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A new methodology is presented that allows the rapid determination of elastic

constants of cubic fibre-textured thin films by X-ray diffraction. The theoretical

concept is developed and tested on calculated examples of Cu and CrN films.

The mechanical elastic constants are extrapolated from X-ray elastic constants

by taking into consideration crystal and macroscopic elastic anisotropy. The

derived algorithm enables the determination of a reflection and the

corresponding value of the X-ray anisotropic factor � for which the X-ray

elastic constants are equal to their mechanical counterparts in the case of fibre-

textured cubic polycrystalline aggregates. The approach is independent of the

crystal elastic anisotropy and depends on the fibre-texture type, the texture

sharpness, the number of randomly oriented crystallites and the supposed grain-

interaction model. In the experimental part, out-of-plane Young’s moduli of 111

and 311 fibre-textured Cu and CrN thin films deposited on monocrystalline

Si(100) substrates are determined. The moduli are extrapolated from thin-film

experimental X-ray elastic constants that are determined by a combination of

X-ray diffraction substrate curvature and sin2 methods. For the calculation, the

film macroscopic elastic anisotropy (texture) is considered. The advantage of the

new technique lies in the fact that experimental moduli are determined

nondestructively, using a static diffraction experiment, and represent volume-

averaged quantities.

1. Introduction

X-ray elastic constants and diffraction stress factors are

usually used to calculate residual stresses from experimental

X-ray elastic strains (Dölle, 1979; Noyan & Cohen, 1987;

Welzel et al., 2005). In the case of a specimen with crystal

elastic anisotropy, the X-ray elastic constants differ for various

hkl reflections and are, moreover, dependent on the texture,

the grain-interaction mechanism and the single-crystal elastic

constants (Barral et al., 1987; van Houtte & De Buyser, 1993;

van Leeuwen et al., 1999; Leoni et al., 2001; Badawi et al., 2002;

Welzel, 2002; Welzel et al., 2005).

Numerous experimental as well as computational methods

have been developed in the past few decades to determine

mechanical elastic moduli (or even single-crystal elastic

constants) from diffraction elastic constants (Hayakawa et al.,

1985; Humbert & Diz, 1991; Wright, 1994; Gnäupel-Herold et

al., 1998; Howard & Kisi, 1999; Badawi et al., 2002; Badawi &

Villain, 2003). In the case of experimental characterization

using X-rays or neutrons, polycrystalline samples (bulk or thin

films, usually on a flexible substrate) are in-situ strained, and

diffraction elastic strains are recorded and correlated with the

applied stress. To extract the mechanical elastic constants,

Reuss, Voigt, Hill and Eshelby–Kröner grain-interaction

models are usually applied (Hayakawa et al., 1985; Wright,

1994; Howard & Kisi, 1999; Faurie et al., 2006). Although the

grain-interaction models represent only idealized theories, the

elastic constants of quasi-isotropic or textured samples, or

samples with crystal elastic anisotropy, have been obtained

with a relatively good accuracy (Howard & Kisi, 1999; Villain

et al., 2002; Badawi & Villain, 2003; Goudeau et al., 2004). It

was found that the anisotropic Hill model is a good approx-

imation of the experimental data obtained from polycrystal-

line samples (usually within the precision of the techniques

applied) and, moreover, the more sophisticated models were

usually very close to the Hill approximation (Howard & Kisi,

1999, p. 632). In the majority of cases (Humbert & Diz, 1991;

Wright, 1994; Gnäupel-Herold et al., 1998; Howard & Kisi,

1999; Badawi et al., 2002; Badawi & Villain, 2003), however,

the experimental elastic moduli or single-crystal elastic

constants are obtained from in-situ experiments coupling

diffraction and sample loading, i.e. destructively, whereby it is

necessary to use a tensile stage.

Recently, a new rapid experimental approach based on the

simultaneous application of sin2 and X-ray diffraction

substrate curvature techniques was proposed (Eiper et al.,



2005, 2006; Keckes et al., 2007; Martinschitz et al., 2006). The

new approach provides an opportunity to quantify experi-

mental X-ray elastic strains and macroscopic stresses in thin

films using a static diffraction experiment. The stresses applied

on the film are determined from the geometrical changes of

the elastically deformed substrate that is attached to the film

(Stoney, 1909; Segmüller et al., 1989). The experimental stress

and strain can then be used to evaluate experimental X-ray

elastic constants and stress factors (Eiper et al., 2005, 2006;

Martinschitz et al., 2006).

Mechanical elastic constants can be extrapolated from

X-ray elastic constants considering crystal and macroscopic

elastic anisotropy. In the case of cubic polycrystalline aggre-

gates with macroscopic elastic isotropy (quasi-isotropic

materials) that obey the Hill grain-interaction model, it was

demonstrated that X-ray elastic constants correspond to their

mechanical counterparts for �hkl = 0.2, where �hkl is the X-ray

anisotropic factor according to the Reuss grain-interaction

model, given by

�hkl ¼
h2k2 þ k2l2 þ l2h2

ðh2 þ k2 þ l2Þ
2
: ð1Þ

(hkl) are Miller indices of a crystallographic plane (Bollenrath

et al., 1967). According to the Reuss (1929) model, X-ray

elastic anisotropy is often expressed as a function of 3�hkl , and

this formalism will be applied hereafter.

It is the aim of this paper to analyse under which conditions

knowledge of X-ray elastic constants can be used to determine

or estimate mechanical elastic constants of cubic fibre-

textured thin films that obey the Hill grain-interaction model.

Firstly, the mechanical elastic constants of Cu and CrN will be

calculated using a Hill model that represents a reasonable

simplification of the problem (Hill, 1952; Bunge & Roberts,

1969; Bunge, 1982; Gnäupel-Herold et al., 1998; Howard &

Kisi, 1999; Leoni et al., 2001; Welzel, 2002). As a next step, the

mechanical values will be compared with calculated X-ray

elastic constants. As a result, a 3�hkl-dependent selection rule

will be derived, where the subscript hkl in 3�hkl denotes a

reflection for which mechanical and X-ray elastic constants are

equal. The approach will be demonstrated by experimental

characterization of out-of-plane moduli of fibre-textured Cu

and CrN thin films. The moduli are extracted from experi-

mental X-ray elastic constants that are determined by a

combination of X-ray diffraction substrate curvature and

sin2 methods in a static diffraction experiment. It should be

noted that the methodology derived in this paper can be

generally applied to any equibiaxially loaded or stressed

polycrystalline aggregate with the fibre texture oriented

perpendicular to the stress direction.

2. Mechanical elastic constants of thin films

2.1. Hill grain-interaction model

Elastic behaviour of a thin film deposited on a solid

substrate can be represented by Hooke’s law:

"S
ij

� �
¼ SS

ijkl

� �
�S

kl

� �
; ð2Þ

where h"S
iji is the mechanical elastic strain, hSS

ijkli expresses the

mechanical elastic constants of the film and h�S
kli represents

the residual stress (Nye, 1976; Suresh & Freund, 2003). The

brackets hi denote volume averages for all crystallites (i.e.

mechanical averages; Welzel, 2002). The stress, strain and

compliance tensors in equation (2) are expressed in the

sample coordinate system (S) (Fig. 1).

In general, hSS
ijkli of a polycrystalline film depends on the

texture, the single-crystal elastic constants and the grain-

interaction mechanism (van Houtte & De Buyser, 1993). In

practice, the Hill grain-interaction model can be used to

evaluate hSS
ijkli of the film (Hill, 1952) using the arithmetic

mean of the compliance tensors hSS
ijkli

R and hSS
ijkli

V obtained

from the Reuss and Voigt grain-interaction models:

SS
ijkl

� �
¼ ð1=2Þ SS

ijkl

� �R
þ SS

ijkl

� �V� �
: ð3Þ

Elastic constants according to the Reuss average hSS
ijkli

R can

be calculated as follows:

SS
ijkl

� �R
¼
R

SS
ijkl gð Þf gð Þ dg: ð4Þ

In the case of the Voigt average, hSS
ijkli

V can be determined

according to

SS
ijkl

� �V
¼

R
CS

ijkl gð Þ f gð Þ dg
� ��1

ð5Þ

where f(g) represents the orientation distribution function

(ODF) of the crystallites in the film (Bunge, 1982; Huang &

Weaver, 2005). SS
ijkl and CS

ijkl in equations (4) and (5) are single-

crystal elastic constants expressed in S, while f(g)dg indicates

the volume fraction of the crystallites with the orientation g.

The integration in equations (4) and (5) is carried out over the

whole ODF space (van Houtte & De Buyser, 1993).
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Figure 1
The definition of the two coordinate systems used for the characterization
of in-plane elastic strains using the sin2 method: sample system S and
laboratory system L (Noyan & Cohen, 1987). The X-ray elastic strain
along the direction L3 (which is parallel to the diffraction vector Qhkl) is
characterized by measuring the reflection hkl. The orientation of the
vector Qhkl with respect to Si is defined by the angles ’ and  . The
direction cosines aij in equation (6) represent a transformation from S to
L coordinate systems.



The tensor hSS
ijkli [equation (2)] represents the elastic

behaviour of the material in the sample coordinate system S

(Fig. 1) (Nye, 1976) and can be expressed in the L system using

SL
ijkl

� �
’; 
¼ aimajnakoalp SS

mnop

� �
; ð6Þ

where aij represent the direction cosines between the L and S

systems (Fig. 1; Noyan & Cohen, 1987).

In practice, Young’s modulus hEi is usually used to express

elastic behaviour of materials. The magnitude of hEi in the

direction L3 can be obtained from the tensor hSL
ijkli’; :

1= Eh i’; ¼ SL
3333

� �
’; 
: ð7Þ

The out-of-plane Young’s modulus hEi’; ¼0 can be obtained

from equation (7) using hSL
3333i’; ¼0.

2.2. Calculation of mechanical elastic constants

Using the procedure from the previous section, Young’s

moduli of Cu and CrN thin films with various fibre textures

were calculated numerically, applying single-crystal elastic

constants from Table 1 and various types of ODFs.

In Fig. 2, an example of a 111 pole figure, the distribution of

the intensity across the pole figure and the corresponding

ODF demonstrate a strong 111 fibre texture with a 10%

fraction of randomly oriented crystallites in a cubic thin film.

As a parameter for the ODF calculation, the full width at

half-maximum at the centre of the pole figure [which is usually

measured experimentally using a  scan (Bunge, 1982)],

hereafter denoted  FWHM, was used (Fig. 2). Since the aim is

to develop a simple laboratory method to determine elastic

constants of thin films,  FWHM was used as a measure of the

texture sharpness [instead of using variables expressed in

terms of the ’1, � and ’2 angles (Fig. 2), which are usually

needed to define ODF properties according the Bunge (1982)

notation]. Numerous ODFs with  FWHM in the range 0–180�

with a step of 5� were generated in order to calculate hSS
ijkli

[equation (2)] and subsequently the out-of-plane Young’s

modulus hEi’; ¼0 [equation (7)]. This calculation was

performed for various uvw fibre textures, where the subscript

uvw represents the indices of the (uvw) crystallographic

planes oriented preferably parallel to the sample surface.

Additionally, it was supposed that the films also contain

crystallites with a random orientation (hereafter denoted as

ISO) in the range 0–100%.

As an example of the procedure, calculated out-of-plane

Young’s moduli hE111i’; ¼0 of Cu and CrN thin films with 111

fibre texture are presented in Fig. 3. As parameters for the

calculation, the texture sharpness  FWHM and the number of

randomly oriented crystallites ISO were applied. The three-

dimensional plots document that the moduli of the film exhibit

relatively strong maxima or minima for small  FWHM and ISO

but converge to the moduli of isotropic Cu and CrN when one

of the parameters increases.

Cu and CrN possess different types of crystal elastic

anisotropy (Table 1), with the Zener (1948) anisotropy ratio

ZAR defined as

ZAR ¼ ðS1111 � S1122Þ=2S1212: ð8Þ
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Table 1
Single-crystal elastic constants (in 10�3 GPa�1) of Cu and CrN at room
temperature and the Zener (1948) anisotropy ratio (ZAR) defined by
equation (8) (Suresh & Freund, 2003; Birkholz, 2006).

Material S1111 S1122 S1212 ZAR

Cu 15.00 �6.28 3.32 3.21
CrN 1.860 �0.09 2.84 0.34

Figure 2
(a) A simulated 111 pole figure of a cubic thin film with a strong 111 fibre
texture and a 10% fraction of randomly oriented crystallites. (b) The
distribution of the intensity across the pole figure, where the variable
 FWHM = 10� represents the sharpness of the texture. (c) A representative
’1 = 0� section of the ODF, which is identical for all ’1 values, documents
the 111 fibre character of the texture (Bunge, 1982).



Since the hhhhi direction in Cu is stiffer than all others, the

films with less pronounced hhhhi textures exhibit smaller

moduli (Fig. 3). In CrN, the opposite situation has to be

considered.

The results in Fig. 3 represent out-of-plane Young’s moduli

calculated from hSS
ijkli. In the case of fibre-textured thin films,

however, the elastic behaviour is in-plane isotropic (i.e. inde-

pendent of the angle ’) but dependent on the tilt angle  
(Fig. 1). In order to demonstrate this situation, Young’s moduli

of CrN and Cu 111 fibre-textured thin films (Fig. 2) were

calculated as a function of angles ’ and  using equations (3)–

(7) and are presented in polar coordinates in Fig. 4. The

difference in crystal elastic anisotropy causes the CrN

modulus to possess a minimum at  = 0�, in contrast to the Cu

dependence, which exhibits a maximum at the centre of the

polar plot (Fig. 4).

3. X-ray elastic constants of thin films

3.1. X-ray elastic moduli

In X-ray diffraction, Hooke’s law relates X-ray elastic strain

f"L
33g

hkl
’; measured in the direction L3 by scanning the reflection

hkl, X-ray elastic compliances fSL
33ijg

hkl
’; and the macroscopic

stress h�L
ij i expressed in the L coordinate system (Fig. 1) as

follows:

f"L
33g

hkl
’; ¼ fS

L
33ijg

hkl
’; �

L
ij

� �
; ð9Þ

where fSL
33ijg

hkl
’; depends generally on the texture, the grain-

interaction mechanism, the reflection hkl, the single-crystal

elastic constants, and the angles ’ and  (Dölle, 1979; van

Houtte & De Buyser, 1993). The brackets fg denote volume-

weighted averages for all diffracting crystallites (i.e. diffraction

averages; Welzel, 2002). For simplicity, fSL
33ijg

hkl
’; can be

calculated using the Hill grain-interaction model as follows

(Serruys, 1988; van Houtte & De Buyser, 1993):

fSL
33ijg

hkl
’; ¼ ð1=2Þ fSL

33ijg
R;hkl
’; þ fS

L
33ijg

V
’; 

� 	
: ð10Þ
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Figure 3
Calculated out-of-plane Young’s moduli hE111i of 111 fibre-textured Cu
(a) and CrN (b) thin films as a function the texture sharpness  FWHM

(Fig. 2) and ISO.

Figure 4
Calculated Young’s moduli hE111i of 111 fibre-textured Cu (a) and CrN
(b) expressed in polar coordinates ’ and  (Fig. 1). The moduli were
calculated using the ODF from Fig. 2. The outer ring corresponds to 90�.



The X-ray elastic compliances fSL
33ijg

V
’; represent an elastic

behaviour of the film according the Voigt grain-interaction

model (V) and can be calculated as

fSL
33ijg

V
’; ¼ a3ka3laimajn SS

klmn

� �V
; ð11Þ

where the hSS
klmni

V tensor was obtained using equation (5)

(van Houtte & De Buyser, 1993).

X-ray elastic compliances according the Reuss grain-inter-

action model (R) can be obtained by integration over the

crystal orientations g for which the diffraction vector Qhkl is

parallel to the direction L3 (van Houtte & De Buyser, 1993):

fSL
33ijg

R;hkl
’; ¼

R
SL

33ij g QhkljjL3ð Þ
� �

f g QhkljjL3ð Þ
� �

dg: ð12Þ

Considering fibre-textured cubic thin films with the fibre axis

oriented perpendicular to the sample surface, it will be

supposed that

(i) The mechanical state of the films is biaxial and in-plane

isotropic with h�S
11i ¼ h�

S
22i ¼ h�

Si and h"S
11i ¼ h"

S
22i ¼ h"

Si.

Moreover, shear stresses h�S
12i and h�S

21i, shear strains h"S
12i,

h"S
13i and h"S

23i, and out-of-plane stresses h�S
i3i can be neglected

on the macroscopic scale.

(ii) The thin films are in-plane elastic isotropic, and not only

the distribution of crystallites but also the grain-interaction

mechanism possess a rotational symmetry. The elastic prop-

erties of the films are therefore not dependent on the azimuth

angle ’, with hSL
ijkli’; = hSL

ijkli .

The above implies that equation (9) can be expressed as

follows (Stickforth, 1966):

f"L
33g

hkl
 ¼ �S

� ��
fSL

3311g
hkl
 þ fS

L
3322g

hkl
 

� 	
þ fSL

3333g
hkl
 � fS

L
3311g

hkl
 

� 	
sin2  þ fSL

3313g
hkl
 sin 2 

�
: ð13Þ

In the case of the experimental dependence of f"L
33g

hkl
 on

sin2  , the term fSL
3311g

hkl
 þ fS

L
3322g

hkl
 corresponds to the

intercept on the f"L
33g

hkl
 axis and the term ðfSL

3333g
hkl
 �

fSL
3311g

hkl
 Þ sin2  þ fSL

3313g
hkl
 sin 2 is responsible for the

curvature in the sin2  plots. The term fSL
3313g

hkl
 sin 2 

vanishes, however, under certain conditions (cf. Stickforth,

1966; van Houtte & De Buyser, 1993; Welzel, 2002).

Since the tensor components fSL
33ijg

hkl
 in equation (13)

change as a function of the orientation of the diffraction

vector Qhkl, they can be used to determine diffraction elastic

constants as a function of (hkl) and  . For example, the

diffraction modulus fEghkl
 along the direction L3 reads

1=fEghkl
 ¼ fS

L
3333g

hkl
 : ð14Þ

On condition that the fSL
3333g

hkl
 components are independent

of the angles  and ’ and the material is quasi-isotropic,

equation (13) can be written as

f"L
33g

hkl
 ¼ �S

� �
2fs1g

hkl
þ fs2=2ghkl sin2  

� 	
; ð15Þ

in which the symbols fs1g
hkl and fs2=2ghkl represent isotropic

X-ray elastic constants (Dölle, 1979; Noyan & Cohen, 1987).

The constants are sometimes substituted as (Noyan & Cohen,

1987)

fs1g
hkl
¼ �
f�ghkl

fEghkl
;

1

2
s2


 �hkl

¼
1þ f�ghkl

fEghkl
: ð16Þ

The symbol f�ghkl represents the diffraction Poisson number

determined by the measurement of reflection hkl. In the case

of macroscopic elastic isotropic aggregates, fEghkl and f�ghkl

can be calculated using equations (15) and (16) provided

f"L
33g

hkl
 and h�Si are known.

3.2. Calculation of diffraction elastic moduli

The X-ray elastic compliances fSL
33ijg

hkl
 express the elastic

behaviour of the aggregate along the diffraction vector Qhkl.

In Fig. 5, Young’s moduli of 111 fibre-textured Cu and CrN

thin films are presented as a function of the tilt angle  .

The data in Fig. 5 document that the mechanical moduli

hE111i of the 111 fibre-textured films lie always between

diffraction moduli fE111g
111
 and fE111g

100
 . The diffraction

moduli fE111g
hkl
 represent the elastic response of diffracting

crystallites in the direction of diffraction vector Qhkl (Fig. 2).

The mechanical moduli hE111i represent the elastic response

of all crystallites in the direction of diffraction vector Qhkl. For

 = 0 the out-of-plane mechanical modulus hE111i ¼0

approaches the diffraction modulus fE111g
111
 ¼0 (which can be

obtained by the characterization of the 111 reflection and

f"L
33g

111
 ¼0) because of the specific texture type (Fig. 5).
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Figure 5
Diffraction fE111g

hkl
 and mechanical hE111i Young’s moduli of Cu and

CrN films with 111 fibre texture, shown as a function of the sample tilt
angle  . The moduli were calculated using the ODF from Fig. 2 supposing
the Hill (1952) grain-interaction model. The diffraction moduli fE111g

hkl
 

represent the elastic response of diffracting grains and the mechanical
moduli hE111i represent the elastic response of all crystallites in the film.
The moduli are expressed as a function of the tilt angle  , which defines
also the orientation of the diffraction vector Qhkl (Fig. 1).



4. A comparison of mechanical and X-ray elastic
constants

4.1. General considerations

The results in Fig. 5 demonstrate that the mechanical elastic

constants hSL
33iji are constrained by the X-ray elastic

constants fSL
33ijg

hkl
 . It is therefore obvious that, by considering

a specific ODF, tilt angle  and single-crystal elastic constants,

it is always possible to determine a reflection hkl and a

corresponding X-ray anisotropy factor 3��hkl for which the

X-ray elastic constants are equal to their mechanical coun-

terparts (Fig. 5). 3��hkl will therefore be used to denote

conditions in accordance with the Hill model, under which

fSL
33ijg

hkl
 ¼ fS

L
33ijg

3��

 = hSL
33iji .

4.2. Isotropic case

In the case of polycrystalline materials with crystal elastic

isotropy or with negligible macroscopic elastic anisotropy,

fEghkl and f�ghkl as well as fs1g
hkl and fs2=2ghkl are independent

of the angle  , and equation (15) supposes a linear depen-

dence of f"L
33g

hkl
 on sin2 (Stickforth, 1966; Noyan & Cohen,

1987; van Houtte & De Buyser, 1993). Provided that the

elastic strain f"L
33g

hkl
 and the macroscopic stress h�Si can be

determined by experiment, the isotropic X-ray elastic

constants fs1g
hkl and fs2=2ghkl, and subsequently also fEghkl and

f�ghkl, can be obtained by solving a system of linear equations

of the same type as equation (15) when f"L
33g

hkl
 is known for

different  (Ortner, 1986a,b).

An example of this procedure is presented in Fig. 6.

Considering the single-crystal elastic constants from Table 1

and an in-plane isotropic stress h�Si = 100 MPa, calculated

diffraction strains f"L
33g

hkl
 for a quasi-isotropic Cu thin film are

presented in Fig. 6(a).

According to equation (15), the slopes in Fig. 6(a) corre-

spond to fs2=2ghkl and the intercepts on the f"L
33g

hkl
 axis can be

correlated with the magnitude of fs1g
hkl. In practice, the X-ray

elastic constants are obtained by fitting the experimental data

from Fig. 6(a) using equation (15). The reciprocal diffraction

elastic moduli 1/fEghkl in Fig. 6(c) can then be determined

from fs1g
hkl and fs2=2ghkl (Fig. 6b) as follows:

1=fEghkl
¼ fs1g

hkl
þ fs2=2ghkl: ð17Þ

The reciprocal mechanical modulus 1=fEgM = 0.81 �

10�11 Pa�1 was extrapolated from the reciprocal diffraction

moduli 1=fEghkl
 supposing 1=hEi = 1=fEghkl for 3��hkl = 0.6, as

predicted by the Hill grain-interaction model for quasi-

isotropic materials (Bollenrath et al., 1967). The mechanical

modulus hEi is therefore 123.45 GPa. This procedure is,

however, valid only in the case of elastic isotropic aggregates.

4.3. Fibre-textured thin films

The procedure described in Fig. 6 is an often used simpli-

fication. Polycrystalline thin films are, however, usually

macroscopic elastic anisotropic, and therefore the extrapola-

tion of the mechanical modulus from X-ray elastic constants

for 3��hkl = 0.6 would provide incorrect results.

In the majority of cases, polycrystalline thin films possess a

certain uvw fibre texture with the fibre axis oriented perpen-

dicular to the substrate surface. In that case, the mechanical

and X-ray elastic compliances are dependent on the angle  
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Figure 6
(a) Calculated X-ray elastic strains in a quasi-isotropic Cu thin film with
equibiaxial stress of 100 MPa. (b) X-ray elastic constants fs1g

hkl and
fs2=2ghkl refined from (a), plotted as a function of 3�hkl. (c) Reciprocal
diffraction Young’s moduli 1/fEghkl obtained from (b). The mechanical
modulus hEi can be extrapolated for 3��hkl = 0.6, resulting in a value of
123.45 GPa.



(Figs. 4 and 5). In order to determine the experimental hSL
33iji 

from fSL
33ijg

hkl
 it is necessary to know the exact value of 3��hkl ,

which is also dependent on  , as demonstrated in Fig. 5. We

discuss below the possibilities for determining hSL
33iji and

hEi from the experimental fSL
33ijg

hkl
 by applying Hooke’s law

[equation (13)].

(i) In the case of in-plane elastic isotropic films fSL
3311g

hkl
 ¼0 is

equal to fSL
3322g

hkl
 ¼0 for  = 0 and equation (13) reduces to

f"L
33g

hkl
 ¼0 = 2fSL

3311g
hkl
 ¼0. fSL

3311g
hkl
 ¼0 can be determined experi-

mentally by evaluating the intercept of the sin2 dependence

on the f"L
33g

hkl axis when h�Si is known. The dependence of

fSL
3311g

hkl
 ¼0 on 3�hkl could then be used to determine the thin-

film mechanical compliance hSS
3311i.

(ii) By comparing the intercepts 2fSL
3311g

hkl
 ¼0 and the slopes

fSL
3333g

hkl
 � fS

L
3311g

hkl
 of the sin2 curves for  ! 0 [and by

simultaneously neglecting the term fSL
3313g

hkl
 sin 2 since

fSS
3313g

hkl
 ¼0 ¼ fS

L
3313g

hkl
 ¼0 ¼ 0 for hexagonal macroscopic

symmetry of the sample (Martinschitz, 2008)], equation (13)

can be used to extract fSL
3333g

hkl
 and the diffraction out-of-

plane modulus Ef ghkl
 ¼0, as in x4.2. By considering the macro-

scopic elastic anisotropy, the knowledge of Ef ghkl
 ¼0 can be used

to determine the mechanical Young’s modulus hEi ¼0 or the

term hSS
3333i.

(iii) By evaluating the intercepts on the f"L
33g

hkl axis for

 ¼ 90�, equation (13) can be used to determine the term

fSL
3333g

hkl
 ¼90 þ fS

L
3322g

hkl
 ¼90, which, in this special case, can be

used to quantify the in-plane biaxial modulus of the thin film

hSS
1111i þ hS

S
1122i.

In order to quantify the parameters hSS
3311i, hS

S
3333i and

hSS
1111i þ hS

S
1122i, the macroscopic elastic anisotropy of the film

must be considered. Furthermore, the determination of out-

of-plane moduli hEi ¼0 = 1/hSS
3333i from the X-ray elastic

constants fSL
3333g

hkl
 ¼0 will be discussed.

4.4. Elastic modulus of 111 fibre-textured Cu thin film

In Fig. 7, calculated sin2 dependencies for a Cu thin film

with a strong 111 fibre texture (Fig. 2) are presented. The plots

were calculated supposing an in-plane isotropic stress of h�Si =

100 MPa and using the single-crystal elastic constants from

Table 1.

The data in Fig. 7(a) were evaluated according the proce-

dure described in x4.2 point (ii), and fSL
3333g

hkl
 ¼0 values were

determined (Fig. 7b). Using the ODF from Fig. 2, the out-of-

plane mechanical compliance hSL
3333i ¼0 was also calculated

[equations (3)–(7)] with hE111i ¼0 = 174 GPa. Comparison of

the out-of-plane X-ray and mechanical compliances showed

that hSS
3333i ¼ fS

L
3333g

hkl
 ¼0 for 3��hkl = 0.937. This result demon-

strates that, in order to determine hSL
3333i ¼0 from fSL

3333g
hkl
 ¼0

[i.e. to apply an opposite algorithm flow to that in Fig. 7(b)], it

is necessary to know the value of 3��hkl, which is strongly

texture dependent.

4.5. 3C*
hkl–3Cuvw plot

In the case of cubic uvw fibre-textured films with the fibre

axis oriented perpendicularly to the substrate surface, the

texture type will be further described using the parameters

�uvw defined as (Bollenrath et al., 1967; Huang & Weaver,

2005)

�uvw ¼
u2v2 þ v2w2 þ u2w2

ðu2 þ v2 þ w2Þ
2 : ð18Þ

Supposing various uvw fibre textures (i) with a texture

sharpness  FWHM in the range 0–60� (Fig. 2), (ii) with 3�uvw in

the range 0–1 and (iii) with ISO in the range 0–100%,

numerous ODFs were generated. Following the algorithm

from x4.3 point (ii), fSL
3333g

hkl
 ¼0 and hSL

3333i ¼0 values were

calculated numerically for materials with Zener’s anisotropy

ratio in the range 0.36–9.95 (corresponding to KCl and Na).

Then the mechanical and X-ray elastic constants were

compared, with the aim of finding out for which 3��hkl value

hSS
3333i ¼ fS

L
3333g

hkl
 ¼0. As a result 3��hkl–3�uvw plots were

constructed, indicating how 3��hkl depends on the uvw fibre-

texture type, on  FWHM (Fig. 8b) and on ISO (Fig. 8a).
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Figure 7
(a) Calculated X-ray elastic strains in a Cu thin film with a strong 111 fibre texture under equibiaxial stress of 100 MPa. (b) X-ray compliances fSL

3333g
hkl
 ¼0

refined from (a), plotted as a function of 3�hkl. Since, for this special type of texture, the mechanical compliance hSL
3333i ¼0 = 0.575 � 10�11 Pa�1, 3��hkl =

0.937 was extrapolated from the fSL
3333g

hkl
 ¼0 dependence on 3�hkl .



The 3��hkl–3�uvw plots in Fig. 8 do not depend on the crystal

elastic anisotropy of the thin-film material and represent

therefore a certain type of universal plot valid for all materials.

In the case of isotropic materials (like tungsten) where ZARffi

1, the choice of ��hkl is arbitrary.

In Fig. 8(a), one can recognize that, for very strong uvw

fibre textures with  FWHM < 10� and a small or no fraction of

randomly oriented crystallites, the X-ray elastic constants

correspond approximately to the mechanical constants for

3��hkl = 3�uvw. In other words, in order to determine the out-of-

plane modulus of a thin film with a very strong uvw texture

one has to characterize the X-ray elastic constants of the uvw

reflections. For not very pronounced fibre textures, the 3��hkl

value must be selected from the intervals h3�uvw; 0:6i or

h0:6; 3�uvwi for thin films with �uvw smaller or larger than 0.6,

respectively. When the fraction of randomly oriented crystal-

lites ISO increases, however, X-ray elastic constants of the hkl

reflections for which 3��hkl ! 0:6 should be quantified (x4.2).

Similarly, in Fig. 8(b), the decrease of the texture sharpness

results in behaviour that is typical for elastic isotropic

materials and 3��hkl ! 0:6.

In the case of sharp uuu or u00 fibre textures the search for

an exact 3��hkl value is extremely important, because the

application of the procedure from x4.2 (valid for elastic

isotropic materials) could result in large errors when deter-

mining the out-of-plane moduli. For films with uvw fibre

textures with 3�uvw ffi 0:6, the procedure from x4.2 can still

provide relevant results.

The results in Figs. 8(a) and 8(b) represent an example of

the ��hkl–�uvw selection rule. In order to express the depen-

dence of 3��hkl on 3�uvw, on  FWHM and on ISO generally and

in a ‘user-friendly’ way, the following empirical equation was

derived:

3��hkl ¼ Aþ 3�uvw 1� A=0:6ð Þ; ð19Þ

where A = ( FWHM � 8.8 + ISO � 5.8 �  FWHM � ISO �

0.083)/1000.

Equation (19) provides an easy way to determine 3��hkl

values considering fibre-texture parameters. The parameters

ISO and  FWHM in equation (19) can be obtained from pole

figure data (Fig. 2), or they can be extracted from an ODF

analysis of experimental pole figures. The ODF analysis is

recommended especially in the case of strong mixed textures

or texture gradients. It is important to note that in the quan-

tification of the 3��hkl value using equation (19) the crystal

elastic anisotropy does not play a role.

It is obvious that the considerations of xx4.1–4.5 can be

extended to determine other mechanical elastic constants of

thin films (e.g. in-plane biaxial moduli). Therefore, there is a

need for a general approach when comparing hSL
33iji and

fSL
33ijg

hkl
 for various fibre-texture types and  angles.

The derived 3��hkl dependence on the texture parameters

[equation (19)] based on the comparison of hSL
33iji and

fSL
33ijg

hkl
 depends obviously on the supposed grain-interaction

model. In the present case, the Hill grain-interaction model

was used, and therefore the approach should be applied only

to fibre-textured films that are assumed to obey that model. In

the next section, the approach is demonstrated on the

experimental characterization of fibre-textured Cu and CrN

thin films.
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Figure 8
3��hkl–3�uvw plots indicating for which hkl reflection (and corresponding 3��hkl value) the X-ray elastic constants fSL

3333g
hkl
 ¼0 are equal to the mechanical

constants hSL
3333i ¼0. 3��hkl values are plotted as a function of the fibre-texture type expressed through �uvw. (a) The dependence of 3��hkl on the fraction of

randomly oriented crystallites in the range 0–100%, plotted for various uvw textures with  FWHM = 10�. (b) The dependence of 3��hkl on  FWHM, plotted
for various uvw textures supposing a 10% fraction of randomly oriented crystallites.



5. Experimental procedure

5.1. Sample preparation

Cu and CrN thin films were deposited on Si(100) using the

Balzers RCS coating system. In order to induce a measurable

substrate curvature and to avoid a substrate plastic deforma-

tion, monocrystalline Si(100) wafers with thicknesses of 140

and 400 mm and lateral dimensions of 30 � 8 mm were chosen

for the deposition of Cu and CrN films, respectively. The

substrates were ultrasonically cleaned in acetone and alcohol,

and Ar etched prior to the deposition. The Cu was deposited

in an argon atmosphere at room temperature and then

annealed at 673 K for 10 min in order to increase the residual

stress (and substrate curvature) magnitude. The 3 mm-thick

CrN thin film was deposited at a temperature of 623 K. The

thicknesses of the Cu and CrN thin films (0.6 and 3 mm,

respectively) were determined from the film cross sections

using a scanning electron microscope. The thickness of the

substrate was measured mechanically using a micrometre

gauge with a precision of better than 1 mm.

5.2. Diffraction setup

The substrate curvature, elastic strain and texture of Cu and

CrN on Si(100) were characterized in laboratory conditions

using a Seifert 3000 PTS four-circle diffractometer. The setup

comprised Cu K� radiation, polycapillary optics on the

primary side, vertical Soller slits, a graphite monochromator

and a scintillation detector on the secondary side. For the

elastic strain and curvature characterization, beam sizes of 3.0

and 0.5 mm in diameter were chosen. The relatively large

beam in the case of strain measurements enabled the assess-

ment of volume-averaged properties. The elastic strains were

determined with precision better than�10%. The limited pole

figure characterization was performed using the Schultz

reflectivity technique with a beam of 2 mm in diameter, with

the  range set to 0–80�. The rectangular samples were glued

with just one of their narrower sides onto sample holders, in

order to allow for free bending when the strain and the

curvature were characterized in the diffractometer. For

comparison, the texture of the films was also characterized

using a Bruker GADDS system equipped with a two-dimen-

sional detector, and the pole figures were identical to those

obtained using the Seifert system.

5.3. Thin-film texture

The texture in Cu and CrN thin films was characterized

using pole figure measurements (Figs. 9 and 10). The orien-

tation distribution function was then calculated from the

experimental data in order to assess the proportion of

randomly oriented crystallites ISO. The ODF analysis was

performed using the commercial software LaboTex applying

the ADC (arbitrarily defined cells) method (LaboSoft, 2006;

Pawlik, 1986). In the case of Cu, one can easily identify a sharp

111 fibre texture (Fig. 9) with a width at half-maximum  FWHM

at the centre of the 111 pole figure of 14� and an ISO of 10%.

For CrN, a 311 texture is visible in Fig. 10, with  FWHM = 12�

and an ISO of 13%.

The experimental parameters  FWHM and ISO were used to

determine 3��hkl using equation (19). For the Cu and CrN thin

films from Figs. 9 and 10, it was found that 3��hkl is equal to 0.89

and 0.51, respectively.
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Figure 9
Experimental Cu 111, 200, 220 and 311 pole figures documenting the 111
fibre texture in the Cu thin film. The external ring corresponds to 80�.

Figure 10
Experimental CrN 111, 200, 220 and 311 pole figures documenting a 311
fibre texture. The outer ring corresponds to 80�.



5.4. Macroscopic stress characterized by the X-ray diffrac-
tion substrate curvature technique

The pole figure measurements confirmed that the thin films

are in-plane elastic isotropic. Since the films were unpassi-

vated, the residual stress h�Si in the plane of the films was

considered as equibiaxial and the out-of-plane components

h�S
i3i were neglected. The volume-averaged macroscopic

stresses in Cu and CrN polycrystalline thin films were deter-

mined using the X-ray diffraction substrate curvature method

(Stoney, 1909; Segmüller et al., 1989; Zhao et al., 2002; Keckes

et al., 2007). The quantification of the curvature was

performed by the measurement of rocking curves of Si 400

reflections at different sample positions xi as described in our

previous work (Martinschitz et al., 2006). In Fig. 11, the rela-

tive positions of the rocking curves (expressed through angle

!) on �x are presented for the Cu/Si(100) and CrN/Si(100)

samples. The plots in Fig. 11 indicate a homogeneous curva-

ture and residual stress across the sample. In practice,

provided the sample homogeneity is not questionable, it would

be enough to quantify the curvature from just a few

measurement points.

The data in Fig. 11 were used to calculate the radius of

curvature R according to

R ffi @�!=@�xð Þ
�1; ð20Þ

where @�!/@�x represents the slope of the linear depen-

dencies (Martinschitz et al., 2006). Applying R, it was possible

to determine the macroscopic in-plane isotropic residual stress

h�Si in the films using the Stoney (1909) formula

�S
� �
¼

E

6ð1� vÞ

h2
s

hf

1

R
; ð21Þ

where hs and hf denote the substrate and film thicknesses,

respectively, and the term E/(1 � �) = 181 GPa is the biaxial

modulus of the silicon substrate (Suresh & Freund, 2003). The

macroscopic stress h�Si in the Cu and CrN films (Table 2) was

determined with a precision of about �5%.

5.5. Elastic strain in thin films

In Figs. 12(a) and 12(b) the X-ray elastic strains f"L
33g

hkl
 in

the Cu and CrN films for different hkl reflections are

presented as a function of the sample tilt angle  . The

different crystal elastic anisotropy has the result that

@f"L
33g

200
 ¼0=@ sin2  > @f"L

33g
hkl
 ¼0=@ sin2  for Cu and @f"L

33g
111
 ¼0=

@ sin2  > @f"L
33g

hkl
 ¼0=@ sin2  for CrN in Fig. 12. In the case of

Cu, the dependencies are nearly linear, whereas for CrN films

one can observe nonlinearities which can be attributed to the

experimental errors and to gradients of strain, texture or

unstressed lattice parameters. Especially in the case of hard

coatings like CrN, nonlinearities (Fig. 12b) are usual (cf.

Donohue et al., 1999; Göbel et al., 2001). Although it has often

been observed that polycrystalline samples do not exhibit

perfectly linear experimental sin2 dependencies for h00 and

hhh reflections, the application of the anisotropic Hill grain-

interaction model to assess the mechanical behaviour of such

samples has generally provided satisfactory results (van

Houtte & De Buyser, 1993; Gnäupel-Herold et al., 1998;

Howard & Kisi, 1999). It is also known that results obtained

using other more sophisticated models such as those of Kröner

or Vook–Witt (Kröner, 1958; Leoni et al., 2001; Welzel, 2002;

Welzel et al., 2005) are very close to those of Hill (van Houtte

& De Buyser, 1993; Gnäupel-Herold et al., 1998; Howard &

Kisi, 1999, Welzel, 2002). Moreover, since the grain-interac-

tion models represent idealized theories, it is very difficult to

distinguish which model is applicable in the case of experi-

mental data obtained from real materials. The precision of
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Figure 11
Plots of the �! dependence on �x for the Cu/Si(100) and CrN/Si(100)
samples. The results indicate different radii of curvature R of 2.193 and
3.572 m for Cu and CrN. The convex and the concave bending correspond
to tensile and compressive stresses of 275.9 and �1415.9 MPa in Cu and
CrN, respectively (Martinschitz et al., 2006).

Table 2
An experimental algorithm to determine out-of-plane mechanical moduli of fibre-textured thin films is presented.

The macroscopic stress h�Si was determined using the curvature measurement (x5.4 and Fig. 11). The elastic strain f"L
33g

hkl
 dependencies on sin2 (x5.5 and Fig. 12)

were analysed in order to evaluate the intercepts fSL
3311g

hkl
 ¼0 þ fS

L
3322g

hkl
 ¼0 and slopes fSL

3333g
hkl
 !0 � fS

L
3311g

hkl
 !0 for  ! 0. The factor 3��hkl indicates for which value of

the X-ray anisotropic factor the X-ray and mechanical elastic constants are equal (x5.3). The compliances and the moduli were then determined using equation
(22).

h�Si fSL
3311g

hkl
 ¼0 þ fS

L
3322g

hkl
 ¼0 fSL

3333g
hkl
 !0 � fS

L
3311g

hkl
 !0 3��hkl hSL

3333i ¼0 ¼ SL
3333

� 3��
hkl

 ¼0
hEi ¼0

(MPa) (10�11 Pa�1) (10�11 Pa�1) (10�11 Pa�1) (GPa)

Cu 275.9 0.62 � 3�hkl � 0.82 �1.04 � 3�hkl + 1.65 0.89 0.5903 169.40
CrN �1415.9 �0.43 � 3�hkl + 0.046 0.51 � 3�hkl + 0.24 0.51 0.4084 244.87



diffraction techniques is, moreover, often insufficient to

distinguish between different models (Howard & Kisi, 1999).

This is the case here also, since the precision of the X-ray

elastic strain characterization was not better than 10%.

Since the films were polycrystalline, the methodology based

on the anisotropic Hill grain-interaction model was used to

extract mechanical elastic constants applying the formalism

from xx2–4.

The plots in Fig. 12 illustrate that it was possible to perform

lattice spacing measurements and to determine X-ray elastic

strains at every sample tilt angle  , even for the Cu film with

the strong 111 fibre texture. This fact indicates that there was a

nonzero fraction of randomly oriented crystallites in the films.

The lattice spacing measurements at arbitrary  angle were

possible, however, only after the polycapillary optics and

vertical Soller slits were installed and used (Welzel & Leoni,

2002). Therefore, the use of parallel X-ray optics seems to be

an important prerequisite to apply successfully the method

described in this work.

Another important prerequisite for the use of the new

method is the fact that the strains should be analysed using a

relatively large beam (3 mm in diameter in the present case).

Only then can representative information on the average

X-ray elastic strain be obtained.

5.6. Experimental Young’s moduli

The X-ray elastic constants fSL
33ijg

hkl
 [equation (13) and x4.3]

can be obtained by a numerical fitting of the experimental

X-ray elastic strains f"L
33g

hkl
 from Fig. 12, applying the

macroscopic stress values h�Si from Table 2. This type of

analysis was performed in order to evaluate (i)

fSL
3311g

hkl
 ¼0 þ fS

L
3322g

hkl
 ¼0 from the intercepts on the f"L

33g
hkl
 axis

and (ii) fSL
3333g

hkl
 !0 � fS

L
3311g

hkl
 !0 from the slopes in Fig. 12. In
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Figure 13
X-ray elastic constants fSL

3311g
hkl
 ¼0 þ fS

L
3322g

hkl
 ¼0 and fSL

3333g
hkl
 !0 � fS

L
3311g

hkl
 !0 obtained by fitting equation (13) (x3.1) to the data from Fig. 12 and by

evaluating the intercepts (a) and the slopes (b) under the consideration of the macroscopic stress h�Si (x5.4).

Figure 12
Measured X-ray elastic strains f"L

33g
hkl
 in Cu (a) and CrN (b) thin films as a function of the sample tilt angle  . Positive (a) and negative (b) slopes

indicate tensile and compressive stresses in Cu and CrN, respectively. The strains were determined with a precision better than �10%.



Figs. 13(a) and 13(b), the fitted parameters fSL
3311g

hkl
 ¼0 þ

fSL
3322g

hkl
 ¼0 and fSL

3333g
hkl
 !0 � fS

L
3311g

hkl
 !0 from Fig. 12 are

presented as a function of 3�hkl for the Cu and CrN thin films.

These parameters differ for various hkl reflections, which is

the consequence of the crystal elastic anisotropy.

The fSL
3311g

hkl
 ¼0 þ fS

L
3322g

hkl
 ¼0 and fSL

3333g
hkl
 !0 � fS

L
3311g

hkl
 !0

dependencies on 3�hkl from Fig. 13 were approximated by

linear dependencies and the results are presented in Table 2.

By easy calculus it was possible to derive also the dependence

of fSL
3333g

hkl
 !0 on 3�hkl (Table 2). Considering the macroscopic

elastic anisotropy and by applying the 3��hkl values from x5.3

one can determine an inverse out-of-plane X-ray elastic

modulus fSL
3333g

3��

 ¼0 which is equal to the mechanical compli-

ance hSL
3333i ¼0. The out-of plane Young’s modulus can then be

easily determined as follows:

1= Eh i ¼0 ¼ SS
3333

� �
¼ SL

3333

� �
 ¼0
¼ fSL

3333g
3��

 ¼0: ð22Þ

The experimental out-of-plane Young’s moduli of Cu and CrN

thin films were found to be 169.40 and 244.87 GPa. The results

are comparable to the experimental data obtained using other

techniques (Hong et al., 2005; Sue et al., 1994; Lee et al., 2008).

5.7. Error discussion

The accuracy with which the out-of-plane Young’s moduli

were determined using the new algorithm is influenced by

numerous factors. The approach is based on the combined

application of well established techniques, sin2 and X-ray

diffraction substrate curvature, the experimental accuracies of

which have been discussed in numerous papers (e.g. Noyan &

Cohen, 1987; Winholz & Cohen, 1988; Zhao et al., 2002). The

combination of the two techniques can in the worst case result

in the accumulation of experimental errors.

The accuracy of the sin2 technique was assessed by Noyan

& Cohen (1987) and by Winholz & Cohen (1988). Depending

on numerous parameters, such as sample quality, diffraction

system, number of measured reflections, scattering intensity

and measurement time (Noyan & Cohen, 1987; Winholz &

Cohen, 1988), the precision is usually below�15%. Moreover,

the exactness of the elastic strain characterization can be

improved by increasing the number of measured reflections

(Fig. 13). In the present case, since the measurements were

performed using a commercial diffractometer, the precision

was about �10%

The exactness of the macroscopic stress characterization is

extremely important since the stress is used to divide the

experimental strain values. For this reason, not only the

substrate curvature but also the film and the substrate thick-

ness must be determined with a high precision. In the present

case, the macroscopic stresses were determined with a preci-

sion of �5%. Experimental elastic strain and macroscopic

stress data are combined in Fig. 13, whereby the linear

dependencies provided coefficients of determination R2 larger

than 0.9.

The data in Fig. 13 were used to extract hSL
3333i ¼0 para-

meters and finally also elastic moduli. It can be therefore

supposed that the moduli in Table 2 were determined in the

present case with a precision better than 15%.

Fig. 13 implies good control over the reliability of the

technique proposed here. If the dependence of fSL
3311g

hkl
 ¼0þ

fSL
3322g

hkl
 ¼0 and fSL

3333g
hkl
 !0 � fS

L
3311g

hkl
 !0 on 3�hkl is not linear

and the R2 factors are smaller than 0.8, the technique will not

provide reliable data.

Moreover, the simultaneous application of sin2 and X-ray

diffraction curvature techniques should be performed on a

representative sample region without strong gradients in

microstructure and in stresses. By extending the curvature

characterization to a large �x range (Martinschitz et al., 2006),

it is possible to analyse if the curvature and the stress are

homogeneous. The strain measurements should be performed

in the region for which the curvature as well as the film and the

substrate thickness are known. When performing the strain

characterization, however, a large beam ensuring good

statistics is required.

Another source of error could reside in the parameter 3��hkl .

The parameter can be quantified exactly using a numerical

ODF analysis of the texture data or estimated from the pole

figure plots. The higher the crystal elastic anisotropy of the

materials, the more significantly the 3��hkl inaccuracy will

contribute to the errors when determining the moduli.

Similarly, the present approach supposes that thin films

possess a certain type of fibre texture, which occurs, for

instance, in annealed metallic films (where the film thickness is

comparable to the crystallite thickness; Eiper et al., 2007).

Since some thin films possess very complex fibre textures (with

strong gradients), a careful ODF analysis must be performed

before comparing hSL
33iji and fSL

33ijg
hkl
 .

Incorrect values of moduli will be obtained when the

monocrystalline substrate under the film is plastically

deformed. In that case the Stoney formula does not hold. For

this reason, it is important to pay significant attention to the

sample preparation.

An important assumption made in this work is that the

mechanical behaviour of the polycrystalline films can be

described using the Hill grain-interaction model. This is

generally not the case (for instance, in epitaxial thin films

where behaviour according the Voigt model can be expected).

Therefore, the proposed method cannot be applied auto-

matically. It is always important to analyse the microstructure

of the film. In the case of film materials with unknown grain-

interaction mechanism, it is recommended to perform a

comparative characterization using other techniques, such as

nanoindentation. Nonlinearities in the f"L
33g

hkl
 –sin2 depen-

dencies are often an important indication that a polycrystal-

line film does not obey the Hill grain-interaction model. As

already mentioned, nonlinearities can be attributed also to

gradients of strain, texture or unstressed lattice parameters, or

to plasticity in the film. In the case of strong nonlinearities, the

method should not be applied. Although in the present case

(Fig. 12b) the f"L
33g

hkl
 –sin2 dependencies are not perfectly

linear, the results obtained from the CrN film are comparable

to results obtained using other techniques (Sue et al., 1994;

Lee et al., 2008).
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6. Conclusions

A new method to determine elastic moduli of thin films in a

contactless manner using X-ray light was proposed. Supposing

the Hill grain-interaction model, it was demonstrated that

X-ray elastic constants can be used to determine mechanical

elastic constants of cubic thin films with strong fibre textures.

For this purpose, numerically calculated X-ray elastic

constants of polycrystalline films were compared with their

mechanical counterparts. The results demonstrate that the

algorithm to determine the mechanical elastic constants

strongly depends on the fibre-texture type, the texture

sharpness, the number of randomly oriented crystallites in the

polycrystalline aggregate and the assumed grain-interaction

model. For this purpose, a universal plot (and equation) was

derived. The method was used to quantify out-of-plane

Young’s moduli of Cu and CrN fibre-textured thin films with

satisfactory results.
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via a grant from the Austrian Science Fund FWF within the
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