SUPPLEMENTARY INFORMATION

Predicting synthetic mRNA stability using massively parallel kinetic measurements, biophysical modeling, and machine learning

Daniel P. Cetnar¹, Ayaan Hossain², Grace E. Vezeau³, and Howard M. Salis^{1,3,4*}

Supplementary Table 1: Total reads, mapped barcode reads, and statistics for each DNA and RNA sample collected at timepoints T0 to T16.

Sample	Total Reads	Barcode Reads	Barcode Concordance (%)	Spike-In Reads	Spike-In Concordance (%)	Total Concordance (%)
Tθ	387,660,194	342,662,787	88.39	12,660,270	3.27	91.66
T2	369,864,886	298,093,097	80.60	44,437,786	12.01	92.61
T4	380,625,442	308,677,107	81.10	44,280,216	11.63	92.73
T8	206,006,733	157,050,048	76.24	33,660,927	16.34	92.58
T16	444,108,862	290,332,839	65.37	126,183,744	28.41	93.79
DNA	324,093,068	301,007,928	92.88	Θ	0.00	92.88

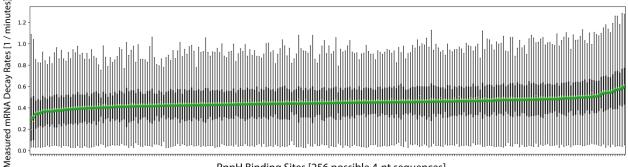
Supplementary Table 2: Hyperparameters used to train all LightGBM models.

	<u>. </u>		
Number of Leaves	100		
Minimum Datapoints per Leaf	50 [prevents over-fitting]		
Maximum Tree Depth	5 layers [prevents over-fitting]		
Maximum Bins per Numerical Feature	1000		
Number of Estimators	119		
Learning Rate	0.10		
Bagging Fraction	0.50 [prevents over-fitting]		
Bagging Frequency	5 [prevents over-fitting]		
Feature Fraction	0.25		
Importance Type	Gain		
Loss Metric	L2 Norm		

¹Department of Chemical Engineering, ²Department of Bioinformatics and Genomics, ³Department of Biological Engineering, ⁴Department of Biomedical Engineering. The Pennsylvania State University, University Park, PA, 16802.

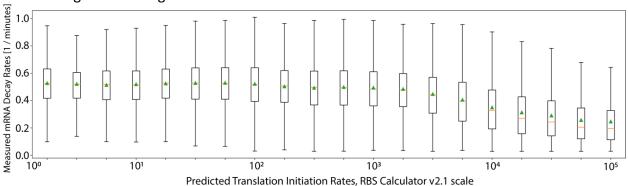
^{*} To whom correspondence should be addressed: salis@psu.edu

Supplementary Figure 1: Single Design Factor Analysis of RppH Binding Sites. Measured mRNA decay rates across each grouping of characterized mRNAs with different 4-nt RppH binding site sequences. Green dots are mean mRNA decay rates within each category. Upper and lower quartiles are the tops and bottoms of black bars. The differences in the quartiles across categories are larger than the differences in the means.

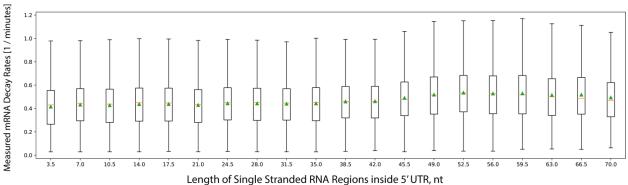


RppH Binding Sites [256 possible 4-nt sequences]

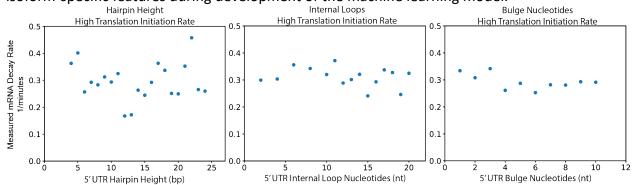
Supplementary Figure 2: Single Design Factor Analysis of mRNA Translation Rates. Measured mRNA decay rates across each grouping of characterized mRNAs with different predicted CDS translation initiation rates. Green dots are mean mRNA decay rates within each category. Upper and lower quartiles are the tops and bottoms of black bars. The differences in the quartiles across categories are larger than the differences in the means.



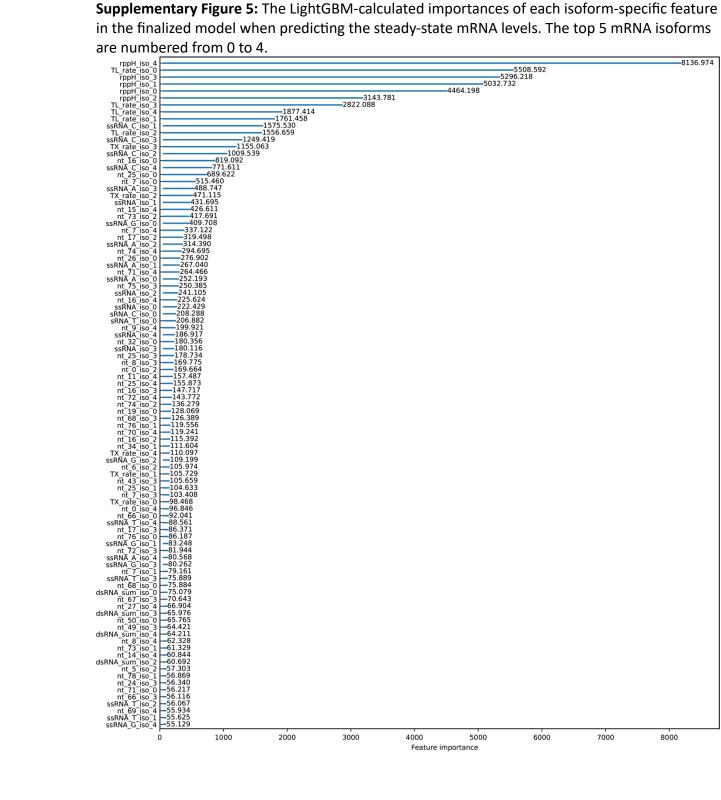
Supplementary Figure 3: Single Design Factor Analysis of Single-stranded RNA Lengths. Measured mRNA decay rates across each grouping of characterized mRNAs with different single-stranded RNA lengths inside the 5' UTR region. Upper and lower quartiles are the tops and bottoms of black bars. The differences in the quartiles across categories are much larger than the differences in the means.



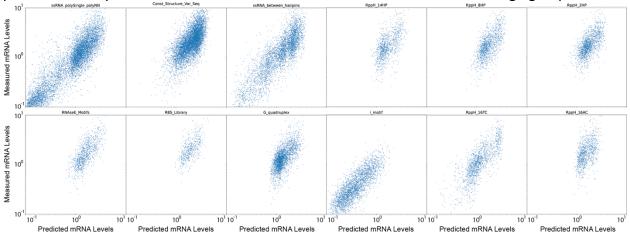
Supplementary Figure 4: Candidate mRNA structural features that were pruned from the list of isoform-specific features during development of the machine learning model.



Supplementary Figure 5: The LightGBM-calculated importances of each isoform-specific feature in the finalized model when predicting the steady-state mRNA levels. The top 5 mRNA isoforms

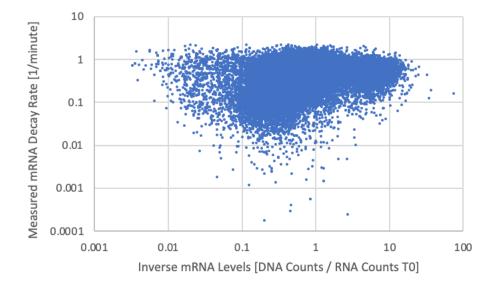


Supplementary Figure 6: The measured steady-state mRNA levels are compared to the model-predicted steady-state mRNA levels for characterized mRNAs in individual design groups.



Supplementary Figure 7: Model-predicted steady-state mRNA levels when systematically varying the RppH binding site of a baseline mRNA with high stability.

Supplementary Figure 8: The mRNAs' measured decay rates are compared to the inverse of the measured steady-state mRNA levels, showing a noisy non-linear relationship. Pearson R = 0.04.



Supplementary Code 1: Python v3 code to determine mRNA decay rates from DNA-Seq read counts, RNA-Seq read counts, and Spike-in control RNA read counts, using SciPy and scikit-learn.

```
import numpy as np
import pandas as pd
from scipy.optimize import curve_fit
from sklearn.metrics import r2_score
def decay_fcn(x, k):
   return np.exp(-k * x)
def calculateDecayRates():
    filename = 'SupplementaryData1.xlsx'
   mydata = pd.read_excel(filename)
   DNA T0 = mydata['DNA']
   RNA_T0 = mydata['RNA_T0']
   RNA T2 = mydata['RNA T2']
   RNA T4 = mydata['RNA T4']
   RNA T8 = mydata['RNA T8']
   RNA T16 = mydata['RNA_T16']
   SpikeIn = [12660270, 44437786, 44280216, 33660927, 126183744]
   SpikeInRatios = [sp / SpikeIn[0] for sp in SpikeIn]
   timepoints = np.array([0.0, 2.0, 4.0, 8.0, 16.0], dtype=np.float64)
   MIN TO READS = 100.0
   MIN T2 READS = 10.0
   MIN T4 READS = 1.0
   MIN T8 READS = 1.0
   MIN T16 READS = 0.0
   analysis = []
   for n in range(len(DNA T0)):
        if RNA TO[n] < MIN TO READS or RNA T2[n] < MIN T2 READS or RNA T4[n] < MIN T4 READS or
RNA_T8[n] < MIN_T8_READS or RNA_T16[n] < MIN_T16_READS:
            analysis.append(\{'k_fit': 0.0, 'k_cond': -1.0, 'k_r2_fit': 0.0 \})
        else:
            ydata1 = np.array([ RNA_T0[n]/RNA_T0[n]/SpikeInRatios[0],
                                RNA T2[n]/RNA T0[n]/SpikeInRatios[1],
                                RNA_T4[n]/RNA_T0[n]/SpikeInRatios[2],
                                RNA_T8[n]/RNA_T0[n]/SpikeInRatios[3],
                                RNA T16[n]/RNA T0[n]/SpikeInRatios[4]
                               ], dtype=np.float64)
            popt, pcov = curve fit(decay fcn, timepoints, ydatal)
            k = popt[0]
            cond = np.linalg.cond(pcov)
            y_pred = decay_fcn(timepoints, k)
            y_r2 = r2_score(ydata1, y_pred)
            print('k: {}. cond: {}. r^2: {}'.format(k,cond,y_r2))
            analysis.append({'k_fit' : k, 'k_cond' : cond, 'k_r2_fit' : y_r2 })
    df = pd.DataFrame(analysis)
   df.to csv('output.csv')
```