity of the exogenous mRNA.
Further investigations are needed to determine ways to detect the
capping success rate.

2.4 Poly(A) Tails
The poly(A) tail influences the efficiency and stability of mRNA
translation. Poly(A) tails are usually added after transcription
with poly(A) polymerase (24) or can be obtained from direct
transcription. The poly(A) tail slows down the degradation of
RNA by RNA exonucleases, which in turn improves the stability
of mRNA. Removal of the poly(A) tail is the first and rate-
limiting step in the degradation of most eukaryotic mRNAs. The
poly(A) tail is generally 100–250 nucleotides in length, but the
optimal length depends on the target cell type. The influenza
vaccine studied by Pardi et al. (25) has a poly(A) tail of 101 nt,
while the patent disclosed by BioNTech indicates that a poly(A)
tail of 120 nt has the highest stability and translation efficiency.
Modified adenosine could further protect the poly(A) tail from
degradation by ribonucleases (26). The enzymatic reaction
conditions, such as temperature and enzyme quality, can
influence the length of the poly(A) tail. Consequently, in most
clinical trials, the tails in mRNA are generally taken to be of
minimum length. Adding oligo(dT) in the DNA template allows
better manipulation of the precise length of the tail while, as a
part of the template, its length is often limited.

2.5 Purification
To ensure the translation of mRNA and the successful expression
of the encoded protein, mRNA must be purified to exclude
abnormal, truncated, and degraded products. Clinical
purification of mRNA by chromatographic techniques removes
shorter template fragments produced due to transcription failure
and double-strand RNA (dsRNA) generated by self-
complementary extension, both of which are common causes
of impurities. An alternative method for removing dsRNA from
IVT mRNA has been proposed based on adsorption to cellulose
(27). During IVT, the amount of dsRNA can be minimized by
decreasing the Mg2+ concentration or performing the process at
high temperatures. High performance liquid chromatography
(HPLC) can be used for relatively comprehensive removal of
dsRNA (28), but is costly and has low yield (< 50%). Baiersdorfer
Frontiers in Immunology | www.frontiersin.org 4
et al. recently reported a rapid and inexpensive purification
method using selective binding of dsRNA to cellulose in a
buffer containing ethanol to remove at least 90% of dsRNA
contaminants (27). It has been shown that, using standard
techniques, completing mRNA translation and protein
expression does not require modified nucleotides and is not
dependent on the length of the mRNA, but depends more on the
purity and sequence composition (29). Therefore, purification is
important for the efficacy of mRNA vaccines. Technology for
preparing mRNA is relatively mature, and it will be possible to
develop mRNA vaccines rapidly in large quantities at low cost.
3 MRNA DELIVERY SYSTEMS

A major challenge in mRNA therapy is the need for effective
delivery systems. It is difficult for naked mRNA to transit across
the cell membrane because of its dense negative charge and large
size. In addition, mRNA itself is an unstable molecule that can be
easily degraded (30). Therefore, it is necessary to develop
appropriate delivery systems. Traditional methods, such as in
vitro loaded dendritic cells (DCs), conjugated polymer delivery,
and mechanical methods (gene gun, electroporation) have been
used to deliver naked mRNA for vaccination (12). However,
these methods are complex, expensive (in vitro loaded DCs), or
not applicable to humans (conjugated polymer delivery,
electroporation). The ideal delivery system would protect the
mRNA from degradation and enhance efficient cellular uptake.
Below, we list several novel delivery methods, including lipid
nanoparticles (LNPs), as well as adverse events associated with
delivery materials.

3.1 Lipid Nanoparticles
LNPs are delivery platforms mainly based on cholesterol,
ionizable lipids, and polyethylene glycol (PEG) derivatives (31).
Ionizable lipids are amphiphilic structures with hydrophilic head
groups, including ionizable amines, hydrocarbon chains that
enhance self-assembly, and linkers connecting the head groups
to the hydrocarbon chains. In the acidic endosome
microenvironment where LNPs are delivered intracellularly,
the positive charged lipid interacts with the endosomes to
promote membrane fusion and destabilization. This process
drives the release of mRNA with LNPs from the liposome. In
addition to ionizable lipids, phospholipids and cholesterol are
incorporated to enhance the stability of the lipid bilayer and to
assist membrane fusion and endosome segregation.
Incorporation of lipid-anchored PEG can reduce macrophage-
mediated clearance. More importantly, lipid-anchored PEG
helps to prevent particle aggregation and improves stability in
storage (32).

The current mRNA vaccines approved by the U.S. Food and
Drug Administration (FDA) are based on LNP delivery
platforms, which match or exceed the effectiveness of other
vaccines in both cell-mediated and humoral immunity (33, 34).
The first two approved mRNA-based SARS-CoV-2 vaccines
demonstrated convincing efficacy in protecting against
COVID-19 (35–39). However, there are increasing reports of
June 2022 | Volume 13 | Article 887125
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LNP-induced side effects, such as pain, redness and fever (40).
Recent preclinical studies on LNP inflammation indicated that
LNPs are inflammatory in some animal models. Intradermal
injection results in a rapid and intense immune response
characterized by large amounts of neutrophil infiltration and
high levels of cytokines. Intranasal administration of LNPs at the
same doses resulted in a similar inflammatory response in the
lungs as well as high mortality (41). Therefore, it is crucial to
develop more effective and safer delivery systems.

3.2 Self-Assembled Polymeric Micelles
The self-assembled polymeric micelle delivery system involves a
polyethyleneimine copolymer (PVES) modified with vitamin E
(VE, a-tocopherol) succinate. VE is on the FDA list of inactive
substances for intravenous, oral, and topical usage, and has been
utilized as a human immune supplement, as an adjuvant
component of emulsions in a variety of veterinary vaccines,
and as an adjuvant used in the H1N1 pandemic influenza
vaccine (42, 43). VE is also used as a drug delivery vehicle in
tocopherol polyethylene glycol succinate (TPGS) micelles (44,
45). In 2016, Liu et al. developed vitamin E-labeled
polyethyleneimine (PEI) for gene delivery. Their research
showed that VE-labeled PEI markedly enhanced the cellular
uptake of plasmid DNA with low toxicity (46). PEI is a water-
soluble cationic polymer and VE is a hydrophobic molecule. The
binding of VE to PEI results in the formation of a conjugated
polymer that can self-assemble into stable micelles (47, 48).
PVES micelles showed high transfection efficiency in four cell
lines, i.e., HEK-293T, HeLa, Vero, and DC2.4 cells, without
significant cytotoxicity. The PVES/mRNA vaccine was shown
to trigger antigen-specific CD8+ T cells (Th1 cells) expressing the
type 1 immune response cytokine, IFN-g, and CD4+ T cells
expressing the type II cytokine, IL-4 (49). They also assessed the
safety of the mRNA vaccine with PVES as a vector. No local
inflammatory reactions or other adverse effects at the injection
site were observed during the observation period after
immunization (49).

3.3 Nano-hydrogel
An intelligently responsive nano-DNA hydrogel (nano-
hydrogel) was developed as a vehicle to deliver mRNA into
cells and stably express proteins. A pH-responsive i-motif cross-
linked mRNA scaffold in the shape of an “X” was generated using
the well-designed DNA scaffold. The i-motif is a unique DNA
quadruplex structure formed by inserting two cytosine-rich
duplexes into each other in an antiparallel manner only in an
acidic environment. It has been reported that in an acidic
microenvironment (50, 51), nano-hydrogels can be internalized
by cells to form an i-motif, which is decomposed in lysosomes
(52, 53), and the mRNA is then released into the cytoplasm to
express the encoded protein. These systems include no chemical
agents, so the structure is biocompatible. It is stable because it
remains intact outside the cell and only breaks down at low
intracellular pH. The results showed that nano-hydrogels have
better biocompatibility and higher mRNA expression efficiency
than commercial liposomes. Nano-hydrogels represent a
promising viable alternative for delivering functional mRNAs
Frontiers in Immunology | www.frontiersin.org 5
in vivo because of their good biocompatibility and stability (54).
From a safety perspective, the cytotoxicity of liposomes was
significantly higher than that of nano-hydrogels with drug
loading of Gluc mRNA > 3.18 µg. These results demonstrate
the safety of nano-hydrogels for mRNA delivery and suggest that
they have promise for applications where it is necessary to deliver
large amounts of mRNA (54).

3.4 Metal Nanoparticles
Metal nanoparticles (MNPs) are representative of inorganic NPs.
In several studies, dendrimers have been used to stabilize MNPs
(55–58). Safe and efficient non-viral gene delivery systems can be
produced by the combination of MNPs and cationic dendrimers.
MNPs, such as gold, are commonly used due to their simplicity,
biocompatibility, favorable surface/volume ratio, modifying
capability, and low cytotoxicity (59). Mbatha et al. applied folic
acid (FA)-modified, poly-amidoamine-generation-5 (PAMAM
G5D)-grafted gold NPs (AuNPs) for mRNA delivery (60), and
reported the formation of nanocomplexes that provided excellent
mRNA protection against RNases. A highly organized structure
was formed due to electrostatic interactions between negatively
charged mRNA and highly cationic PAMAM G5D-containing
NPs (61). We also noted that over 80% of the cells were capable
of tolerating these nanocomplexes. These AuNPs showed
excellent transfection efficiency, suggesting that the dendrimers
and AuNPs played significant synergistic roles in the process.
This study further confirmed that the main pathway into
receptor-positive cells was mediated by the folate receptor, and
that the transfection level of FA receptor-positive cell lines was
significantly higher than FA receptor-negative cell lines.

3.5 Adverse Events Related to mRNA
Delivery Materials
Adverse allergic reactions to mRNA vaccines are rare, but a few
still produce severe reactions. All mRNA delivery systems
subjected to clinical trials to date are based on LNPs, and the
exact compositions of delivery systems for two SARS-CoV-2
mRNA vaccines (mRNA-1273 and BNT162b2) authorized for
emergency use in the COVID-19 pandemic have been publicly
disclosed. The LNPs encapsulating the mRNA vaccine contain
PEG2000, which is the main cause of allergic reactions associated
with mRNA vaccines. As excipients of drugs, PEG components
are thought to be a risk factor for IgE-mediated responses and
recurrent severe allergic reactions. The risk of sensitization to
drugs containing high molecular weight PEG appears to be high,
and clinical contrast agents have been reported to induce severe
allergic reactions after bowel preparation with drugs containing
PEG3350 and higher molecular weight PEGs. In addition,
doxorubicin liposomes containing PEG were also reported to
produce allergic reactions.

Treatment of tumors with mRNA vaccines often requires
repeated administration, so there is a concern that slow
degradability of delivery materials may accumulate and have
the potential to cause toxicity in the liver. For example, MC3 with
a dilinoleic alkyl tail in LNPs is such a material. In a study by
Moderna, lipid H or SM-102 was found to be the best
intramuscular substitute for MC3.
June 2022 | Volume 13 | Article 887125
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The role of mRNA delivery materials involves safely and
effectively delivering mRNA into cells as well as reducing
associated adverse events, such as immune rejection and liver
toxicity. With the identification of several adverse effects, the
development of safe delivery systems and simulation of
biological natural delivery methods have become areas of
active research, and include the use of MNPs, nano-
hydrogels, self-assembled polymeric micelles, bio-inspired
nanovehicles, etc.
4 HOW MRNA WORKS ON THE
IMMUNE SYSTEM

After injection of the mRNA cancer vaccine, the mRNA-encoded
prote in is synthes ized by the r ibosome and then
posttranslationally modified to produce a correctly folded
functional protein, which is presented to the immune system.
The process is similar to the natural process of RNA virus
infection and successive induction of a protective immune
response. The entry of exogenous mRNA into the cytoplasm
results in a similar reaction to that of endogenous mRNA. After
mRNA is translated into proteins in the cytoplasm, the proteins
are modified and enter subcellular compartments, such as the
secretory pathway, cell membrane, nucleus, mitochondria, or
peroxisomes, through targeting sequences or transmembrane
structural domains (62). Therefore, delivery of exogenous
mRNA into the cytoplasm is essential for antigen expression.
Frontiers in Immunology | www.frontiersin.org 6
4.1 mRNA Cancer Vaccine Induces an
Innate Immune Response
4.1.1 Immune Cell Recognition
Innate immune responses are activated by the host immune
system through PRRs detecting pathogen-associated molecular
patterns (PAMPs) (Figure 3A) (63). After injection of the
vaccine, the mRNA and delivery system components will be
identified as exogenous substances by a series of PRRs leading to
activation of Toll-like receptors (TLRs), such as TLR3, TLR7, and
TLR8, mainly expressed on antigen-presenting cells (APCs).
Exogenous IVT mRNA can be recognized by various PRRs on
the cell membrane, endosomes, as well as in the cytoplasm, and
has a role in stimulating the intrinsic immune response (64).
TLRs, which are recognized as PRRs, play a role in detecting
PAMPs. APCs recognize mRNA and activate TLRs, which sense
PAMPs and initiate an innate immune response (65), producing
proinflammatory cytokines and co-stimulatory molecules on
APCs (e.g., DCs) (66). This ultimately aids in the production
of adaptive B cell and T cell responses (65).

The immunogenicity of IVT mRNA is mainly mediated by
TLR7 and TLR8. TLR7 is expressed by B cells (62), macrophages,
and DCs (67), and mediates the process of detecting single-
stranded RNA (ssRNA). Activation of B cells is mediated by the
myeloid differentiation marker 88 (MYD88)/TLR7-dependent
signaling pathway, providing stimulation to upregulate the
mRNA vaccine-induced adaptive immune response. In
addition, TLR7 signaling also increases the generation of
proinflammatory cytokines and antigen presentation, as well as
FIGURE 3 | Innate immune response to mRNA vaccine. After the exogenous mRNA enters the human body, it produces an innate immune response. (A) The
response occurs mainly in the immune cells. Immune responses are activated though TLRs to detect PAMPs (exogenous mRNA). (B) The response occurs mainly in
non-immune cells. RIG-1 and MDA5 sense the exogenous mRNA and then induce an IFN I response.
June 2022 | Volume 13 | Article 887125
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the improvement of memory B cell survival (68). Furthermore,
the MYD88 pathway can upregulate the IFN I response and
induce a proinflammatory state by secreting cytokines (63, 69).
In the cytoplasm, some other PRRs can sense different types of
RNA, such as dsRNA and ssRNA (63). dsRNA can be generated
during the process of IVT. IVT mRNA doped with dsRNA can
upregulate and activate protein kinase R (PKR) and
oligoadenylate synthetases (OAS). Subsequently, mRNA
degradation occurs by the IFN I-mediated immune response.
Activation of multiple PRRs and production of IFN I may be
beneficial or detrimental for anticancer immunotherapy. The
beneficial effects are because activation of immune factors and
maturation of immune cells contribute to the function of
subsequent mRNA-expressed protein. The detrimental effects
are that mRNA would be degraded or translation blocked by
innate immunity.

4.1.2 Non-immune Cell Recognition
In non-immune cells, cytoplasmic retinoic acid-inducible gene I-
like receptor (RLR) and melanoma differentiation-associated
gene 5 (MDA5) sense exogenous mRNA and regulate the
generation of cytokines and chemokines (24), resulting in
innate immune cell recruitment to the mRNA injection site
(70). Although early induction of strong cytokine production is
advantageous for improving vaccine efficacy, cytokines can lead
to severe side effects, including autoimmunity, or weaken the
immune response to the mRNA vaccine making the antitumor
immune effects of the cancer vaccine incomplete. Therefore,
different approaches have been sought in mRNA vaccine
technology to minimize the induction of cytokines, such as
IFN I. Miao et al. (20) reported that mRNA incorporating
unsaturated lipid tails, dihydroimidazole junctions, and cyclic
amine head motifs could activate APCs through the intracellular
interferon gene (71) pathway rather than the TLR pathway. The
effects of APC activation by the STING pathway can reduce the
expression of cytokines, reducing the side effects of the cytokine-
induced autoimmune response and improving the antitumor
effect (Figure 3B).

In summary, innate sensing of exogenous mRNA may lead to
mRNA translational arrest, mRNA degradation, and sequential
secondary antigen-specific immune responses (72), suggesting a
close link between innate and acquired immunity after
mRNA inoculation.

4.2 Induction of Acquired Immunity From
mRNA Cancer Vaccine
4.2.1 Antigen Presentation
After mRNA vaccination, the encoded proteins will be translated
and presented to the immune system and stimulate acquired
immunity (Figure 4). The mRNA-encoded proteins are
translated and taken up by APCs (e.g., DCs) through
microphagocytosis, endocytosis, or phagocytosis (73). They
may form phagocytic vesicles or endosomes containing
antigenic proteins (74) that are presented through major
histocompatibility complex I and II (MHC-I and MHC-II,
respectively) on DCs. APCs can present exogenous antigens to
CD4+ T cells via MHC-II and cross-present them to MHC-I on
Frontiers in Immunology | www.frontiersin.org 7
CD8+ T cells. The resulting induction of cytotoxic T
lymphocytes is called cross-excitation. CD4+ T cells can
enhance the antitumor effects of B cells and CD8+ T cells by
secreted cytokines (75). Finally, target cell clearance mediated by
antigen-specific B cells and T cells occurs due to clonal
expansion. In addition, all nucleated cells have the ability to
process mRNA and present translated proteins or peptides on
MHC-I. However, only APCs present antigens on MHC-I and
MHC-II, thereby inducing an immune response from CD4+ T
cells and B cells. In addition, DCs can internalize the cytoplasmic
and cell membrane material of living cells to initiate T cell
responses (76).

4.2.2 Antigen Classification
Specific antigen presentation is needed to induce acquired
immunity. mRNA cancer vaccines usually encode TAAs that
are expressed on cancer cells. These TAAs can be further divided
into tissue differentiation antigens, such as human
carcinoembryonic antigen (77) or MART-1, which are also
expressed in healthy tissues; tumor germline (testicular cancer)
antigens (e.g., NY-ESO-1 or MAGE-3); tumor cell-overexpressed
normal proteins (e.g., EGFR, MUC1, Her2/neu); viral proteins
(e.g., EBV, HPV); and tumor-specific mutational antigens (e.g.,
MUM-1, b-catenin or CDK4) (78, 79). Genetic abnormalities
drive tumor development (80). Somatic mutations may generate
neoantigen epitopes, tumor-derived peptides that can bind to
MHC (81) and be recognized by T cells. Therefore, mRNA
vaccines encoding neoantigens are considered to be the best
cancer vaccine candidates (80). Similarly, T cells that recognize
these antigens mediate clinical responses after metastasis or
immune checkpoint suppression (82). Moreover, it has been
shown that tumors containing higher epitope loads of
neoantigens, such as melanoma, non-small cell lung cancer
(NSCLC), and mismatch repair-deficient colorectal cancer
(CRC), respond better to immune CPIs (83).

4.2.3 Immunological Effects
Peptide-based vaccines are MHC-restricted, whereas mRNA
vaccines allow the combination of mRNAs encoding different
antigens. mRNA-electroporated DCs have multiple MHC-I and
II-restricted peptides and induce polyclonal CD4+ and CD8+ T
cell responses. CD4+ helper T (Th) cells are essential for the
effective induction of B cell and cytotoxic T lymphocyte (CTL)
responses (83). mRNA vaccines further reinforce the immune
response in the presence of helper epitopes. CD4+ T cell
responses after the introduction of mRNA into DCs are
mediated by autophagy (84). Finally, vaccine compositions can
include mRNAs encoding immunomodulatory proteins, which
can further enhance their efficacy. In summary, mRNA vaccines
encoding two or more proteins or long peptides can achieve an
extensive polyclonal immune response, avoiding restriction to
MHC molecules and immune escape caused by antigen loss.

Application of mRNAs encoding mutant antigenic epitopes
produces intensive antigen-specific CD8+ T cell responses and
effective and durable CD4+ T cell-mediated tumor regression.
Kreiter et al. demonstrated that most tumor-specific mutations
are recognized by CD4+ T cells, which have intensive antitumor
June 2022 | Volume 13 | Article 887125
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activity. The CD4+ T cell response is dominated by the Th1-
based immune response as well as interferon-g produced by
CD4+ and CD8+ T cells (85, 86). For this strong Th1 response,
different studies attempted to regulate Th differentiation using
mRNA vaccines.

In addition to inducing T cell immunity, mRNA vaccines also
induce neutralizing antibodies. T follicular helper (Tfh) cells are
not only essential for germinal center development, but also
drive immunoglobulin-like conversion, affinity maturation, and
durable B cell memory responses. Although the precise
mechanism of action of Tfh is not yet known, such cells are
activated by mRNA vaccines, which produce sufficient numbers
of potent and durable neutralizing antibodies (87). Pardi et al.
(77) used LNP-encapsulated mRNA vaccines for subcutaneous
administration and found them to induce efficient neutralizing
antibodies. Sustained antigen expression resulted in high
antibody titers as well as germinal center B cell and Tfh
responses (88).
Frontiers in Immunology | www.frontiersin.org 8
5 CLINICAL DEVELOPMENT OF MRNA
CANCER VACCINE

IVT mRNA-based vaccines are gradually being developed for a
variety of tumor treatments. Currently, mRNA cancer vaccines
are classified as encoding TAAs, TSAs, cytokines, and antibodies
based on the final product types. In most clinical trials, mRNA
cancer vaccines have been applied to treat aggressive, refractory,
and metastatic tumors. Here, we summarize the clinical trials in
different cancer treatments based on product types (Tables 1–3).
Moreover, we discuss therapeutic regimens to explore the
possibility of application of mRNA vaccines for various cancers.

5.1 Clinical Trials of mRNA Encoding TAAs
Appropriate antigen selection is the basis for the development of
cancer vaccines. Non-mutant shared tumor antigens are
generally selected as targets for mRNA cancer vaccines. A
typical example is the melanoma vaccine encoding selected
FIGURE 4 | Adaptive immune response to mRNA vaccines. In the case of mRNAs encoding antigens, mRNA vaccines exert immunological effects mainly through
adaptive immune responses. After mRNA vaccination, the encoded proteins will be translated and taken up by APCs, which present the antigens to CD4+ T cells via
MHC II and cross-present them to MHC I on CD8+ T cells. CD4+ T cells can enhance the antitumor effects of B cells.
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malignant melanoma-associated antigens. In multiple clinical
trials, NY-ESO-1, tyrosinase, MAGE-A3, MAGE-C2, and TPTE
have been employed as TAAs for melanoma (Table 1). BNT111
is a cancer vaccine, a lead candidate for the BioNTech FixVac
platform, which utilizes a fixed combination of TAAs designed to
trigger a powerful and precise immune response against cancer.
The FDA approved the BNT111 Fast Track Designation, a new
cancer immunotherapy for advanced melanoma at the end of
2021, and BNT111 is currently under investigation in two clinical
trials. A recent report of an exploratory interim analysis from a
phase I trial (NCT02410733) showed that BNT111 is a potent
immunotherapy in patients with immune CPI-experienced
melanoma (89). A subsequent randomized phase II trial
(NCT04526899) is aimed at supporting the initial data from a
phase I trial by investigating the safety and antitumor responses
of BNT111 alone or in combination with Libtayo (cemiplimab),
an anti-PD-1 monoclonal antibody. CV9201 (NCT00923312)
and CV9202 (NCT01915524, NCT03164772) are two vaccine
target antigens expressed in NSCLC (90–92). The clinical trials
showed that these two vaccines are well tolerated and immune
responses could be detected after treatment, thus supporting
further clinical investigation of mRNA-based immunotherapy in
NSCLC, including combinations with CTLA-4.

TAAs are attractive vaccine targets but are more suitable for
certain solid tumors, such as melanoma and NSCLC, which have
TAAs. Moreover, as TAAs are non-mutated self-antigens, they
are also present in normal tissues. Vaccines expressing TAAs
may trigger both central and peripheral immune tolerance
responses, thereby reducing clinical vaccination efficiency
observed in many vaccine trials. Therefore, most vaccines
expressing TAAs are still used as adjunctive therapy in
combination with immune CPIs (Table 1).

5.2 Clinical Trials of mRNA Encoding TSAs
mRNA vaccines encoding a variety of mutated antigens are ideal
for treating mutation-induced malignancies. This type of cancer
vaccine has been examined in the greatest number of clinical
trials. With the development of next-generation sequencing
(NGS) technology, personalized mRNA cancer vaccines
encoding mutated antigens can be produced to stimulate the
immune system, to identify and kill cancer cells. There is a great
deal of clinical and research interest tin such personalized cancer
vaccines. Two personalized mRNA cancer vaccines are currently
in phase II clinical trials, Moderna vaccine mRNA-4157 and
BioNTech vaccine BNT122 (RO7198457). mRNA-4157 was
specifically screened and encoded 20–34 neoantigens on a
single mRNA molecule, depending on the patient’s cancer
mutations. Interim data from a phase I trial showed that
mRNA-4157 monotherapy or in combination with the PD-1
inhibitor Keytruda (NCT03313778) was well tolerated at all
doses tested and triggered a neoantigen-specific T cell
response. Due to the positive phase I trial results, personalized
cancer vaccine mRNA-4157 is now in a phase II clinical trial
(NCT03897881) to evaluate whether postoperative adjuvant
therapy with mRNA-4157 and pembrolizumab improves
recurrence-free survival compared to pembrolizumab alone in
patients with complete resection of cutaneous melanoma and a
T
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TABLE 2 | Clinical trials of mRNA encoding TSAs.

NCT Number Phase Study Start Status

r NCT04486378 Phase 2 March 8, 2021 Recruiting

C NCT03289962 Phase 1 December 21, 2017 Active, not
recruiting

NCT04267237 Phase 2 March 31, 2021 Withdrawn

ma NCT03815058 Phase 2 January 8, 2019 Active, not
recruiting

NCT03313778 Phase 1 August 14, 2017 Recruiting

NCT03897881 Phase 2 July 18, 2019 Active, not
recruiting

ic
ectal

NCT03948763 Phase 1 June 26, 2019 Active, not
recruiting

NCT05198752 Phase 1 March 12, 2022 Not yet recruiting

NCT02035956 Phase 1 December 2013 Completed

oma
ic/

NCT03468244 Not Applicable May 1, 2018 Unknown

eal/ NCT05192460 Not Applicable February 2022 Recruiting

NCT05227378 Not Applicable March 2022 Not yet recruiting

er
ng

NCT03908671 Not Applicable May 2019 Not yet recruiting
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Cancer TSAs RO7198457 A Study of Autogene Cevumeran (RO7198457) as a Single Agent and in
Combination With Atezolizumab in Participants With Locally Advanced or
Metastatic Tumors

Melanoma NSCL
Bladder Cancer

Cancer TSAs RO7198457 A Study of the Efficacy and Safety of RO7198457 in Combination With
Atezolizumab Versus Atezolizumab Alone Following Adjuvant Platinum-
Doublet Chemotherapy in Participants Who Are ctDNA Positive After
Surgical Resection of Stage II-III Non-Small Cell Lung Cancer
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high risk of recurrence. BioNTech explored the efficacy and
safety of RO7198457 in combination with PD-L1 antibody to
treat various cancers. Phase II clinical trials in melanoma,
NSCLC, and CRC were initiated in the first half of 2021.

Personalized mRNA vaccines provide a new direction for
precision tumor treatment. With existing clinical data and a large
number of ongoing clinical trials, personalized mRNA vaccines
have potential as adjuvant therapy for immunotherapy. However,
the data demonstrating efficacy were generally in completely
individualized immune responses. In addition, these tumor-
specific immune responses rarely translate to tumor reduction.
Overall, mRNA cancer vaccines encoding TSAs can improve the
tumor immunogenicity and increase the sensitivity of tumor cells to
immune CPIs, so the clinical response rate is meaningful.
5.3 Clinical Trials of mRNA
Encoding Immunostimulants
In theory, mRNA cancer vaccines could encode any protein,
including immunostimulants, which could reshape the tumor
immune microenvironment (TIME) (93), complement immune
CPIs, and overcome tumor immune tolerance. This has become an
important direction for mRNA cancer vaccine research. Over the
last several years, clinical trials of mRNAs encoding cytokines have
been conducted. At present, there are only seven product
candidates in clinical trials, which belong to Moderna and
BioNTech. Moderna developed the first clinical trial expressing
mRNA-encoded immunostimulant (mRNA-2416: mRNA-
encoded OX40L, NCT03323398) in 2017. This study assessed
the safety and tolerability of escalating doses of mRNA-2416 alone
and in combination with durvalumab in patients with advanced
malignancies. The data presented at the American Association for
Cancer Research (AACR) showed that mRNA-2416 monotherapy
had been tolerable at all dose levels, with no reported dose-limited
toxicity, and the majority of related adverse events were grade 1 or
grade 2. More importantly, the observations of broad
proinflammatory activity and beneficial changes in the TIME
with upregulation of PD-L1 support the evaluation of
combination of intratumoral mRNA-2416 with the anti-PD-L1
inhibitor, durvalumab, in solid tumors (94). This intratumoral
injection of mRNA-2416 has entered a clinical phase II trial for
advanced ovarian carcinoma. A dose escalation study (mRNA-
2752: OX40L/IL23/IL36g, NCT03739931) of intratumoral
injection of triplet mRNA vaccine was carried out in patients
with advanced malignancies. Early results showed that mRNA-
2752, administered in combination with the anti-PD-L1 antibody,
durvalumab, was well tolerated at all doses and showed signs of
antitumor activity. BioNTech developed BNT131 encoding IL-
12sc, IL-15sushi, GM-CSF, and IFNa as monotherapy and in
combination with cemiplimab in patients with advanced solid
tumors. Sanofi named the candidate SAR441000, and registered a
clinical trial (NCT03871348) in 2019. SAR441000 was generally
well tolerated both as monotherapy and in combination with
cemiplimab. An immunomodulatory effect was mediated by
downstream effector cytokines and T cell infiltration (95).

There are still serious clinical limitations for systemic
administration of cytokine-based mRNA vaccines. For
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example, the short half-life requires frequent administration,
leading to dose-limiting toxicity. Existing preclinical studies
demonstrated that the toxic side effects of systemic
administration can be avoided by intratumoral administration
(96, 97). In addition, the main active site of immunostimulants is
in the TIME, so clinical studies have mainly adopted
intratumoral injection. To date, tumor vaccines encoding
immunostimulants have been shown to be effective as
adjuvants to tumor immunotherapy.
6 SAFETY AND PROSPECTS FOR
MRNA VACCINES

Until 2020, no single mRNA vaccine regimen had been approved
globally. Due to the COVID-19 pandemic, the FDA approved
different mRNA vaccines against SARS-CoV-2, demonstrating
the advantages of rapid and effective production of mRNA
vaccines against emerging infectious diseases. However, unlike
infectious disease vaccines that target well-defined antigens for
prophylactic vaccination, most tumor-targeting antigens exhibit a
high degree of interindividual heterogeneity and are limited in
number and poorly characterized, raising issues about the safety
and efficacy of mRNA cancer vaccines. Although anticancer
preventive vaccines are still in preclinical studies, their clinical
translation is limited by the difficulty of antigen prediction and
poor immunogenicity. In addition, most antigens for infectious
diseases (bacterial or viral) are exogenousmotifspresentedbyMHC
IImolecules, and vaccines against these exogenous antigens induce
neutralizing antibody-mediated humoral responses. In some cases,
CD4+Tcell-mediated immune responses are partially involvedand
required, while CD8+ cytotoxic T cells play a key role in the
clearance of malignant cells bearing somatic mutations.
Therefore, therapeutic anticancer vaccines need to enhance not
only the humoral CD4+ T cell response but also activation of the
MHCI-mediatedCD8+Tcell response,which further increases the
difficulty of effectively achieving strong antitumor immunity (98).
Another major obstacle in the development of a highly effective
anticancer vaccine is the identification and efficient delivery of
highly immunogenic TSAs. Tumors vary across different
individuals and some are less immunogenic and can evade
recognition by the host immune system. Even if the antigen is
immunogenic, the suppressive TIME can prevent effective T cell
infiltration, leading to T cell depletion (98). Therapeutic cancer
vaccines would require higher and multiple repeated doses, so
higher safety standards are necessary for mRNA production (62).

The safety ofmRNAvaccines is reflected by the ability ofmRNA
cancer vaccines to encode multiple antigens simultaneously as well
Frontiers in Immunology | www.frontiersin.org 12
as beingnon-integrating, highlydegradable, andhaveno insertional
mutagenic potential. ThemRNAproduced by IVT is free of cellular
andpathogenic viral components andhasnopotential for infection;
most mRNA vaccines tested in ongoing clinical trials are usually
well tolerated with few injection site-specific immune reactions
(99). Systemic inflammation can also limit the innate immune
response to the local injection site by removing contaminants, such
as dsRNA, or by changing the route of administration.As activation
of the IFN I response may be related to autoimmunity, the risk of
increased autoimmune response inpatientsmust be assessed before
mRNA vaccination (12). Rapid production is another advantage of
mRNA cancer vaccines, and thematurity ofmRNAmanufacturing
techniques allows the production of novel vaccines in a short time.
The recent discovery and identification of new antigens have
facilitated the development of personalized vaccine therapies.
Several clinical studies performed by BioNTech and Moderna
have demonstrated potent antitumor immunity using
personalized vaccines in some clinical trials for treatment of
multiple solid tumors, initiating a new era of therapeutic
oncology vaccines. To improve the anticancer efficacy of mRNA
vaccines further, specific adjuvants, immune CPIs, T cell-activated
monoclonal antibodies, modulation of the TME, or combination
with radiation therapy or chemotherapy should be used to avoid
immune escape and thus improve vaccine efficacy. Several clinical
trials are currently underway to assess the efficacy of mRNA
vaccines in combination with other oncology treatments. These
clinical trials will help to identify safer andmore effective antitumor
therapies to improve the survival of cancer patients.

In summary, mRNA cancer vaccines constitute a potent and
versatile form of immunotherapy. With increasing numbers of
clinical studies, especially with regard to personalized vaccines,
there is a growing possibility of developing mRNA vaccines
against different cancers. Despite the promise of mRNA therapy,
a great deal of research remains to be done. Future research
should involve technology research and address clinical
development. For technology research, researchers should
focus on developing stable mRNA without impurities and safe
advanced delivery systems. With regard to clinical research,
further clinical trials for different tumors are required. In
addition, the further development of personalized vaccines is
required to improve patient survival and quality of life.
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