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Abstract: Sigma1 Receptor (S1R) is involved in oxidative stress, since its activation is triggered by
oxidative or endoplasmic reticulum stress. Since specific aquaporins (AQP), called peroxiporins, play
a relevant role in controlling H2O2 permeability and ensure reactive oxygen species wasted during
oxidative stress, we studied the effect of S1R modulators on AQP-dependent water and hydrogen
peroxide permeability in the presence and in the absence of oxidative stress. Applying stopped-flow
light scattering and fluorescent probe methods, water and hydrogen peroxide permeability in HeLa
cells have been studied. Results evidenced that S1R agonists can restore water permeability in
heat-stressed cells and the co-administration with a S1R antagonist totally counteracted the ability to
restore the water permeability. Moreover, compounds were able to counteract the oxidative stress of
HeLa cells specifically knocked down for S1R. Taken together these results support the hypothesis
that the antioxidant mechanism is mediated by both S1R and AQP-mediated H2O2 permeability. The
finding that small molecules can act on both S1R and AQP-mediated H2O2 permeability opens a new
direction toward the identification of innovative drugs able to regulate cell survival during oxidative
stress in pathologic conditions, such as cancer and degenerative diseases.

Keywords: peroxiporins; oxidative stress; hydrogen peroxide; water channels; Sigma1 receptors;
Sigma1 receptor modulators; neurodegenerative diseases

1. Introduction

Hydrogen peroxide (H2O2) is the most abundant and stable reactive oxygen species
(ROS) in living cells [1]. At low physiological concentrations, H2O2 may act as signal-
ing molecule and is involved in various physiological processes through autocrine or
paracrine mechanisms [1]. Conversely, when H2O2 accumulates within cells, due to a dis-
balance between ROS production and scavenging, it is responsible for oxidative stress [2–6].
When oxidative stress occurs, the cells dispose of H2O2 either by intracellular antioxi-
dant systems or by outflow through the plasma membrane. H2O2 crosses the biological
membranes through a diffusion-facilitating channel mechanism mediated by Aquaporins
(AQPs) [1,3,7]. AQPs are integral membrane proteins forming channels in the biologi-
cal membranes, and are mainly involved in the transport of water and small molecules
(i.e., ammonia, glycerol) [8,9]. To date, five AQP isoforms (AQP3 [10–13], AQP5 [14,15],
AQP8 [4,16], AQP9 [17] and AQP11 [18]) showed additional H2O2 permeability and they
are therefore called peroxiporins. The control of peroxiporins-mediated H2O2 permeability
seems to have a great importance in regulating cell signaling and survival during oxidative
stress [4,19–21]. For living cells, the functioning of peroxiporins is critical to ensure ROS
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wasting and is considered an antioxidant system. Various cellular stress conditions, includ-
ing heat and incubation with H2O2, reduce the AQP-mediated H2O2 transport [4,19–21].
Recently, a number of natural antioxidants, such as flavonoids, flavanones and terpenoids,
has been identified as AQPs modulators [20]. The addition of such compounds, during or
after heat-treatment, is able to prevent or reverse the AQPs permeability [20]. This suggests
the possibility to chemically modulate the pore gating of peroxiporins, supporting the idea
that AQPs are druggable targets.

These findings open a new direction to the development of novel therapeutic treat-
ments to regulate cell signaling and survival during oxidative stress in normal and patho-
logic conditions, such as cancer and degenerative diseases [22,23].

Another physiological cellular response to oxidative stress requires the activation of
the sigma-1 receptor (S1R). Despite intensive research since its identification in 1976, it still
represents an enigmatic target, whose molecular functions are not fully understood yet.
Nowadays, the most widely accepted model describes it as a ligand-operated chaperone
able to interact with a plethora of partner proteins.

S1R is a chaperone protein, mainly expressed in mitochondria-associated endoplasmic
reticulum (ER) membranes [24]. Interestingly, it has been demonstrated that also AQP8
and AQP11 are localized in mitochondria [25,26] and ER [18], respectively and possess
H2O2 permeability.

Upon activation, S1R modulates diverse signaling pathways connected to cell survival
and excitability, including calcium homeostasis, reduction of glutamate release, ROS, nitric
oxide (NO), microglial activity, and upregulation of antiapoptotic genes (i.e., Bcl-2) [27].
This suggests that modulation of S1R is an effective strategy to counteract oxidative stress
by reducing levels of reactive oxygen species, although mechanisms responsible for the
antioxidant effects exerted by S1R have not been completely clarified yet [28–30]. Moreover,
S1R provides additional layers of protection during ER stress thanks to its chaperoning
activities against a plethora of diverse client proteins [24,31]. For this reason, S1R has
been recognized as a promising therapeutic target and is currently being investigated for
several complex multifactorial pathologies, such as neurodegeneration and neuropathic
pain [32–34]. As a result, S1R modulators are under investigation for treating several
diseases involving oxidative stress [35] such as cardiovascular diseases, neurodegenerative
disorders, diabetes, ischemia/reperfusion, Alzheimer’s [36–38] and CNS inflammatory
conditions associated with cocaine and HIV [38,39].

As a part of our current medicinal chemistry research on S1R [40–44], we have recently
discovered a series of ligands endowed with nanomolar S1R binding affinity and with
antioxidant activity in cellular models [20,43,45–47]. Of note, the potent S1R agonist
identified in our lab, called RC33, is currently under investigation in vivo for its potential
against Amyotrophic Lateral Sclerosis and for recovery of the damage of Spinal Cord
Injury [40].

Starting from the evidence that AQP8 and AQP11 are localized in mitochondria [25,26]
and endoplasmic reticulum (ER) [18], respectively, and that S1R is also mainly expressed in
mitochondria-associated ER membranes [24], in the present paper, we studied the potential
of S1R modulators as AQPs interfering compounds. Briefly, we studied the in vitro effect
of the well-established S1R agonists PRE084 and RC33, and of the S1R antagonist NE100,
on AQPs. The investigation was then extended to three in-house developed S1R ligands
(compounds 1–3, Figure 1), for which additional intrinsic antioxidant properties have
already been demonstrated [45]. Lastly, to study if the antioxidant effect of S1R modulators
is mediated by AQPs, experiments with S1R-knockdown (KD) cells have been performed.
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with the S1R agonists PRE084, (R/S)-RC33 and (R)-RC33, i.e., the most metabolically stable 
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lation of water and hydrogen peroxide permeability in HeLa cells is mediated by S1R, a 
co-administration of NE100 with RC33, used as model agonist, was performed. As a re-
sult, the effect of RC33 was totally counteracted (Figure 3), thus confirming that the effect 
is S1R mediated. 

Figure 1. Chemical structures of S1R ligands tested in this study to evaluate their AQPs-mediated antioxidant effect.

Considering that the osmotic water permeability of AQPs is indicative of H2O2 per-
meability [4,19,48], that HeLa cells express different AQP proteins (AQP1, AQP3, AQP8
and AQP11) and that they have been already used to test the antioxidant capacity of some
natural compounds [20], in this paper the effects of S1R agonists were evaluated in HeLa
cells under eustress and oxidative stress conditions.

2. Results

For evaluating water and hydrogen peroxide permeability in HeLa cells, in this study
we used a cheap, very sensitive and reproducible method based on stopped-flow light
scattering. Moreover, heat was used as a physiological stressor able to reduce water
permeability in cells, as reported by previous works [4,20].

The well characterized S1R agonists PRE084 and RC33 ((R/S), racemic and (R)-
configured) and the S1R antagonist NE100 have been tested in a first set of experiments at
the fixed concentration of 20 µM. Results reported in Figure 2 clearly evidenced a different
behavior of S1R modulators, depending on their agonist/antagonist profile.

Although the treatment of cells under normal conditions with the S1R modulators
had no effect on water permeability (Figure 2B), in heat-stressed cells the pre-treatment
with the S1R agonists PRE084, (R/S)-RC33 and (R)-RC33, i.e., the most metabolically
stable enantiomer [49] (see below), were able to restore water permeability. Conversely,
the Sigma-1 antagonist NE100 did not produce any effect (Figure 2A). To assess if the
modulation of water and hydrogen peroxide permeability in HeLa cells is mediated by
S1R, a co-administration of NE100 with RC33, used as model agonist, was performed. As a
result, the effect of RC33 was totally counteracted (Figure 3), thus confirming that the effect
is S1R mediated.

As a further step, we studied whether RC33 stereochemistry plays a role in the
modulation of AQPs. Accordingly, we compared the effect of racemic RC33 with that of
(R)-RC33, which was previously identified as the most metabolically stable enantiomer
in our studies [49]. Racemic and (R)-configured RC33 showed a similar behavior in the
experiments on water permeability (Figure 4).

Once the profile of well-known S1R modulators was assessed in water permeability
assays, we extended the investigation to compounds 1–3, belonging to a library of aryl
aminoalkyl ketones with S1R binding affinity and antioxidant properties [45]. Heat-stressed
cells treated with compounds 1–3 displayed a restored water permeability (Figure 5A).
HeLa cells treated with compound 3 had a significantly higher water permeability than
those incubated with compound 2 (Figure 5A). The behavior is superimposable with that
of well-established S1R agonists PRE084 and RC33 and once again, the treatment of the
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cells with our test compounds under normal conditions did not affect water permeability
(Figure 5B).
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at 42 °C for 3 h (heat-stressed, Heat); heat-stressed cells pre-treated with test compounds (Pre084, 
(R/S)-RC33 and NE100) at 20 µM final concentration. (B) HeLa cells were incubated at 21 °C for 3 h 
with the compounds at 20 µM final concentration and, successively, were exposed to a 150 mOsm 
osmotic gradient. Controls (Ctr) indicate cells incubated without compounds. a, p < 0.05 vs. Ctr, 
Pre084, (R/S)-RC33; b, p < 0.05 vs. Ctr (Repeated measures ANOVA, followed by Newman-Keuls’s 
Q test). 

 
Figure 3. Effect of the NE100 and (R/S)-RC33 co-administration on the water permeability of HeLa 
cells in heat-stress condition. Comparison between untreated cells (Controls, Ctr), cells treated at 42 
°C for 3 h (heat-stressed, Heat), heat-stressed cells pre-treated separately with NE100 and (R/S)-
RC33 at 20 µM and heat-stressed cells pre-treated simultaneously with NE100 and (R/S)-RC33. Bars 
represent the osmotic water permeability of HeLa cells expressed as percent of the exponential rate 
constant k. Values are means ± SD of 4–15 single shots (time course curves) for each of 4–6 different 
experiments. a, p < 0.05 vs. Ctr, (R/S)-RC33 (Repeated measures ANOVA, followed by Newman-
Keuls’s Q test). 

As a further step, we studied whether RC33 stereochemistry plays a role in the mod-
ulation of AQPs. Accordingly, we compared the effect of racemic RC33 with that of (R)-

Figure 2. Effect of S1R modulators on the water permeability of HeLa cells in heat-stress conditions
(A) and in normal non-stressed conditions (B). Bars represent the osmotic water permeability of HeLa
cells expressed as percent of the exponential rate constant k. Values are means ± SD of 4–15 single
shots (time course curves) for each of 4–6 different experiments. (A) HeLa cells were exposed to
a 150 mOsm osmotic gradient in different conditions: untreated cells (Controls, Ctr); cells treated
at 42 ◦C for 3 h (heat-stressed, Heat); heat-stressed cells pre-treated with test compounds (Pre084,
(R/S)-RC33 and NE100) at 20 µM final concentration. (B) HeLa cells were incubated at 21 ◦C for 3 h
with the compounds at 20 µM final concentration and, successively, were exposed to a 150 mOsm
osmotic gradient. Controls (Ctr) indicate cells incubated without compounds. a, p < 0.05 vs. Ctr,
Pre084, (R/S)-RC33; b, p < 0.05 vs. Ctr (Repeated measures ANOVA, followed by Newman-Keuls’s
Q test).
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Figure 3. Effect of the NE100 and (R/S)-RC33 co-administration on the water permeability of HeLa
cells in heat-stress condition. Comparison between untreated cells (Controls, Ctr), cells treated at
42 ◦C for 3 h (heat-stressed, Heat), heat-stressed cells pre-treated separately with NE100 and (R/S)-
RC33 at 20 µM and heat-stressed cells pre-treated simultaneously with NE100 and (R/S)-RC33. Bars
represent the osmotic water permeability of HeLa cells expressed as percent of the exponential rate
constant k. Values are means ± SD of 4–15 single shots (time course curves) for each of 4–6 different
experiments. a, p < 0.05 vs. Ctr, (R/S)-RC33 (Repeated measures ANOVA, followed by Newman-
Keuls’s Q test).
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Figure 4. Effect of the RC33 stereochemistry on the water permeability of HeLa cells in heat-stress
condition. Comparison between untreated cells (Controls, Ctr), cells treated at 42 ◦C for 3 h (heat-
stressed, Heat), heat-stressed cells pre-treated with racemic (R/S)-RC33 and enantiopure (R)-RC33 at
20 µM final concentration. Bars represent the osmotic water permeability of HeLa cells expressed as
percent of the exponential rate constant k. Values are means ± SD of 4–15 single shots (time course
curves) for each of 4–6 different experiments. a, p < 0.05 vs. Ctr, (R/S)-RC33, (R)-RC33 (Repeated
measures ANOVA, followed by Newman-Keuls’s Q test).
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Figure 5. Effect of compounds 1–3 on the water permeability of HeLa cells in heat-stress condition
(A) and in normal non-stressed condition (B). (A) Comparison between untreated cells (Controls,
Ctr), cells treated at 42 ◦C for 3 h (heat-stressed, Heat), heat-stressed cells pre-treated with test
compounds at 20 µM final concentration. (B) Effect of the compounds on water permeability of HeLa
cells incubated at 21 ◦C for 3 h. Controls (Ctr) indicate cells incubated without compounds. Bars
represent the osmotic water permeability of HeLa cells expressed as percent of the exponential rate
constant k. Values are means ± SD of 4–15 single shots (time course curves) for each of 4–6 different
experiments. a, p < 0.01 vs. Ctr, 1, 2, 3; b, p < 0.05 vs. 3 (Repeated measures ANOVA, followed by
Newman-Keuls’s Q test).

To exclude that the effect on AQPs is non-specific, the ability of tested compounds
to reduce H2O2 content within the cell (Figure 6) at different concentrations have been
evaluated. Results confirmed that only S1R agonists are effective in reduction of H2O2
levels and that all S1R agonists showed a dose-response effect. Nevertheless, a similar
response per unit dose was evidenced for investigated compound, since the slopes of the
lines did not statistically differ (PRE084: −72.42 ± 21.05; RC33: −85.51 ± 15.19; NE100:
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19.59 ± 10.13; Compound 1: −56.37 ± 8.5; compound 2: −56.98 ± 4.7; compound 3:
−48.00 ± 13.0; p = 0.002 NE100 vs. PRE084, RC33, 1, 2, 3, one-way ANOVA).
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content (arbitrary unit) per mg protein. When not shown, SD were within the symbol area. Overall, linear regression (black
line) is presented. p and r2 values are shown.

To confirm the results obtained by the co-administration of NE-100 and RC33 and to
verify if all the tested S1R agonists act through a S1R-mediated mechanism, experiments on
HeLa cells selectively knocked down for S1R have been performed. Short interfering RNAs
(siRNAs) targeting human S1R were used. The effectiveness in silencing was assessed by
immunoblotting. Figure 7A,B showed that S1R protein was significantly knocked-down of
about 50% compared to controls. Successively, silenced HeLa cells were heat-stressed in
the presence and in the absence of S1R agonists and the water permeability measured. The
water permeability of controls and heat-stressed S1R-KD cells was significantly reduced in
comparison with Controls not silenced cells (about 30% reduction), thus demonstrating that
S1R depletion induced an oxidative stress even in the absence of heat treatment (Figure 7C).
Heat treatment of the S1R-KD cells in the presence of Pre084, 1, 2 and 3 increased the water
permeability from 38 to 58% (Figure 7C). This result demonstrates that the above-indicated
compounds were able to counteract the oxidative stress even in S1R-KD cells, likely by a
possible interaction with AQPs. On the contrary, pre-treatment of the cells with RC33 did
not significantly modify the water permeability, suggesting an exclusive activity of RC33
on S1R.

Lastly, to evaluate the subcellular localization of AQPs and S1R in HeLa cells as well
as their possible interactions, experiments of immunofluorescence staining and confocal
microscopy were performed. The results showed in Figure 8A–C evidenced an AQP3
and AQP8 localization mainly in the plasma membrane while AQP11 was confirmed
intracellularly [18]. The intracellular labeling of S1R strengthens the hypothesis that the
protein resides mainly at the mitochondria-endoplasmic reticulum (ER) interface [24].
No or negligible staining was observed when primary antibodies were substituted with
preimmune serum (Figure S1). To evaluate the possible colocalization of AQP3/8/11 with
S1R, we analyzed 3D images using JACoP from Fiji to quantify the Pearson’s correlation
coefficient r, Manders’ colocalization coefficient (M1 and M2) and Van Steensel’s Cross-
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correlation Function (CCF). Pearson’s correlation coefficients were included between −0.5
to 0.5, so no conclusions can be drawn [50] (Figure 8D–F).
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Manders’ overlap coefficient M1 indicates the percentage of the AQP (red) signal
coincident with a S1R signal (green channel) over its total intensity, while M2 indicates
the percentage of S1R signal coincident with an AQP signal [51]. The results showed that
Manders’ coefficients had a higher overlap of S1R on AQP (M2): 0.458 ± 0.046 (AQP8)
> 0.411 ± 0.04 (AQP3) > 0.307 ± 0.109 (AQP11) (Figure 8D–F). The cross-correlation
analysis [52] showed bell-shaped curves (Figure S2) with the following CCF maxima
values: 0.562 ± 0.129 (AQP11) > 0.453 ± 0.212 (AQP3) > 0.355 ± 0.021 (AQP8) (Figure
8D–F). Taken together, the results suggest at least a partial colocalization of S1R and AQPs,
confirming that the herein used cellular model is suitable for studying the effect of S1R
modulators on AQP-mediated antioxidant effect.
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(B,E) and AQP11 (C,F) with S1R. Green labeling indicates the presence of S1R, red labeling the expression of AQP3 (A),
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determined by 3D analysis for each z-stack (8–15) using the JACoP plugin of Fiji. Each dot of the column represents one
single field including different number of cells. The columns represent the mean ± SD of the coefficient values.

3. Discussion

The main aim of our work was to evaluate the possible involvement of AQP-mediated
H2O2 permeability in the antioxidant effect of S1R modulators. In the first set of experi-
ments, we evaluated the effect of the well characterized S1R agonists PRE084 and racemic
RC33 in HeLa cells, and we compared the results with the known S1R antagonist NE100 at
a fixed dose. All compounds were tested in the presence and in absence of oxidative stress
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conditions. Heat shock was used as a cell stressor, and the resulting variation in osmotic
water permeability was measured by a stopped-flow light scattering method, which has the
advantages of high sensitivity, good reproducibility and cost-effectiveness. We observed
that all compounds had no effect on water permeability under normal conditions (non-
stressed cells). Conversely, compounds can act on AQPs only in an oxidative environment
with two distinct profiles: S1R agonists are able to restore water permeability, whereas
the antagonist is ineffective. The subsequent co-administration of RC33 and NE100 to
heat-stressed cells, evidenced that the effect of the antagonist quenched the antioxidant
properties of the agonist, confirming that the effect appears S1R mediated. Moreover, the
effects of racemic RC33 and of (R)-RC33 are superimposable, as expected by their S1R
binding profile. In fact, our previous studies demonstrated that the racemic RC33 and both
(R) and (S) enantiomers show nearly the same affinity toward the binding site of S1R and
are equally effective in promoting neurite outgrowth in PC12 cellular model [49]. Next, we
extended our investigation to the S1R ligands 1–3. It is worth noting that compounds 1–3
were originally designed by merging the pharmacophoric elements of different neuropro-
tective and/or antioxidant molecules. Again, heat-stressed cells treated with compounds
1–3 (20 µM) displayed a restored water permeability.

A dose-response correlation has been determined for all the compounds, assessing
the cellular H2O2 content. All compounds with S1R agonist profile show antioxidant
activity mainly related to the recovery of AQP permeability. However, at micromolar
concentrations, the S1R agonist might interact with off-targets. Once the best compound
will be selected, a complete binding profile will be drawn.

To understand if the effect is only due to S1R interaction, we performed experiments in
HeLa cells knocked down for S1R. The results clearly showed that RC33 is unable to recover
S1R-depleted cells from oxidative stress and thus it acts only through S1R modulation.
Conversely, Pre084, 1, 2 and 3 are still able to increase ROS scavenging thereby protecting
the cells from oxidative stress damage. Lastly, to evaluate the possibility of interactions
between AQPs and S1R we have performed double immunofluorescence experiments.
As highlighted in the introduction section, S1R resides mainly at the interface mitochon-
drion associated membrane of the ER [24]. Moreover, AQP8 and AQP11 are localized
in mitochondria [25,26] and ER [18] respectively, but ER can change is shape forming a
reticular structure throughout the entire cytoplasm, thus enabling physical connections
to other subcellular structures, such as the plasma membrane and mitochondria [53,54].
Results of co-localization experiments evidenced an intracellular localization of S1R [24]
and AQP11 [32], while AQP3 and AQP8 were localized mainly on the plasma membrane.
The colocalization analysis evidenced a partial colocalization and/or contiguity of S1R
with the investigated AQPs. Therefore, the herein used cellular model can represent a
useful model for studying the effects of S1R modulators on AQP-mediated water and H2O2
permeability and for the development of novel therapeutic approaches targeting oxidative
stress. Moreover, an interaction of S1R with the inositol triphosphate receptor, with the
potassium channel Kv1.4 and with other proteins has been previously observed, supporting
the possibility of an interaction between S1R and other contiguous client proteins such as
AQPs [27].

4. Materials and Methods
4.1. Chemicals and Reagents

Reagents and solvents for synthesis, TLC and NMR were purchased from Sigma
Aldrich. Silica gel for flash chromatography (60 Å, 230–400 Mesh) was purchased from
Sigma Aldrich. Solvents were evaporated at reduced pressure with the Heidolph Laborota
4000 Efficient equipment. Analytical thin layer chromatography (TLC) analyses were
carried out on silica gel pre-coated glass-backed plates (TLC Silica Gel 60 F254, Merk)
impregnated with a fluorescent indicator, and visualised with the instrument MinUVIS,
DESAGA® Sastedt-GRUPPE by ultraviolet (UV) radiation from UV lamp (λ = 254 and
366 nm) or by stain reagents such as Ninidrine and Cerium Molybdate. NMR were mea-
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sured at room temperature (15 ◦C–25 ◦C) on a Bruker Advance 400 MHz spectrometer,
using tetramethylsilane (TMS) as internal standard and a BBI 5 mm probe. All raw FID
files were processed with Top Spin program from Bruker and the spectra analysed using
the MestRenova 6.0.2 program from Mestrelab Research S.L. Chemical shifts are expressed
in parts per million (ppm, δ scale). 1H-NMR spectroscopic data are reported as follow:
chemical shift in ppm (multiplicity, coupling constants J (Hz), integration intensity). The
multiplicities are abbreviated with s (singlet), d (doublet), t (triplet), q (quartet), m (mul-
tiplet) and brs (broad signal). The chemical shift of all symmetric signals is reported as
the centre of the resonance range. 13C-NMR spectroscopic data are reported as follows:
chemical shift in ppm. UPLC-UV-ESI/MS analyses were carried out on a Acuity UPLC
Waters LCQ FLEET system using an ESI source operating in positive ion mode, controlled
by ACQUIDITY PDA and 4 MICRO (Waters). Analyses were run on a ACQUITY BEH
Phenyl (ABP) (50 × 2.1 mm, 1.7 µm) or ACQUITY BEH Shield (ABS) (100 × 2.1 mm,
1.7 µm) columns, at room temperature, with gradient elution (solvent A: water containing
0.1% of formic acid; solvent B: methanol containing 0.1% of formic acid; gradient: 10% B in
A to 100% B in 3 min, followed by isocratic elution 100% B for 1.5 min, return to the initial
conditions in 0.2 min) at a flow rate of 0.5 mL min−1. All the final compounds had 95% or
greater purity.

Compound Synthesis

Racemic and enantiomeric RC33 have been re-synthetized according to the already
published procedures [42,49]. These are summarized in Scheme 1.
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Scheme 1. Schematic synthesis procedures of racemic and enantiomeric RC33.

Briefly, a Heck reaction between 4-Bromobiphenyl and ethyl crotonate was performed
to access α, β-unsaturated ester 4. This was subjected to a reduction of the double bond,
performed either without stereocontrol (H2 gas in presence of Pd/C) or under enantios-
elective conditions (H2 gas in presence of a chiral Ir catalyst), to access racemic 5 and
(R)-5 respectively. Ester hydrolysis afforded acid 6, which could be subjected to fractional
crystallization to enhance the enantiomeric excess in the synthesis of enantiopure RC33.
Acid 6 was then subjected to amidation with piperidine in the presence of condensing
agent TBTU. Afterwards, reduction of the amide moiety with LiAlH4 afforded RC33 either
in racemic or enantiopure form (ee 98%). The identity of obtained products was confirmed
by 1H- and 13C-NMR, whereas optical purity was assessed by chiral-HPLC following the
method developed in our lab. Overall, the analyses resulted consistent with published
data [41,55].
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Compounds 1–3 were prepared following the procedure reported in our previous
publication, with slight modifications [45]. Overall, the synthetic strategy is based on the
Weinreb ketone synthesis, as shown in Scheme 2.

Scheme 2. Schematic synthesis procedures of compounds 1–3.

Briefly, Weinreb amides I,II were either purchased if commercially available (amide I)
or prepared by reacting the corresponding acyl chloride with N,O-dimethylhydroxyamine
hydrochloride. Afterwards, nucleophilic substitution on Weinreb amides I,II was carried
out using amines a,b. This led to the key intermediates Ia–IIb. Finally, compounds
1–3 were obtained by coupling intermediates Ia–IIb with different aryl lithium species
generated in situ. Aromatic moieties thus introduced are naphth-2-yl and 4-biphenyl. This
last step involves the smooth bromo-lithium exchange on the aryl bromide to access the
lithiated arene that, after addition of Weinreb amides Ia–IIb and quenching with H2O gave
the desired crude ketones 1–3 in good yields. After flash chromatography purification,
compounds were converted into their corresponding hydrochlorides by addition of HCl
in Et2O. The identity of obtained products was confirmed by 1H- and 13C-NMR and the
analyses resulted consistent with published data [45].

4.2. Cell Culture

HeLa cells were grown in plastic tissue culture flasks using Dulbecco’s modified
minimal essential medium high glucose, supplemented with 10% fetal bovine serum, 1%
L-glutamine, 1% penicillin and streptomycin and maintained at 37 ◦C in a humidified
atmosphere of 5% CO2, 95% air.

4.3. Water Permeability Measurements

Osmotic water permeability was measured in HeLa cells suspension by the stopped-
flow light scattering method as previously described [20]. The experiments were performed
at 25 ◦C on a stopped flow apparatus (RX2000, Applied Photophysics, Leatherhead, UK)
with a pneumatic drive accessory (DA.1, Applied Photophysics) straightforward coupled
with a Varian Cary 50 spectrometer (Varian Australia Pty Ltd., Mulgrave, Australia). Scat-
tered light intensity with a dead time of 6 ms was recorded at a wavelength of 450 nm. The
time course of cell swelling caused by exposure to the hypotonic gradient (150 mosm/L)
was measured for 60 s at the acquisition rate of one point/0.0125 s. The initial rate constant
of cell volume changes (k) was obtained by setting the time course light scattering with a
single exponential equation (GraphPad Prism 4.00, 2003). Representative single scattering
traces in the different experimental conditions and the results of the fitting were shown in
Figure S3.

To evaluate the antioxidant effect of the test compounds on water permeability HeLa
cells were divided into different groups: (1) controls, cells left at room temperature (21 ◦C)
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in the presence of the same concentration of methanol than treated cells; (2) heat-stressed
cells, cells subjected to heat-treatment by placing them in a water thermostatic and shack-
ing bath at 42 ◦C for 3 h; (3) heat-stressed cells pre-treated, cells heat-stressed with the
antioxidants compounds at 20 µM final concentration (dissolved in methanol). Moreover,
to test the possible capacity of the molecules to affect the AQP gating in eustress condition,
HeLa cells were treated in the presence and in the absence of the compounds by incubating
at 21 ◦C for 3 h. In preliminary experiments, osmotic water permeability was measured at
both 37 ◦C and 21 ◦C to check that the cells responded in optimal conditions. No differences
in osmotic permeability were observed (not shown).

4.4. Hydrogen Peroxide Permeability Measurements

Dose-response relationship was assessed for all the compounds tested by measuring
the hydrogen peroxide concentrations in heat-stressed HeLa cells. Hydrogen peroxide
levels were measured by a fluorescence method using the 5-(and-6)-chloromethyl-20,70-
dichlorodihydro-fluorescein diacetate, acetyl ester reagent (CM-H2DCFDA) (Thermo Fisher
Scientific Inc., Monza MB, Italy) as previously described [20]. Briefly, cells were centrifuged
at 200 rcf for 5 min. The cell pellet was resuspended in PBS with increasing concentrations
of the compounds (0, 5, 10, 20, 40 µM final concentration) and subjected to heat-stress
as above indicated. Before terminating the incubation, the CM-H2DCFDA reagent was
added at 10 µM final concentration and left for further 15 min at 42 ◦C. Then, cells were
centrifuged, and the pellet resuspended in PBS. Hydrogen peroxide levels were measured
by using a CLARIOstar® microplate reader (BMG LABTECH, Ortenberg, Germany). Values
are expressed as arbitrary unit per mg total protein.

4.5. Gene Silencing

S1R knockdown was performed by treating HeLa cells with ON-TARGETplus SMART-
pool Human SIGMAR1 siRNA (FE5LHUMANXX0005; Carlo Erba Reagents Srl, Cornaredo,
Milan, Italy) at a 25 nM final concentration. Negative controls were done with scrambled
siRNA. siRNAs were diluted in siRNA Diluition Buffer (N0413, Sigma-Aldrich, Milan,
Italy) and mixed with N-TER peptide (N2788, Sigma-Aldrich, Milan, Italy) pre-diluted in
PBS, according to the manufacturer’s instructions to create the Target siRNA Nanopar-
ticle Formation Solution (NFS). When HeLa cells reached 50% confluence, medium was
removed and replaced with fresh medium containing NFS. After 30 min incubation at
37 ◦C, the NFS was diluted in the culture medium and added to the cells and incubated at
37 ◦C for 24 h.

Immunoblotting was used to validate the gene silencing and the silenced cells were
used 24 h after transfection. S1R protein quantification was performed in four independent
knockdown experiments.

4.6. Protein Content

The protein content was determined with the Bradford method [56], using bovine
serum albumin as standard.

4.7. Immunoblotting

Cells were homogenized with a Dounce homogenizer in RIPA buffer (150 mM NaCl,
0.5% sodium deoxycholate, 0.1% SDS, 0.1% Triton X-100, 50 mM Tris-HCl, pH 8) sup-
plemented with a protease inhibitor cocktail (cOmplete Tablets EASYpack, 04693116001,
Roche, Monza MB, Italy).

Immunoblotting was carried out as previously described [57] loading 30 µg proteins.
Membranes were incubated overnight with anti-Sigma1 Receptor (B-5) (sc-137075, 1:500
dilution; Santa Cruz Biotechnology, Inc., Heidelberg, Germany) in a blocking solution
(Tris buffered saline, 5% skimmed dry milk and 0.1% Tween). The membranes were
washed thrice and incubated for 1 h with peroxidase-conjugated rabbit anti-mouse IgG
(Dakocytomation, P0260, Agilent, Cernusco sul Naviglio MI, Italy), diluted 1:120,000 in
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blocking solution. The bands were detected with Westar Supernova western blotting
detection system (CYANAGEN) and pre-stained molecular weight markers (ab116028,
Abcam, Cambridge, UK) used to calculate the molecular weights of the bands.

Blots were stripped following Yeung and Stanley [58] and reprobed with anti β-2-
microglobulin (B2M) rabbit antibody (ab75853, Abcam, Cambridge, UK) diluted 1:10,000
in blocking solution.

Densitometry was performed by acquiring the blots with the iBrightTM CL1000
Imaging System (Thermo Fisher Scientific Inc., Monza MB, Italy). The semiquantitation
of the bands was performed using the iBA (iBright Analysis Software; Thermo Fisher
Scientific Inc., Monza MB, Italy) and the results were expressed as S1R/B2M ratio.

4.8. Immunofluorescence Staining, Confocal Microscopy and Colocalization Analysis

Immunolocalization of AQP3, 8, 11 and S1R was evaluated in HeLa cells seeded on
glass coverslips overnight, fixed with 4% paraformaldehyde in PBS for 30 min, and then
washed with PBS. Antigen retrieval was performed by placing the glass cover slips in
petri dishes containing retrieval buffer (0.05% tween-20, 10 mM citrate-HCl buffer, pH 6.0)
in an oven at 80 ◦C for 30 min. The coverslips were washed with PBS and then blocked
with 3% BSA in PBS at room temperature for 30 min. Double labeling experiments were
performed by incubating the coverslips overnight (in the cold) with affinity pure anti-
AQP3 or AQP8 or AQP11 primary antibodies (Anti-AQP3, ab125045, Abcam, Cambridge,
UK; Anti-AQP8, HPA046259, Sigma-Aldrich, Milan, Italy; Anti-AQP11, ab122821, Abcam,
Cambridge, UK) and with anti-Sigma1 Receptor (B-5) (sc-137075, 1:250 dilution; Santa
Cruz Biotechnology, Inc., Heidelberg, Germany). Anti-AQP antibodies were used at the
following dilutions in antibody diluent (Dako): AQP3, 1: 400; AQP8 1: 500; AQP11, 1:100.
After three 5 min washes with PBS, coverslips were incubated at room temperature with the
fluorescent secondary antibody (ab150117, 1: 400, Abcam, Cambridge, UK) and rhodamine
red coniugated Fab donkey anti-rabbit IgG (H + L) (1:1000 dilution; 811-7002; Rockland
Immunochemicals, distributred by tebu-bio s.r.l.,Magenta MI, Italy) for 30 min.

Slides were then washed 3 × 5 min with PBS, nuclei were staining with Hoechst 33342
and after washing trice with PBS mounted with BrightMount/Plus Aqueous Mounting
Medium (ab103748, Abcam, Cambridge, UK). Slides were examined with a TCS SP5 II
confocal microscopy system (Leica Microsystems, Buccinasco MI, Italy) equipped with
a DM IRBE inverted microscope (Leica Microsystems, Buccinasco MI, Italy) and images
visualized and analyzed by LAS AF software (Leica Microsystems Application Suite
Advanced Fluorescence, Buccinasco MI, Italy). Control experiments were performed
simultaneously using non-immune serum.

To evaluate the colocalization, we used JACoP (just another Colocalization Plu-
gin) from Fiji to quantify the Pearson’s correlation coefficient r, Manders’ colocaliza-
tion coefficient (M1 and M2) and Van Steensel’s Cross-correlation Function (CCF) of 3D
images [50–52].

4.9. Statistics

All data were expressed as mean ± SD. The significance of the differences of the means
was evaluated by using repeated measures one-way ANOVA followed by Newman-Keuls’s
Q test. All statistical tests were carried out using GraphPad Prism 4.00, 2003.

5. Conclusions

The antioxidant properties of the investigated S1R agonists rely on a double mecha-
nism: the interaction with S1R and the modulation of AQP-mediated H2O2 permeability,
with the only exception of the selective S1R agonist RC33. Although S1R are undoubtedly
involved in the oxidative stress process, the roles of S1R are not completely understood
and thus results herein presented add a piece to the complex puzzle of S1R. S1R has been
extensively studied in the past decades, and its modulators have been proposed as viable
tools for different therapeutic applications, reaching advanced stages of drug development
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(e.g., MR309, a Sigma-1 antagonist is currently in Phase II clinical trial for the treatment of
neuropathic pain) [33,59,60]. On the other hand, aquaporins are still largely unexplored
from a medicinal chemistry standpoint and have been recognized as druggable molecular
targets only recently [20,61–66].

In this paper, we reported for the first time a series of compounds that are able to exert
effects on both S1R and AQP-mediated H2O2 permeability, suggesting that there is a mutual
correlation between the two targets. Modulation of both S1R and AQP permeability may
be exploited as a synergic strategy to achieve antioxidant effects and enhanced therapeutic
potential. Hence, the class of aryl-aminoalkyl-ketones herein investigated holds promise
for small-molecule-based therapy to treat diseases involving oxidative stress, namely
neurodegenerative diseases and cancer.
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