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Abstract: Drug design is a time-consuming and cumbersome process due to the vast search space
of drug-like molecules and the difficulty of investigating atomic and electronic interactions. The
present paper proposes a computational drug design workflow that combines artificial intelligence
(AI) methods, i.e., an evolutionary algorithm and artificial neural network model, and molecular
dynamics (MD) simulations to design and evaluate potential drug candidates. For the purpose of
illustration, the proposed workflow was applied to design drug candidates against the main protease
of severe acute respiratory syndrome coronavirus 2. From the ∼140,000 molecules designed using AI
methods, MD analysis identified two molecules as potential drug candidates.

Keywords: drug design; artificial intelligence; neural networks; evolutionary algorithms; molecular
dynamics; SARS-CoV-2

1. Introduction

Drug discovery is an important field of study that ensures the ability to continuously
combat emerging diseases. The goal in drug discovery is to identify molecules (ligands)
with the ability to bind to a macro-molecule (receptor) and consequently block the ex-
pression or development of a targeted disease [1–3]. While experimental drug discovery
provides important information on potential drugs, atomic-level details are inaccessible to
experimental studies [4]. Computer-aided drug design (CADD) tools, e.g., molecular dock-
ing, quantum chemical methods, and molecular dynamics (MD) simulations can be applied
to obtain information about the interactions taking place on the atomic- and electronic-level
that governs the binding affinity between a ligand and a receptor, e.g., electrostatic and van
der Waals (vdW) interactions, as well as the conformational changes of both the ligand and
the receptor due to their interaction.

The search for a suitable drug candidates is a complicated process. While designing
a potent drug, the medicinal chemists face a complex multidimensional optimization
problem, balancing between various desired molecular properties, such as the biological
activity, absorption, toxicity and the availability of the compound [5]. The search space
of possible drug molecules is enormous (there are at least 1060 molecules with less than
500 g/mol in the universe) [6], and hence a complete exploration of the search space
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of all potent drug molecules is infeasible. Incorporating methods from the domain of
artificial intelligence (AI) into drug discovery processes can help systematically traverse
this search space. Training on databases of already known drugs allows identifying patterns
in the nature of these molecules and generating new molecules with similar properties.
Furthermore, evolutionary approaches can be utilized to optimize existing molecules with
respect to desired metrics.

There are numerous examples in the literature of how AI is being used to assist in
the drug development process, a short overview of which is provided in the following.
A taxonomy of de novo drug design methods are given by Vasundhara et al. [7] and Brown
et al. [8]. Some approaches concentrate on the design of molecules from atoms [9,10], while
others use chemical fragments as their smallest building blocks [11]. Further work [11,12]
aims to find drugs that bind to a specific protein binding site. The approach presented in the
current study is based on an evolutionary algorithm (EA), a nature-inspired optimization
strategy, adapted for drug design [13]. The EA is augmented with a neural language
model, which is trained on a database of drug-like molecules, to improve the quality of the
generated drug candidates.

While CADD and AI methods can be applied in any arbitrary ligand-receptor complex,
a currently highly relevant example is the main protease (Mpro), also known as the 3C-like
protease (3CLpro), of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), which
is responsible for the coronavirus disease 2019 (COVID-19) pandemic. Mpro is responsible for
the cleavage of the viral polyprotein and is, therefore, vital for the SARS-CoV-2 life cycle [14].
Because Mpro simultaneously has a low resemblance to related human homologies, it is a
potent drug target for the treatment of coronaviruses [14–16]. Specifically, it is of interest to
find a drug that inhibits the Mpro cleavage site and thereby blocks the viral replication.

CADD approaches are typically divided into two main categories, which consider
(i) existing known molecules from large databases, such as the ZINC database [17] or
the DrugBank database [18], as the possible drug candidates; (ii) new molecules that are
engineered, based on existing molecular datasets. Liu et al. [19] provides a comprehensive
review of CADD for SARS-CoV-2 protein inhibitor candidate discovery, with numerous
examples for both approaches. Many papers use existing molecules and investigate their
usefulness as SARS-CoV-2 inhibitors, using docking and MD simulations [20–22]. Arshia
et al. [23] also discussed an approach combining AI with subsequent MD simulations for
the design of SARS-CoV-2 protease inhibitor candidates. In that study, the AI methodology
employed LSTM neural network for generating novel potential drug molecules and mainly
considered the binding affinity as the optimization metric.

The current paper introduces a computational drug design workflow that combines
AI governed drug design and the CADD methods of molecular docking and atomistic MD
simulations. The workflow is first introduced in detail, and is further illustrated through
a study of drug molecules interacting with Mpro of SARS-CoV-2. Mpro is a promising drug
target because it is conserved across different variants within the Coronaviridae [24]. This
makes Mpro an interesting drug target also for mutations of the virus, since any change
in the function of this protein could be fatal for the virus [25]. We use Mpro as the main
example to demonstrate the proposed approach. It should however be noted that the
approach could also be applied to other targets and viruses in the future. Since the main
focus of this paper is on introducing the novel AI-MD approach, the detailed discussion of
potent drugs against SARS-CoV-2 and its mutants is left open for further studies. Figure 1
shows a schematic overview of the proposed workflow, which initially applies AI-based
methods to design a list of potential drug candidates targeting Mpro. The potency of the
designed molecules is evaluated based on preliminary binding affinities computed by
QuickVina 2 [26] and heuristic drug design metrics. Subsequently, MD simulations are
performed of the most potent ligands binding to Mpro to gather more detailed information
on the ligand-receptor interactions and the dynamical behavior of the complex. The AI
part generates efficiently many thousands of molecules that can act as potential inhibitors,
while the MD part provides a simple way to validate and thus narrow down these potential
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inhibitors before they can be further investigated in a wet lab in the future. The proposed
workflow is discussed in detail below.

Figure 1. Overview of the proposed drug design workflow. An Evolutionary Algorithm (EA) gen-
erates drug candidates by iteratively mutating populations of molecules using a language model.
The drug candidacy of the molecules is evaluated using fitness metrics. The best molecules, de-
termined by the EA and a subsequent manual selection, are characterized further by molecular
dynamics simulations.

2. Methods

This section presents the general concept of the proposed AI-MD workflow and
provides the necessary details for the considered case study, that was used to benchmark
the method. First, the molecule design metrics are introduced, that are then used in the
evolutionary molecule generation algorithm. Finally, the concept of MD is presented, and it
is explained how it should be coupled with the AI approach.

2.1. Molecule Design Metrics

Potential drug candidates were optimized with respect to metrics that estimate how
likely a drug candidate is to act as an inhibitor (for example in the case of Mpro). The metrics
considered in the optimization process were motivated by a previous study [13]. The score
ranges and the optima of the metrics are shown in Table 1 and are further described below.

Table 1. The range and optimal score of the binding affinity (BA), synthetic accessibility (SA),
quantitative estimate of drug-likeness (QED), and natural product-likeness (NP) metrics. The toxicity
filter (TF) is either 0 or 1.

BA [kcal/mol] SA QED NP TF

score range R [1, 10] [0, 1] [−5, 5] {0, 1}
optimum −∞ 1 1 5 1

2.1.1. Binding Affinity (BA)

The BA score estimates the binding free energy between the receptor and a potential
ligand. The BA score was computed using the AutoDock Vina (Vina) [27] based QuickV-
ina 2 [26] docking software that uses a hybrid scoring function based on empirical and
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knowledge-based data [27]. Gaillard [28] showed that Vina outperforms other docking
software and QuickVina 2 achieves very comparable results with Vina [26]. The lower the
BA score, the stronger the potential ligand is expected to bind to the receptor. It should
be noted that QuickVina 2 offers only an estimation of the real BA due to its extensive use
of heuristics. However, since the evolutionary design of inhibitors requires a lot of BA
calculations, a balance between accuracy and computation time is important, such that
one binding affinity calculation per molecule is sufficient. Although it is conceivable to
perform multiple runs and average the results to achieve a more accurate estimate, this
would drastically increase the computation time per molecule and result in fewer molecules
being generated. Promising molecule candidates are further validated with more accurate
methods (described in Section 2.4) to achieve a better estimation of their real performance.

2.1.2. Synthetic Accessibility (SA)

The SA score introduced by Ertl and Schuffenhauer [29] evaluates the synthesiz-
ability of molecules by a fragment analysis of selected molecules from the PubChem
Database [30,31]. A complexity score takes atypical chemical structures into account. The fi-
nal SA score is the difference between the fragment score and the complexity score and
ranges from 1 to 10. A lower SA score indicates easier synthetical access to a molecule.
Figure 2A gives a typical example of two molecules with a high and low SA score. Synthesis
is the next step in a typical drug development procedure, that follows the computer-assisted
determination of the promising molecular candidates. Therefore the SA score is an im-
portant parameter to justify how complex the production of a potent drug molecule is
in reality.

Figure 2. Molecules with a high and low score for each of the (A) SA, (B) QED, and (C) NP metrics.
The top row shows molecules with an optimal score compared to molecules in the bottom row.
A low SA score indicates that a molecule is easy to access synthetically [29]. A high QED or NP
score indicates that a molecule has a high similarity with drug-like molecules or natural products,
respectively [32].

2.1.3. Quantitative Estimate of Drug-Likeness (QED)

The QED score by Bickerton et al. [32] evaluates the drug-likeness of molecules by
comparing molecular properties of a molecule and known drugs, e.g., the molecular weight,
octanol-water partition coefficient, number of hydrogen bonds, and number of aromatic
rings. The QED score ranges from 0 to 1, where a higher score indicates a more drug-like
molecule. Figure 2B shows two molecules with a low and a high QED score. A high value
of the QED metrics indicates a higher similarity to the known drug molecules and it is
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natural to assume that once a molecule is similar to other existing drug molecules, it is
likely to posses certain properties expected in a real drug molecule.

2.1.4. Natural Product-Likeness (NP)

To evaluate, if a molecule has structural characteristics like natural molecules, the NP
score by Ertl et al. [33] was applied. The NP score differentiates if fragments of a molecule
are natural product-like or synthetic-like. The mathematical details of the NP score are
described in an earlier study [33]. The NP score ranges from −5 to 5, where a high score
indicates a more natural product-like molecule. Figure 2C shows two molecules with a
high and a low NP score.

2.1.5. Toxicity Filter (TF)

In the proposed workflow, the drug candidates are subject to two toxicity filters: the
Pan Assay Interference Compounds filter [34] and the Medical Chemical Filter described
by Polykovskiy [35]. The toxicity filters evaluate if a molecule is potentially toxic due to its
structural nature, e.g., the appearance of isocyanate fragments. Further, potentially unstable
molecules, whose metabolites may be toxic, and charged molecules were considered. The TF
score is either 0 or 1. A score of 1 indicates that the molecule passes the toxicity filters.

The framework of MOSES [35] was used to calculate the QED, NP, and SA scores and
for the application of the toxicity filters. There exist other methods to obtain suitable values
for the metrics than those presented here. One example is the SwissADME tool [36]. A
good drug candidate is expected to have scores close to the optima for as many metrics as
possible. Therefore, the EA was used to generate drug candidates with a high fitness score,
which takes all five metrics into account.

2.2. Fitness Evaluation

The overall fitness of a potent drug molecule was calculated by using a fitness function,
f (x), which was based on the molecule’s metric scores, fi. To make the metric scores
comparable, each score was scaled to be in the range from 0 (best) to 1 (worst). The BA
scores were scaled with regard to the characteristic minimum value of −15 kcal/mol and
maximum value of 1 kcal/mol and clipped to the range [0, 1] using the soft clipping
function [37] with p = 30, following

SCp(x) =
1
p

log
(

1 + epx

1 + ep(x−1)

)
. (1)

Each molecule was assigned a single composed fitness score defined by a weighted sum:

f (x) =
n

∑
i=1

wi fi(x), (2)

with the weights w = (0.4, 0.15, 0.15, 0.15, 0.15) and i corresponding to 1: BA, 2: SA, 3:
QED, 4: NP, and 5: TF. The weights were chosen based on a previous study [13], where the
highest attention was put on the BA metric.

2.3. Evolutionary Molecular Generation Algorithm

The EA used to design potential drug candidates utilizes the Simplified Molecular
Input Line Entry System (SMILES) representation of the molecules in combination with a
neural language model. The EA performs a randomized search in the search space of
molecules, while the neural language model generates molecule fragments based on a
learning process on a set of drug-like molecules. The combination of the EA and the neural
language model is referred to as the evolutionary molecular generation algorithm (EMGA).
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2.3.1. SMILES Representation

EMGA considers molecules in the SMILES representation. SMILES is a string-based chem-
ical notation designed for in silico molecular research [38]. A string is a sequence of
characters, which in the case of a SMILES string describes a molecule’s atoms and bonds.
As an example, caffeine is shown in the SMILES representation in Figure 3A. While, in the
SMILES strings, single bonds are implicit between atoms, other bonds must be specified
explicitly, e.g., double bonds are represented by an equal sign, numbers describe ring
structures, and brackets specify branches.

Figure 3. (A) Structural formula and SMILES string of caffeine. (B) Caffeine SMILES string split into a
sequence of tokens x = (x1, . . . , xt).

2.3.2. Evolutionary Algorithm

The EA is the core algorithm of EMGA. EAs are biologically inspired population-based
search heuristics. A population is a set of candidate solutions, also known as individuals.
Utilizing EAs for the design of biomolecules has been demonstrated in earlier extensive
studies [9,12,35,39–41]. The EA used in the presented study is oriented to a (µ + λ) evo-
lution strategy [42]. After the initialization of µ random individuals, the evolutionary
cycle–called generation–is repeated until a termination condition is met. In each generation,
λ new offspring individuals (children) are generated by randomly choosing and mutating
a parental individual; an individual is mutated by randomly deleting, adding, and re-
placing atoms. By passing the best performing individuals to the following generation,
the quality of the molecules is expected to increase throughout evolution with respect to
the fitness function.

2.3.3. Neural Language Model

AI-based molecular generation models can facilitate the process of generating new and
realistic drug molecules [5]. Therefore, to expectedly discover more drug-like molecules,
a molecular generation model was included in EMGA. The implemented molecular genera-
tion model was based on the transformer artificial neural network. The network architecture
was designed to process sequential data and contains a unique and built-in attention mech-
anism. The model was trained by observing a set of already known molecules, with the
goal of using this set to generate molecules with similar properties.

Since the molecules in the present study are initially designed in a textual represen-
tation, i.e., as SMILES strings, the implementation of a generation model for molecular
structures roots upon the concepts from the domain of language processing. A language
model processes a sequence of tokens x = (x1, . . . .xt). For each token position t, the model
is able to predict a probability distribution over the possible tokens in the sequence, condi-
tional to the other token positions in the sequence. One example of such an approach has
been given by Segler et al. [43] who demonstrated how a recurrent neural network can be
used to generate molecules in their SMILES representation. In the present study, a token is
the smallest building block of a SMILES string (letter, bracket, number, and equal sign) and
the sequence is the SMILES string itself, see Figure 3B, i.e., the language model was trained
to predict new molecules. The language model was trained iteratively by observing a set
of molecules and updating the model parameters to predict the corresponding probabil-
ity distributions. To enable sampling of new molecules iteratively, the generation model
was trained with an autoregressive objective, i.e., the probability of the next token (letter,
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bracket, etc.) is conditional to the previous tokens. More formally, given a sequence of
tokens describing a molecule, the likelihood function for the molecule can be factorized
into conditional probabilities as

p(x) =
t

∏
i=1

p(xi | x<i). (3)

Here, x is a sequence of tokens, t is the maximum number of tokes in x, and x<i represents
all tokens in the sequence appearing before the index i.

Figure 4. Illustration of the language model as a mutation operator. (A) A SMILES string to be
mutated. (B) A random range y (red) of size r is selected for replacement. The top right molecular
structure corresponds to the SMILES string with y highlighted in red. (C) The language model creates
a new sequence z (blue) of length d. Note that d = r is not required. (D) Iteratively the language
model calculates the zi values. For each zi all x≤a, z<i, and x≥b values are used as input. (E) After
the language model processing, the resulting SMILES string is x′ = (x≤a)z(x≥b). The bottom right
molecular structure corresponds to the mutated SMILES string with the mutated part highlighted
in blue.

The neural language model functioned as a mutation operator in EMGA, and was,
therefore, able to modify existing molecules. Hence, the language model’s training objective
was adjusted such that it was capable of completing contiguous parts at an arbitrary position
of a SMILES string. Specifically, given a sequence of tokens x with a prefix x≤a and a suffix
x≥b with a < b, a new sequence, z = (z1, . . . , zd), of length d could be sampled such
that (x≤a)z(x≥b) was a valid SMILES string from the modeled distribution (see Figure 4).
In contrast to training only on a left-to-right factorization order, the special transformer
architecture–called XLNet [44]–was employed to maximize the likelihood of generating
realistic molecules with respect to all permutations of the factorization order.

The neural language model was trained on a subset of the ZINC database [17], which
contains existing and purchasable molecules. The molecules in the subset followed the def-
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inition of a drug-like molecule outlined by Polykovskiy et al. in their molecular generation
benchmark paper MOSES [35]; resulting in a dataset containing 1.9 million molecules.

2.3.4. Evolutionary Algorithm with Language Model

Figure 5 illustrates the workflow of EMGA. Initially, the neural language model gener-
ates a population of molecules by sampling new SMILES strings. All initial SMILES strings are
sampled character by character from scratch by the language model to ensure a diverse set
of starting molecules. However, starting with parts of already known structures is also con-
ceivable to guide the evolution in a certain direction. Since the language model is trained
on the ZINC database, the generated molecules should resemble the ZINC molecules and
be chemically reasonable. After generation, each individual in the population is evaluated
by the fitness function. Subsequently, λ individuals are created by mutating random indi-
viduals from the initial population (parents). A molecule is mutated by replacing a random
part of its SMILES string with a new string using the neural language model (see Figure 4).
The maximum length of the replaced string is specified by the parameter rmax. The length
of the new string may vary compared to r, but can maximally be r + dmax, where dmax is an
offset parameter. The balance between exploration of the search space and exploitation of
already well-performing molecules is controlled by rmax and dmax. Specifically, high rmax
and dmax values can lead to diverse molecules, but also individuals being considerably
different from their parents. Contrarily, small rmax and dmax values allow fine adjustments
of already well-performing individuals, but also increase the risk of EMGA getting stuck in
a local minimum. In the presented study, rmax and dmax were set to 8 and 5, respectively.

From the λ created individuals, the µ individuals with the best fitness scores, see
Equation (2), constitute a new generation from which yet a new generation is created
following the same procedure. The algorithm stops at the x’th generation. Here, µ and
λ were set to 20 and 100, respectively, and x was set to 80. SMILES strings were converted
into atomic coordinate files using RDKit [45] and MGLTools (https://ccsb.scripps.edu/
mgltools/, accessed on 19 June 2022).

In order to illustrate EMGA at work a specific case study of Mpro of SARS-CoV-2 was
employed. In this case, the BA score was calculated with respect to the SARS-CoV-2 Mpro

structure (PDB ID: 6LU7 [15]) within a search space of 22 Å× 24 Å× 22 Å centered around
(−12 Å, 15.6 Å, 69 Å), i.e., at the center of the expected drug binding site. The exhaustiveness
parameter of QuickVina 2 balances the accuracy and the execution time. The exhaustive-
ness was kept at the default value of 8, resulting in an execution time of a few minutes
per molecule.

2.4. Molecular Dynamics

Once the potential drug molecules were generated using EMGA, they can further be
assessed through the evaluation of inhibitor binding free energy, that can be established
using the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) method.
In the proposed approach, the binding free energies, G0, were calculated as

∆G0 = 〈GC〉C − 〈GR〉R − 〈GL〉L, (4)

where GL, GR, and GC are the free energies of the ligand (L), receptor (R), and the ligand–
receptor complex (C), respectively. 〈.〉 indicates an average over a respective MD simulation
trajectory, performed for the L, R, or C specifically [46]. These MD simulations should be
carried out on the atomistic level once the suitable drug candidates are established from
the EMGA calculations. The individual free energies in Equation (4) can be calculated as:

Gi =
(
EMM + Gp + Gnp − TS

)
i, (5)

where for a selected subsystem i = L, R, C, EMM represents the non-bonding molecular
mechanics energies, Gp and Gnp are polar and non-polar solvation free energies of the ith
subsystem, respectively, and TS accounts for the free energy associated with the entropy, S,

https://ccsb.scripps.edu/mgltools/
https://ccsb.scripps.edu/mgltools/
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of the subsystem at temperature, T. Gnp depends on the solvent-accessible surface area, A,

of the subsystem and a surface tension parameter γ = 6× 10−4 kcal/mol/Å
2

as [47,48]:

Gnp = γA. (6)

The generalized Born (GB) model was used to calculate Gp contributions in Equation (5) by
employing a version of Still et al.’s [49] GB method that was modified to take into account
the ionization of the solvent [50–52]:

Gp = −ke

(
N

∑
i=1

N

∑
j>i

Dijqiqj

gij
+

N

∑
i=1

Diiq2
i

gii

)
. (7)

Here summations are performed over the N atoms in the corresponding subsystem (L, R,

or C), ke is the Coulomb constant, Dij =
(

1− e
−κgij

εs

)
, εs = 74 is the dielectric constant of

the solvent, κ =
(

ε0kBT
2NAe2 I

)− 1
2 is the Debye screening length, with kB being the Boltzmann

constant, NA the Avogadro number, e the elementary charge, I = 0.15 M the ion concentra-
tion, and ε0 the vacuum permittivity [52,53]. The function gij entering Equation (7) was
suggested by Still et al. [49] to have the form

gij =

√√√√r2
ij + αiαj exp

(
−r2

ij

4αiαj

)
. (8)

Here, the effective Born radius, αi, indicates how deep an atom is buried inside a molecule
or a protein [53,54], and can be computed following Onufriev et al. [52–54]. In the GB
method solvent is treated as a continuum that compromises the accuracy of the molecular
model compared to simulation models applying explicit solvent molecules. Furthermore,
the GB method might yield varying results depending on the studied system, e.g., some GB
methods underestimate αi of atoms deeply buried inside macro-molecules [54]. However,
since in the considered problem, binding free energies are calculated for the same receptor,
their relative comparison is expected to be qualitatively accurate.

The entropy term in Equation (5) was computed using Schlitter’s quasi-harmonic
approach [55], which provides an upper bound to the entropy as

S .
1
2

kB ln det

[
I +

kBTe2

h̄2 Mσ

]
, (9)

with h̄ being the reduced Planck’s constant. M is a 3N × 3N diagonal matrix containing
the atomic masses of the subsystem and σ is a covariance matrix calculated from the MD
trajectory that includes the 3N coordinates describing the atoms in a given subsystem:

σij =
〈
(ξi − 〈ξi〉)(ξ j −

〈
ξ j
〉
)
〉
, (10)

with ξi denoting the x-, y-, or z-coordinate of an atom. For the practical entropy calculation
of the receptor, it is convenient to consider the ∼100 non-hydrogen atoms that surround
the ligand, as including more atoms will make the calculation computationally too heavy.
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Figure 5. Evolutionary molecular generation algorithm (EMGA) presented in the current paper. The in-
tegrated language model and the classic EA are represented by blue and green blocks, respectively.
The red boxes introduce steps where algorithmic checks are performed.

Although the proposed AI-MD approach is general, the illustrative example of Mpro

from SARS-CoV-2 was used for the case study to demonstrate the practical utilization of the
methods. In the following, some specific details about the performed MD simulations
are outlined. MD simulations were initiated based on the ligands, designed using EMGA,
with the highest fitness scores. Using the Open Babel package [56], hydrogen atoms were
added to the ligands, based on a pH value of 7.4, in the poses generated by QuickVina 2,
and the ligand structures were minimized by the conjugate gradient algorithm with a
convergence criterion of 10−6. For the simulations of the protein–ligand complex the mini-
mized ligand structure was merged back into the receptor in the pose identified by docking.
The Mpro was modeled using the Amber ff14SB protein force field [57] and the ligands
were modeled using the general Amber force field [58]. All force fields were prepared
using AmberTools [59], while simulations were carried out using NAMD2.14 [60,61] with
its generalized Born implicit solvent (GBIS) functionality, which provides the solvation free
energy with the electrostatic energy output. Analysis of the simulations was performed
using the MDAnalysis python library [62].

Each ligand (L), receptor (R), and complex (C) simulation went through 10,000 mini-
mization step and was afterwards simulated for 50 ns in implicit solvent. The time step
was set to 1 fs, the cutoff distance of 16 Å with a switching distance of 15 Å were used for
the calculation of vdW and short-range electrostatic interactions as suggested when using
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GBIS [52]. The temperature was kept at 310 K in all simulations by utilizing the Langevin
thermostat [63] with a damping coefficient of 5 ps−1.

3. Results and Discussion

The general and versatile AI-MD algorithm for generating and selecting potent drug
molecules was described above. This method was used now for an illustrative case study
of Mpro of SARS-CoV-2. Specifically, EMGA was applied to design inhibitors of Mpro. The evo-
lutionary design of the inhibitors was discussed, followed by a presentation of MD simula-
tions performed for the most promising 21 molecules, binding to Mpro.

3.1. Evolutionary Design of Inhibitors

Figure 6 shows the average fitness score of the best performing molecule from each
generation based on 15 independent runs of EMGA (see Figure 5). The plot shows that
EMGA optimized the starting populations towards better performing individuals. The op-
timization stagnated after ∼70 generations, with a fitness score of the best performing
molecule being equal to 0.225. The best metric scores achieved in the last generations were
for BA: −11.8 kcal/mol, QED: 0.954, NP: 0.372, and SA: 1.0. Altogether, 120,300 molecules
were generated and analyzed during the 15 independent EMGA runs. In general, we found
the evolutionary algorithm to be robust in regard to different configuration of µ and λ.
A higher λ leads to a larger population, which can allow for a greater diversity of available
molecules. However, it also increases the evaluation time of each generation thus decreases
the total number of evolution steps. To increase the number of molecules for the following
MD simulations, a final run of EMGA was conducted, where µ and λ were increased to 50
and 300, respectively. A list of all 144,350 generated molecules and their corresponding
metric scores can be found in supplementary materials Table S1.

Figure 6. Mean values and standard deviations of the best performing individual’s fitness score in
each generation calculated over 15 runs of EMGA (see Figure 5). Low fitness scores correspond to
more suitable inhibitors of Mpro.

From the 144,350 generated molecules, the best 200 molecules were selected based on
their fitness scores and from those, 21 molecules were hand-picked based on the validity
of their molecular structures. Figure 7 illustrates four molecules with high fitness scores,
together with their respective radar plot. The radar plots visualize the five metric scores,
with the radar edge corresponding to an optimal score. Figure A1 in Appendix A contains
radar plots and molecular structures of all 21 selected molecules, and Table A1 in Appendix
A lists the associated SMILES strings. Table A2 in Appendix A shows the metrics of these
molecules. The best performing molecules created by the EMGA show similar structural
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patterns. A skeleton consisting of ring-based structures, especially nitrogen-based hetero-
cycles such as the six-membered pyridine, pyridazine and the seven-membered azepine
and diazepine rings seem to stabilize the ligand as well as favor the protease inhibition.
Further, EMGA creates ligands with fluoride and cyanide as well as oxygen-based functional
groups like carbonyl-, carbonamide- and hydroxyl-groups. However, carboxylate ester
groups were found only rarely. These groups are known to act as electron-donors to create
hydrogen bonds that would increase the BA between the ligand and the Mpro. Similar
structural patterns were also found and discussed in earlier studies [64,65].

Figure 7. Molecular structures of four molecules, created by EMGA, with a high fitness score. Radar
plots show how well the molecules perform with respect to the five metrics. The best scores are on
the edge of the radar plot and the worst scores are in the center.

3.2. Molecular Dynamics Simulations

To obtain binding free energies of the selected 21 ligands designed by EMGA, 43
simulations were performed. These simulations included one simulation of the empty
receptor, one simulation for each ligand, and one simulation for each ligand-receptor
complex. While, multiple replica simulations are advisable for more specific biophysical
applications extending from the proposed methodology, the purpose here is to present the
methodology. Hence, one replica of each simulation is performed. To evaluate whether
the EMGA-generated ligands stayed at the Mpro binding site, the center of mass (COM)
distance between the ligands and the binding site, defined in Figure 8A, was measured
during the complex simulation. The average COM distances during the last 10 ns of the
simulations are listed in Table A3 in Appendix B. Ligands Lig3, Lig4, Lig16, Lig19, Lig20,
and Lig21 (see Table A1 for the SMILES nomenclature) had average COM distances above
7 Å, see Figure 8C, indicating that the respective ligands drifted away from the binding site.
For illustrative purposes, one of the ligands that drifted away from the binding site, Lig19,
is depicted at different simulation time instances in Figure 8B. Hence, ligands Lig3, Lig4,
Lig16, Lig19, Lig20, and Lig21 could immediately be discarded as potential drug candidates
based on the analysis of the MD simulations. Ligands Lig2, Lig11, and Lig14 stayed closest
to the binding site with the average COM distances of 2.5–4.5 Å during the last 10 ns of the
simulation, see Figure A2 in Appendix B. The MD simulations of the other studied ligands
revealed their location to be around 4.5–7 Åfrom the Mpro binding site during the last 10 ns,
see Figure A3 and Table A3 in Appendix B.
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Figure 8. (A) Binding site of Mpro defined by the labeled residues [66] with Lig19 in its initial bound
pose illustrated in gray. (B) Position of Lig19 in Mpro after 0 ns (green), 20 ns (yellow), 25 ns (orange),
and 50 ns (red) of simulation. (C) Time evolution of the center of mass (COM) distance between the
Mpro binding site and the ligands that drifted away from the binding site during the ligand–receptor
complex simulations. Each data point was averaged over a time window of 125 ps.

Root mean square displacement (RMSD) measurements of the ligands were used
to reveal information about the stability of the ligands in the binding pocket. RMSD is
defined as

RMSD =

√
∑N

i=1|~ri(t = 0)−~ri(t)|2
N

, (11)

where N is the number of atoms in a ligand and~ri(t) is the position of the ith atom at
time instance t. To quantify how much the ligands move around in the binding pocket
RMSD of the ligands was calculated for molecular systems, where the protein backbone
was aligned with itself as it appeared at t = 0 in all the MD frames. The average RMSD of
the ligands during the last 30 ns of the simulations were calculated and are tabulated in
Table A3 in Appendix B. Ligands Lig1, Lig2, Lig8, Lig9, Lig10, Lig12, Lig14, Lig17, and Lig18
had average RMSD values above 7 Å indicating that the ligand binding was not confined
to a particular place in the binding pocket, see Figures A4 and A5B in Appendix B. Only
Lig13 turned out to have an RMSD value below 4 Å, suggesting that Lig13 is binding stably
in the binding pocket, see Figure A5A in Appendix B. The ligands that move around a lot
in the binding pocket cannot be considered as properly bound, and are expected to be poor
drug candidates, such that the energies calculated based on Equations (4) and (5) cannot
be considered as binding free energy estimates. Hence, due to their high RMSD values,
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ligands Lig1, Lig2, Lig8, Lig9, Lig10, Lig12, Lig14, Lig17, and Lig18 were discarded from the
following analysis.

To obtain a measure of how much the ligands in the complex were fluctuating during
the simulation time, the root means square fluctuations (RMSF) of the ligand atoms were
calculated. The average RMSF of the atoms for each ligand are listed in Table A3 in
Appendix B. Among the non-discarded ligands, Lig5, Lig11, and Lig15 had, relative to the
discarded ligands, high average RMSF values in the range of 1.10–1.32 Å, while Lig6, Lig7,
and Lig13 had low average RMSF values in the range of 0.51–0.85 Å.

Binding free energy estimates were calculated for all the ligands that had COM
distances and RMSD values below 7 Å, i.e., Lig5, Lig6, Lig7, Lig11, Lig13, and Lig15 . Free
energy estimates were carried out using Equations (4) and (5) based on the last 30 ns
of the 50 ns simulations. Eight hundred frames were extracted from the 30 ns long MD
trajectory and were used to calculate the entropy following Equation (9). According to
Figures A6 and A7 in the Appendix B, it is sufficient to consider 800 frames to ensure a
converged entropy contribution. A resume of the binding free energy estimates is provided
in Table 2. Ligands Lig15 and Lig5 have superior binding free energy estimates of −23.0
kcal/mol and −20.8 kcal/mol, respectively, which are more than twice that of the third
best ligand, Lig6. The superior binding free energy values for the Lig15 and Lig5 ligands
are mainly due to a large difference in the vdW interactions (part of EMM in Equation
(5)) between the system with the bound and unbound ligand, and being approximately
−45 kcal/mol. Almost no hydrogen bonds were observed between the ligands and the
receptor, highlighting that the ligand–receptor interactions predominantly are mediated
through vdW interactions. Ligands Lig7 and Lig11 have positive binding free energy values
implying that Lig7 and Lig11 should not spontaneously bind to Mproand would likely drift
away from the binding site if the simulations were extended.

Table 2. Binding free energy estimates, ∆G0, calculated using Equation (4) and (5). Calculation of
∆G0 was based on the last 30 ns of the simulations.

Ligand ∆G0 (kcal/mol)

Lig15 −23.0
Lig5 −20.8
Lig6 −9.5
Lig13 −4.0
Lig7 5.1
Lig11 11.4

Based on the MD simulations it has thus been possible to, firstly based on dynamic
considerations and secondly energetic consideration, narrow down the list of ligands
created by EMGA to the two promising drug candidates, namely Lig15 and Lig5. A natural
next step would be to validate the potential of the identified drugs in a wet lab experiment.
However, such experiments are out of the scope of the presented work.

4. Conclusions

A novel computational drug design workflow was introduced. The workflow applies
EMGA, which is an EA combined with a neural language model-based mutation operator,
and atomistic MD simulations that analyze the ligand–receptor interactions and complex
stability. EMGA was designed to generate potent drug molecules, similar to those from the
ZINC database and further optimize the molecules with respect to the SA, QED, NP, TF,
and BA metrics. EMGA proposes drug candidates of a high expected binding affinity, thus
limiting the number of necessary MD simulations that should be used to refine the list of
potent drug molecules even further.

For the illustrative purpose, the proposed workflow was applied to generate drug
candidates against Mpro of SARS-CoV-2. From the drug candidates generated by EMGA, 21
chemically valid molecules were chosen for further analysis and validation using MD
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simulations, which cannot only mimic the human body environment, but also yields time-
resolved insight into the binding process. COM distances, RMSD values, and binding
free energies between Mpro and the 21 ligands were computed based on the performed
MD simulations. The COM distance between the ligands and the binding site and the
RMSD values allowed to discard ligands based on dynamic considerations, i.e., the ligand
drifting away from or moving around in the binding pocket. Binding free energy estimates
provided a final ranking of the remaining ligands and showed that ligands Lig5 and Lig15
were the most promising drug candidates created by EMGA. Hence, MD simulation is an
indispensable part of the proposed workflow to validate the results of EMGA. The proposed
workflow has great potential, as the heuristic and data-driven proposal of realistic drug
candidates complements the computationally demanding, but more accurate, MD analysis.

Although the workflow was demonstrated for the generation of inhibitors of Mpro,
it can be applied to most drug discovery problems. On the methodological level it could
be interesting to adaptively configure the rmax and dmax parameter during the course of
evolution. Higher values could provide the EA with an additional means to explore the
molecular search space, while lower values could facilitate the fine-tuning of molecules
that are already working well. While in general, our approach is targeted towards early
stages of the drug discovery process, in the future the interesting candidates found could
also be analyzed in vitro.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules27134020/s1, Table S1, Summary of all molecules
generated by EMGA together with the corresponding SMILES strings, the molecular design metrics
values and the resulting fitness function.
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BA binding affinity
CADD computer-aided drug design
EA evolutionary algorithm
EMGA evolutionary molecular generation algorithm
LSTM long short-term memory
MOSES molecular sets (benchmarking plattform)
MD molecular dynamics
Mpro main protease
NP natural product-likeness
QED quantitative estimate of drug-likeness
RMSD root mean square displacement
SA synthetic accessibility
SMILES simplified molecular input line entry system
TF toxicity filter
vdW van der Waals

Appendix A. Overview of Simulated Ligands

Molecular dynamics (MD) simulations were performed for 21 ligands, generated by
the evolutionary molecular generation algorithm, binding to the main protease (Mpro)
of severe acute respiratory syndrome coronavirus-2. Appendix A depicts the molecular
structures of the 21 ligands and radar plots representing how well each ligand performed
with respect to the metrics and hence the fitness score introduced in the main paper.
Table A1 lists the SMILES strings for each of the 21 ligands.
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Figure A1. Molecular structures of simulated ligands. Radar plots show how well the ligands
performed with respect to the five studied metrics. The best scores are on the edge of the radar plot
and the worst scores are in the center. Molecular structures of simulated ligands. Radar plots show
how well the ligands performed with respect to the five studied metrics. The best scores are on
the edge of the radar plot and the worst scores are in the center. Molecular structures of simulated
ligands. Radar plots show how well the ligands performed with respect to the five studied metrics.
The best scores are on the edge of the radar plot and the worst scores are in the center.
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Table A1. Overview of the 21 ligands with their SMILES representation.

Ligand SMILES

Lig1 Cc1ccn(CC(=O)N2CC=CC(c3cnc(O)cc3C)=CC2)c(=O)c1
Lig2 CC1C(c2cc(C#N)cnc2NC=C2C(=O)NCC3=COCN32)=NN=C2C=CC=NN21
Lig3 C#Cc1c(F)c(F)cc(C)c1NC(=O)NC1=CC=C2C=CCN=C2OC1C
Lig4 CC1N=CC(F)C(CC=c2[nH]c(=O)cc3c2=C(F)C(C#N)=CC(F)=C3)C1=O
Lig5 CC1=CC=C(CC=c2[nH]c(=O)cc3c2=C(F)C(N)=CC(F)=C3)C(F)C=N1
Lig6 CC1=CC=C(C2NC(=O)CCc3ccc(F)c(C#N)c32)C(F)C=N1
Lig7 CC1(C)CC(c2cc(C#N)cnc2NC=C2C(=O)CCC3=CC=COCN32)=NN=C2C=CC=NN21
Lig8 CC1C(C2=CC(C#N)=CC=CN=C2NC=C2C(=O)NCC3=COCN32)=NN=C2C=CC=NN21
Lig9 C=C(C)C1=C(C(=O)N(C)c2ccc(F)c(F)c2)N2N=C(O)OC2CC=C1
Lig10 CC1=CC=C(C=CN2C(=NCO)CCOc3ccc(C#N)c(C#N)c32)C1F
Lig11 CC1(C)CC(F)C(C)(OC2=CNC(=O)C=C3N=C(F)C=C(C#N)C(F)=C32)C1=O
Lig12 CC1=CC=C(N=CC=c2[nH]c(=O)cc3c2=C(C)C(F)=CC(F)=C3)C(F)C=N1
Lig13 CC1CC(F)(F)CC(CC=c2[nH]c(=O)cc3c2=C(F)C(C#N)=CC(F)=C3)C1=O
Lig14 CC1CC(F)(F)CC(CC=C2NC=CC(=O)C=C3C=C(F)C=C(C#N)C(F)=C32)C1=O
Lig15 CC1(C)COCC(CC=c2[nH]c(=O)c(O)c3c2=C(F)C(C#N)=CC(F)=C3)C1=O
Lig16 CC1(C)CCCC(OC2=CNC(=O)C=C3C=C(F)C=C(C#N)C(F)=C32)C1=O
Lig17 CC1(C)COC(C)(CC=c2[nH]c(=O)cc3c2=C(F)C(C#N)=CC(F)=C3)C1=O
Lig18 CC1C=CC(F)(F)CC(CC=C2NC(=O)C=NC=C3C=C(F)C=C(C#N)C(F)=C32)C1=O
Lig19 CC1C=CC(F)(F)CC(CC=C2NNC(=O)C=C3C=C(F)C=C(C#N)C(F)=C32)C1=O
Lig20 CC1N=CC(F)C(C=CC=c2[nH]c(=O)cc3c2=C(F)C(C#N)=CC(F)=C3)OC1=O
Lig21 CCOC(=c1[nH]c(=O)cc2c1=C(F)C(C#N)=CC(F)=C2)C1OCC(C)(C)C1=O

Table A2. The molecular metrics of the 21 ligands. These metrics are described in Section 2.1.

Ligand BA SA QED NP TF

Lig1 −8.1 1.019 0.918 −0.089 1
Lig2 −10.4 3.119 0.699 −0.272 1
Lig3 −10.2 2.543 0.783 −0.133 1
Lig4 −9.4 1.000 0.850 −0.212 1
Lig5 −9.5 1.254 0.848 −0.094 1
Lig6 −8.7 1.000 0.861 −0.256 1
Lig7 −11.8 6.664 0.676 −0.174 1
Lig8 −11.4 6.745 0.615 −0.238 0
Lig9 −8.4 1.000 0.898 −0.248 1
Lig10 −8.5 1.000 0.890 −0.149 1
Lig11 −9.5 1.695 0.783 −0.183 1
Lig12 −9.6 1.342 0.799 −0.082 1
Lig13 −10.3 2.252 0.787 −0.183 1
Lig14 −11.8 6.567 0.662 −0.174 0
Lig15 −9.0 1.477 0.796 −0.083 1
Lig16 −10.0 2.586 0.803 −0.118 1
Lig17 −10.0 2.692 0.858 −0.097 1
Lig18 −11.5 5.985 0.523 −0.235 0
Lig19 −11.5 6.102 0.527 −0.209 1
Lig20 −10.9 4.036 0.756 −0.149 1
Lig21 −9.0 1.813 0.844 −0.103 1

Appendix B. Molecular Dynamics Analysis

The time evolution of the distances between the center of mass (COM) of selected
ligands and the COM of the binding site during the complex simulations is depicted in
Figures A2 and A3. Figure A4 shows the time evolution of the RMSD values for the
ligands, while Figure A5 shows the placement of the Lig8 and Lig13 ligands inside Mpro,
where Lig8 and Lig13 have a high and a low average RMSD value, respectively, at different
simulation instances. Figure A6 shows how the ligand, receptor, and complex entropic term
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TS depends on the number of simulation frames included in the entropy calculation, see
Equation (9) in the main paper. Figure A7 shows the difference in TS between the complex
and the receptor and ligand. Figures A6 and A7 demonstrate that the entropy converges
when more than 500 frames are used in the calculation.

Figure A2. COM distance between the ligands staying closest to the binding site during the com-
plex simulations.

Figure A3. COM distance between the ligands staying within a reasonable COM distance to the
binding site during the complex simulations.
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Figure A4. Root means square displacement (RMSD) of the simulated ligands. The RMSD is
calculated based on a trajectory in which the protein backbone was aligned with itself.

Figure A5. Position and orientation of ligand (A) Lig13 and (B) Lig8 in Mpro at simulation time
instances 0 ns (green), 15 ns (yellow), 30 ns (orange), and 45 ns (red). Lig8 features a large RMSD
value and therefore was not considered to be in a proper bound state.

Figure A6. The value of the entropic contributions TS computed for Lig9, the receptor, and the
Lig9-receptor complex based on the last 30 ns of the 50 ns simulation for a varying number of equally
spaced simulation frames.
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Table A3. Average COM distances between the ligands and the binding site are measured during
the last 10 ns simulation of the ligand–receptor (complex) simulations. Average RMSD values of the
ligands are calculated based the last 30 ns the complex simulations with the protein backbone aligned
with itself. RMSF values are calculated as an average over the RMSF of each atom in the ligands
throughout the 50 ns simulations of the complex. Ligands discarded due to high COM and RMSD
values are highlighted in orange and yellow, respectively.

Ligand avg. COM (Å) avg. RMSD (Å) avg. RMSF (Å)
Lig1 4.82 7.66 1.37
Lig2 3.83 7.80 1.05
Lig3 12.43 14.05 0.99
Lig4 9.08 6.40 1.03
Lig5 6.15 6.90 1.15
Lig6 4.70 6.46 0.64
Lig7 4.75 4.85 0.51
Lig8 5.00 9.13 1.07
Lig9 5.87 7.17 0.39
Lig10 6.20 8.59 0.63
Lig11 4.23 5.76 1.32
Lig12 6.82 10.44 1.34
Lig13 5.04 3.68 0.85
Lig14 2.62 7.67 1.18
Lig15 4.85 6.57 1.10
Lig16 7.33 9.95 0.83
Lig17 5.24 7.56 0.45
Lig18 5.55 7.19 1.11
Lig19 13.28 13.42 1.15
Lig20 7.27 9.50 1.54
Lig21 7.93 7.15 0.71

Figure A7. The difference in the entropic terms, T∆S, of the ligand Lig9, receptor, and Lig9-receptor
complex simulations calculated based on the last 30 ns of the simulations and a varying number of
equally spaced frames.
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