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While oscillations of the local field potential (LFP) are commonly
attributed to the synchronization of neuronal firing rate on the same
time scale, their relationship to coincident spiking in the
millisecond range is unknown. Here, we present experimental
evidence to reconcile the notions of synchrony at the level of
spiking and at the mesoscopic scale. We demonstrate that only in
time intervals of significant spike synchrony that cannot be
explained on the basis of firing rates, coincident spikes are better
phase locked to the LFP than predicted by the locking of the
individual spikes. This effect is enhanced in periods of large LFP
amplitudes. A quantitative model explains the LFP dynamics by the
orchestrated spiking activity in neuronal groups that contribute the
observed surplus synchrony. From the correlation analysis, we infer
that neurons participate in different constellations but contribute
only a fraction of their spikes to temporally precise spike
configurations. This finding provides direct evidence for the
hypothesized relation that precise spike synchrony constitutes
a major temporally and spatially organized component of the LFP.
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Introduction

Ongoing efforts to unravel the mechanisms governing brain

processing have led to the proposal that information is

conveyed by the coordinated firing patterns of specific

subgroups of neurons. Efforts to prove or disprove this

hypothesis concentrate on detecting precise synchrony (Riehle

et al. 1997; Shlens et al. 2006; Ohiorhenuan et al. 2010) or more

complex spatiotemporal patterns (Ikegaya et al. 2004, Shmiel

et al. 2005) exhibited by the spiking activity of the network

ensemble. On the other hand, oscillations observed in

electrophysiological recordings on a mesoscopic scale, such

as the local field potential (LFP), hint at synchronization within

the population activity on a slower time scale. In this paper, we

establish the experimental finding that such oscillatory

network activity is related in a nontrivial fashion to action

potentials that exhibit synchronization on a fast time scale and

discuss a potential mechanism and functional interpretation.

It is commonly accepted that the LFP reflects synaptic

activity impinging on neurons in the vicinity of the recording

electrode. This assumption is rooted in the biophysical

explanation of the LFP as a spatially weighted average of the

synaptic transmembrane currents (Mitzdorf 1985; Viswanathan

and Freeman 2007). Indeed, recent studies have demonstrated

that the LFP at a given location may be well predicted by the

spiking activity of neurons recorded in a large area surrounding

the field potential electrode by using their postsynaptic

signatures obtained as spike-triggered LFP averages as a kernel

(Nauhaus et al. 2009). This view is supported by the finding

that the LFP is highly correlated with the membrane potential

fluctuations of nearby neurons (Poulet and Petersen 2008)

even in the absence of spiking activity in the recorded cells

(Okun et al. 2010). In consequence of this evidence, the

oscillatory structure observed ubiquitously in the LFP is

hypothesized to reflect predominantly synchronized inputs

(Elul 1971; Logothetis and Wandell 2004). Nevertheless,

although the natural extension from synchronization on the

level of the membrane potential to that of spiking activity is on

everybody’s mind, the correspondence is not straightforward

(Poulet and Petersen 2008).

Synchronization in the synaptic drive is likely to influence the

probability of spike generation with respect to the LFP. Indeed,

a large body of literature investigates the relationship of single

spikes and the LFP. To date, it has been established that neural

spiking activity may become transiently entrained to the LFP in

a regular or irregular fashion (Eckhorn and Obermueller 1993;

Murthy and Fetz 1996b). The degree of phase locking between

neurons and the LFP typically increases with the strength of beta/

gamma LFP oscillations (Denker et al. 2007). Such oscillatory

periods are correlated with stimulus features (Engel et al. 1990) as

well as top-down processes, such as attention (Fries et al. 2001),

and are thus believed to be computationally relevant (e.g., Harris

et al. 2002; Friedrich et al. 2004; Fries et al. 2007; Montemurro

et al. 2008; Tiesinga and Sejnowski 2009).

The high degree of correlation of membrane potentials

recorded from close-by neurons (Lampl et al. 1999) and the

similarity of LFPs taken at distant recording sites (Destexhe

et al. 1999) suggests that these oscillatory network fluctuations

revealed in the LFP act as average input in a neuron-unspecific

manner. Indeed, neurons tend to comodulate their firing

probabilities: cross-correlations between simultaneously

recorded neurons tend to show a periodic structure during

oscillatory episodes of the LFP (Murthy and Fetz 1996b).

Moreover, if the level of rate correlation in neuronal ensembles

is high then the firing rate profiles correlate well with gamma

band LFP power (Nir et al. 2007), while exhibiting a character-

istic phase relationship with the LFP (Womelsdorf et al. 2007).

Therefore, during oscillatory LFP periods it is expected that

neurons exhibit covarying firing rates on the time scale of the

LFP cycle and that the resulting spike coincidences should

exhibit a phase relationship to the LFP explained by the degree

of phase locking of the individual neurons. Much less clear is

the expectation on the behavior of synchronized action

potentials that are not explained by the firing rates (e.g., Riehle
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et al. 1997; Kilavik et al. 2009) in relation to the LFP oscillation.

Poulet and Petersen (2008) succeeded to directly demonstrate

that synchronized slow subthreshold membrane potential

oscillations that correlate with the LFP do not imply the

output action potentials to be synchronized. This discrepancy

between subthreshold dynamics and spiking activity is in

agreement with theoretical work linking subthreshold and

suprathreshold dynamics (Tetzlaff et al. 2008). The findings of

Poulet and Petersen (2008) rather indicate that the occurrence

of action potentials is governed by strong, precisely timed,

neuron-specific inputs to the cells, suggesting these as

additional independent activity riding on the oscillation. A

recent study by Okun et al. (2010) adds support to this view by

suggesting that their data can be understood if precise firing

occurs due to input from smaller groups of neurons as opposed

to slower network-wide population activity. Thus, such specific

inputs may exhibit only a subtle representation in the LFP.

One hypothesis compatible with such input characteristics

states that the network dynamics involves the activation of

a specific set of common inputs triggering a precise synchro-

nous discharge within a defined group of neurons, termed the

Hebbian cell assembly (Hebb 1949). On the spiking level, the

hallmark signature of an activated assembly is the functionally

coordinated synchronous spiking with millisecond precision

observed in parallel recordings of neuronal activity (Gerstein

et al. 1989) that exceeds the expectation based on the firing

rates (Aertsen et al. 1989). It is shown that not only LFP

oscillations correlate with external stimuli (e.g., Engel et al.

1990), behavioral aspects (e.g., Scherberger et al. 2005), and

internal processes (e.g., Murthy and Fetz 1996a; Donoghue

et al. 1998; Roux et al. 2006; Saleh et al. 2010) but also surplus

precise spike synchrony is observed and modulated in

a functional context (Vaadia et al. 1995; Riehle et al. 1997;

Kilavik et al. 2009). Early on, it has been conjectured that LFP

oscillations may represent an alternative, network-averaged

signature of such assembly activations (Eckhorn et al. 1988;

Gray et al. 1989; Donoghue et al. 1998; Singer 1999). In support

of this perspective, it was shown that the occurrence of

distinct spatially organized spiking activity across neurons

combined with their phase relationship to LFP oscillations

encode a substantial amount of surplus of information about

the stimulus compared with information contained in the firing

rate alone (Kayser et al. 2009). Nevertheless, it remains an open

question if LFPs reflect more than synchronization due to an

underlying rate modulation, and if these oscillations may

provide a framework for the occurrence of precisely co-

ordinated spiking as predicted by an active assembly (Buzsáki

2004; Jensen 2006; Canolty et al. 2010).

In this study, we uncover the missing critical link between

surplus spike synchrony considered as assembly expressions

and LFP oscillations by directly relating these 2 observables on

a trial-by-trial basis. For this purpose, we concentrate on

recordings from motor cortex of behaving monkey, for which

spike synchrony (Riehle et al. 1997) as well as LFP oscillations

(Murthy and Fetz 1992; Kilavik et al. 2010) have been shown to

be behaviorally relevant in tasks involving movement prepara-

tion. Therefore, we identify transient periods where the spiking

activity of simultaneously recorded neurons shows a surplus of

coincidence events compared with the number expected on

the basis of the firing rates using the Unitary Events (UEs)

analysis method (Grün et al. 2002a, 2002b; for a schematic

illustration, see Fig. 1). During these periods, the excess

synchrony is attributed to the synchronous firing of observed

neurons as part of a network process that reliably coactivates

a specific subset of neurons with respect to a given time point:

the assembly (Fig. 1; spikes colored green and blue). We show

that synchronous spikes originating from transient assembly

activation exhibit pronounced phase locking to the LFP that

exceeds the locking of coincidences that occur by chance. The

results enable us to embed the notions of LFP oscillations and

transient spike synchrony into a single framework and estimate

the fractional contribution of assemblies to neuronal activity,

exploiting signatures of assembly activity on the spike and the

LFP level. Revealing that assembly activity detected as

a significant surplus of spike synchrony correlates not only

with behavior but also with a mesoscopic brain signal

corroborates its relevance in cortical processing. Our findings

reinterpret the dynamical features of the LFP in terms of

neuronal processing and open a new perspective for decoding

of an accessible and reliable signal in brain--machine interfaces

and diagnostics.

Materials and Methods

Ethics Statement
Care and treatment of the animals during all stages of the experiments

conformed to the European and French government regulations,

according to the Weatherall report (‘‘The use of non-human primates

in research,’’ December 2006).

Experimental Design and Electrophysiological Recordings
All data were taken from recordings partially presented elsewhere

(Roux et al. 2006; Kilavik et al. 2009). Two rhesus monkeys (monkey K

and monkey O) were trained to perform arm movements from a center

position to 1 of 2 possible peripheral targets left and right of the center

in 2 different tasks involving an instructed delay. In the first, a choice

reaction time task (chRT), both peripheral targets were presented

simultaneously as a preparatory signal (PS), one in red and the other in

green. The animal learned to attribute to each color 1 of 2 possible

delay durations. If the (directionally noninformative) auditory response

signal (RS) occurred after a short delay, the monkey had to select the

red target, after a long delay the green one. Both, the laterality of the

colored targets and the presentation of the 2 durations were varied at

random with equal probability. In contrast, in the second, self-paced

movement task (SELF), the presentation of only one peripheral target,

either in red or in green, either at the left or at the right, required a self-

initiated response after estimating 1 of the 2 delays as coded by PS. In

both tasks (Roux et al. 2006), 4 different timing patterns were used to

identify the temporal duration of the short and long delay, respectively:

1) 500 and 1000 ms (monkey K); 2) 500 and 1200 ms (monkey K); 3)

600 and 1200 ms (monkey O); and 4) 1000 and 1400 ms (monkey O).

In this study, we exclusively analyze the delay activity, that is, activity

recorded during the preparatory period (PP) starting at PS and ending

with either RS in the chRT task or in the earliest allowed response time

(AT) in the SELF task. Therefore, the trials were aligned to PS

occurrence for the analysis. The neural activity related to movement

execution, that is, after RS or AT, respectively, is not analyzed. For both

tasks, only correct trials are considered, in which the monkey

responded within a time window (after the end of PP) of maximally

300 (monkey O) and 500 ms (monkey K) and in which movements

were performed in the required movement direction.

In order to exclude effects due to pooling of neuronal activities of

different behavioral contexts and different tasks, their activity is

analyzed independently for the 4 possible behavioral conditions

(combinations of short- or long-delay duration and left or right

upcoming movement direction) and each experimental session. For

the sake of simplicity, we refer in this manuscript to a recorded neuron

by the combination of its identity and the behavioral context during

which it was recorded. In this sense, data recorded from the same
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neuron may enter a population average up to 8 times (maximum of 4

different conditions in 2 tasks).

Data Acquisition and Data Analysis
LFPs and spikes were recorded simultaneously in primary motor cortex

using a multielectrode device of 2--4 electrodes (MT-EPS, Alpha

Omega). Spikes of single neurons were detected by an online sorting

algorithm (MSD; Alpha Omega). The interelectrode distance is on the

order of 400 lm. LFPs were sampled at a resolution of 250--500 Hz and

hardware filtered (band pass, 1--100 Hz). In total, we analyzed 53

recording sessions (monkey K: 25; O: 28), which yielded 143 single

neurons or 570 combinations of neurons and behavioral conditions. On

average 33 ± 11 trials are recorded per experimental condition. We

never combine LFP and spikes that are recorded on the same electrode

to exclude the possibility of spike artifacts in the signal (Zanos et al.

2011). We consider this as justified since we confirmed that

simultaneously recorded LFPs are highly synchronous in the frequency

regimes of interest. Likewise, synchronous activity between neurons is

analyzed only for neurons recorded from different electrodes, totaling

123 analyzed pairs of neurons. All data analysis is performed using the

Matlab software environment (The Mathworks Inc.).

Coincidence Detection and UE Analysis
From simultaneously recorded spike data of individual sessions, we

extract all unique pair combinations of spike trains that are recorded

from distinct electrodes. In a first step, we compute the number of

coincident spike occurrences of the pairs of neurons in a time-

dependent manner (compare Supplementary Fig. S1). To allow

coincidences with a temporal jitter up to a maximal coincidence

width of b = 3 ms, we apply the ‘‘multiple-shift’’ approach (Grün et al.

1999; Grammont and Riehle 2003). In this method, exact coincidences

(within the time resolution h = 0.1 ms of the data) are detected for

a range of shifts between –b and +b of the second spike train against the

first (reference) spike train. To account for the nonstationarity of the

neurons’ firing rates, and to capture the dynamics of correlation, we

perform the UE analysis in a sliding window fashion (Grün et al. 2002b).

This is done by moving a window of fixed duration (here: Tw = 100 ms)

along the data to cover the duration of a trial, that is, the duration of the

PP. The length of the time window is therefore chosen large enough to

include at least one complete cycle of LFP oscillations in the beta range.

The window is advanced in steps corresponding to the time resolution

h of the data. The first window position is centered at trial onset and

the last window at the end of the delay period.

Within each window position, the total number of empirical

coincidence counts nemp is derived by summing the exact coinci-

dent spike events from each shift l and from all M trials j :

nemp=+
M

j=1+
L

l=1n
j ;l
emp, with L = 2(b/h) + 1. To derive UEs, this count is

compared with the number of coincidences that would occur by

chance given the firing rates of the neurons. This involves the following

calculations. To account for nonstationary rates across trials (Grün et al.

2003), the relevant measures are obtained from the single trial and only

subsequently summed across trials. Thus, within the analysis window,

the expected number of coincidences is calculated on the basis of the

trial-by-trial firing probabilities pi,j which are estimated by the spike

count ci,j of neuron i in trial j divided by the number of bins N within

a window: pi,j = ci,j/N with N = Tw/h. The joint probability for finding

a coincidence by chance per trial is calculated by the product of the

single-neuron firing probabilities p12,j = p1,jp2,j. The expected number

of coincidences per trial j results from multiplying this probability by

the number of bins N that are included in the analysis window and the

number of shifts L: n
j
exp=NLp12;j . The total number of expected

coincidences within the window is derived from the sum of the

expected numbers per trial: nexp=+
M

j=1n
j
exp.

Finally, we compare the empirical nemp to the expected number nexp

of coincidences to detect significant deviations. To this end, we

calculate the joint p value jp, that is, the probability of measuring the

given number of empirical coincidences (or an even larger number)

under the null hypothesis of independent firing. The distribution under

this null hypothesis representing the probability to find a given number

of coincidences is given analytically assuming Poisson processes (Grün

et al. 1999). The latter assumption is shown to yield a conservative

estimate for cortical spike trains considering their non-Poisson and

nonrenewal properties (Grün 2009). Then the significance of nemp

yields (Grün et al. 2002a): jp
�
nemp

��nexp

�
=+

nr
exp

r ! e
–nexp . If its value is below

an a priori threshold (here chosen as 5%) coincident firing is classified

as significant and identified as UEs. Spikes are detected as UE if they are

Figure 1. Schematic illustration of the analysis framework. Spikes of 2 neurons (A and B, yellow background) and an LFP are recorded in 2 trials from 3 separate electrodes
(right) spaced at approximately 400 lm. In addition, spikes from 2 unobserved neurons are depicted. The spikes of one recorded neuron are classified as CC (cyan) or UE (red) if
they are precisely (±3 ms) synchronized with a spike of the second neuron recorded in parallel, and otherwise as isolated (ISO, gray). In contrast to CCs, UEs identify
coincidences in epochs where the high number of observed coincidences across trials (top left) significantly exceeds the prediction based on the firing rates. This study
investigates the relationship of these 2 types of observed spike synchrony (CC and UE) to the LFP population signal as a mesoscopic monitor of brain processing. In UE epochs,
synchrony between both neurons in excess of the chance contribution is commonly explained by their specific reliable and temporally confined coactivation in a neuronal
ensemble, termed assembly. Two assembly activations are sketched in blue and green (colored spikes and background). Only one neuron (B) of the assembly shown in blue is
observed; neuron A participates only in the assembly shown in green. Hence, only the assembly shown in green can be detected as a UE by the elevated coincidence count
between A and B, yet also ISO and CC spikes may be part of an assembly hidden from the observer. Asterisk: see main text.
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part of a coincidence and in at least one sliding window identified to

contain significant excess synchrony (for an illustrated summary of this

analysis approach, see Maldonado et al. 2008). In addition, we require

such time windows to exhibit a minimum firing rate of 5 Hz for each

neuron. If several neurons are recorded in parallel, a spike is labeled as

UE if it is part of a UE coincidence in at least one of the analyzed pairs.

Spikes that are part of coincident events but not identified as UE with

respect to any of the neurons recorded in parallel are labeled as chance

coincidences (CC), all remaining spikes as isolated spikes (ISO). By this

definition, the spikes of each neuron receive exactly one label and

enter all subsequent analyses once. For the analysis presented in

Supplementary Fig. S2, a UE section is defined as all time bins belonging

to a consecutive sequence of analysis windows (length Tw) that are

classified as significant; a CC section is constructed by grouping all

remaining time bins into contiguous segments.

Cross-Correlation Analysis
To calculate the cross-correlogram in Figure 2, we first construct

vectors x
j
n and y

j
n of the spike trains by binning (1 ms bin width, index

n, length N) of each trial j of the 2 neurons. The cross-correlogram is

constructed across the M trials for a time lag s>0 (in bins) as

Cxy

�
s
�
=+M

j=1+
N –s–1
n=0 x

j
n+sy

j
n and for s <0 as Cxy

�
s
�
=Cyx

�
–s
�
. To compen-

sate for a bias due to the decrease of available data as s increases, we

correct each bin of Cxy

�
s
�
by a factor of 1=ðN –jsjÞ, which is particularly

important for small N. The raw correlogram is then normalized to 1 at

lag s=0 by multiplying by a factor of N
� ffiffiffiffiffiffiffiffiffiffiffi

n1n2

p
, where n1 and n2 are the

spike counts across trials of neurons 1 and 2, respectively. To evaluate

the significance of observed cross-correlations, we compute bin by bin

the mean and variability (2 standard deviations) resulting from 1000

cross-correlograms obtained by an identical analysis of surrogate spike

trains. Each surrogate is constructed by randomly displacing (dithering)

each spike of the original spike train homogeneously by maximally ±10
ms (Hatsopoulos et al. 2003). This procedure maintains the structure of

correlation due to slow rate nonstationarity while destroying potential

excess precise synchronization of spikes. The autocorrelograms (Fig. 2

and Supplementary Fig. S2) of a spike train x
j
n are calculated in the

same fashion using y
j
n=x

j
n .

Spectral Analysis
Power spectra are used to assess the dominant frequencies in the LFP.

All power spectra are calculated using a Hamming window as taper. To

illustrate the temporal modulation of power in different frequency

bands, we use a time-resolved spectral analysis using 200 ms windows

with a 50 ms overlap.

Spike-Triggered Averages
Spike-triggered averages (STAs) are computed by averaging LFP

segments from time windows of 200 ms centered at each spike time.

For the STA analysis, LFPs are filtered with a lower cutoff frequency of 2

Hz to remove DC components and an upper cutoff frequency of 80 Hz.

To compare STAs across recordings, in which electrode signals may

differ in their absolute amplitude values, we z-transform each LFP

before further analysis by subtracting its mean and dividing by its

standard deviation (each calculated across trials). In order to quantify

the magnitude (or size) of an STA, we calculate the total area the STA

encloses with the time axis. Similar results to those presented here (not

shown) are obtained using alternative measures of the STA magnitude,

such as the area under its envelope (cf. phase analysis), or the

maximum of its absolute value. The variability of the STA is in general

dependent on the number of trigger spikes. In order to compare

STAs obtained from 2 sets of trigger spikes of different numbers of

spikes n1 and n2 (n1 > n2), we construct 1000 STAs of set 1, each

computed from n2 randomly selected spikes. We define the STA of set 2

to be larger than that of set 1 if the magnitude of set 2 exceeds q = 50%

of the recomputations of set 1 and significantly larger (at a level of 5%)

if it exceeds q = 95% of the recomputations. Thus, this comparison

is based exclusively on the magnitudes of the 2 STAs and therefore

does not consider any model-based dependencies between the sets of

STAs.

Rate-Amplitude Correlation
To assess the degree of correlation between LFP oscillation strength

and spike rate (Fig. 3D), we calculate the mean value of the rectified z-

transformed LFP of each trial in sliding windows of 200 ms length and

100 ms overlap. These values are then correlated with the rate profile

of the neuron estimated as the spike count pooled across trials in the

same sliding windows. Similar results as those shown here are obtained

using alternative measures of LFP strength, including the mean value of

the envelope of the beta-filtered signal (cf. phase analysis) or by using

the total signal power in the beta range (10--22 Hz).

Peak-Triggered Spike Histograms
We evaluate the population-averaged spiking discharge triggered on

the peaks of the LFP oscillation (Fig. 3E; cf. also Destexhe et al. 1999).

To this end, we detect maxima of the LFP separated by a minimum time

interval of 33 ms, which corresponds to a maximal oscillation

frequency of 30 Hz and allows singling out the oscillatory component

in the beta frequency range. In detail, all maxima are detected and

ordered by signal amplitude. Starting from the highest amplitude,

maxima are selected for the analysis as long as they are separated by at

least 33 ms from any previously chosen maximum with higher

amplitude. The histogram is calculated from spike data within a window

of 200 ms around each trigger peak and averaged across all individual

peaks in all neurons (for a different technique to relate spike times to

electroencephalography time course based on amplitude, see Eeckman

and Freeman 1990). Simultaneously, we also compute the peak-

triggered LFP by averaging the z-transformed LFP aligned on its peaks.

Phase Analysis
Based on the dominant beta frequencies obtained on a session-by-

session basis, z-transformed LFPs of both monkeys are filtered with

a zero-phase 10--22 Hz band-pass filter (Butterworth, 8-pole). Short

filter transients in the time domain allow for good estimates of the

instantaneous LFP amplitude. In a subsequent step, we calculate the

instantaneous phase of the LFP from the analytic signal nðt Þ=xðt Þ+ix̃ðt Þ
obtained via the Hilbert transformation x̃ðt Þ= 1

p P:V:
R

xðt Þ
t –s ds of the

original signal x (t), where P.V. denotes that the integral is to be taken

as Cauchy principal value (Le Van Quyen et al. 2001). In this formalism,

troughs of the LFP are identified by a phase of p. The calculation of the

analytic signal can be applied to arbitrary signals, but its interpretation

as instantaneous phase is difficult where either the signal amplitude

becomes too small to discriminate the oscillation from background

noise or where the regular oscillation is disrupted (Boashash 1992). To

account for these effects, we discard phase values which violate the

monotonicity of the phase time series or exhibit instantaneous phase

jumps. To further corroborate our results, we exclude from our analysis

those 10% of spikes per neuron that occur at the lowest LFP

amplitudes.

We analyze the distributions of extracted phase values at the times of

spike occurrences (Denker et al. 2007) using tools from circular

statistics (Mardia and Jupp 2000). The mean phase / is obtained via the

circular average Rei/=N –1+ei/ðti Þ , where /(ti) indicates the phase of

the field potential at time ti of spike i. Furthermore, we utilize the

transformation of the vector strength R to the circular standard

deviation r=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
–2 log R

p
as a measure of the concentration of the phase

distribution. For small values, r relates to the standard deviation of

a normal distribution, whereas for flat distributions r/N. In all phase

analyses, we discard neurons that fire in total (across trials) less than 25

spikes.

Additionally, we employ 2 measures to quantify whether spikes

recorded from individual neurons show a significant phase preference

to the LFP. For the first, we test against the null hypothesis that the

phase sample is taken from the uniform circular distribution (Rayleigh

test, cf. Mardia and Jupp 2000), which is expected by assuming

a regular (e.g., filtered) field potential and independent random spiking.

However, spike trains that have a certain regular structure in time may

display intrinsic locking to the LFP. To measure the degree of genuine

locking that is not explained by the regularities of the 2 signals, we

calculate as the second measure the degree of locking R in 1000

surrogates, each created by shuffling the interspike intervals of the
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spikes on a trial-by-trial basis (random placement of the first spike).

This procedure preserves to first order the regularity manifested in the

interspike interval distribution. A comparison with the measured value

R yields the P-value for this surrogate test. Since the construction of

such surrogates can only be performed on the complete spike train,

this measure could not be sensibly applied to the subsets of spikes in

our analysis (i.e., ISO, CC, UE, as well as Lo and Hi used in the amplitude

analysis).

The phase distributions of spike coincidences (e.g., CC and UE

distributions of Figs 5 and 6) may be trivially sharpened due to

a preferred phase occurrence of individual spikes. To correct for this

effect, we calculated the expected phase distribution of coincident

spikes (black curve in Figs 5 and 6 as well as Supplementary Fig. S5). To

this end, we calculate the joint phase probability distribution of

a neuron pair by the phase-by-phase multiplication of the occurrence

probabilities of spikes at these phases. The predictor (labeled WPHASE)

for the whole population is the average of these pairwise phase

distributions each weighted by the relative number of coincidences

between the corresponding 2 neurons.

In contrast to this predictor which considers the phase of spikes

irrespective of the spike interval distribution, we also construct

a second predictor (labeled WISI) based on the reverse scenario. For

each pair of simultaneously recorded neurons, the interspike intervals

of the spike trains of each neuron are shuffled on a trial-by-trial basis to

create a set of 1000 surrogate pairs. For each surrogate, the variance r
is evaluated separately for the resulting sets of noncoincident and

coincident spikes. Thus, we obtain for each neuron the variances r of

phase locking of coincident and noncoincident spikes for the original

data and for the 1000 surrogates, allowing us to compare their

distributions (Fig. 4C).

Results

Synchrony-Based Spike Classification

We analyze spike data of 143 single units and simultaneously

recorded LFP data from motor cortical areas in 2 monkeys

during the instructed delay (PP) of 2 motor tasks (see Materials

and Methods). Both spike synchrony (Kilavik et al. 2009) and

LFP oscillations in the beta band (Murthy and Fetz 1996a;

Kilavik et al. 2010) have been shown to be behaviorally relevant

to movement preparation. LFPs and spikes were recorded from

electrodes spaced at 400 lm (for a schematic illustration, see

Fig. 1) to exclude trivial signal correlations induced by volume

conductance effects (cf., e.g., Katzner et al. 2009). In these

recordings, there is in general no intuitive correspondence

between spatially synchronized (Fig. 2A; cf. also Rubino et al.

2006) LFP oscillations and precise spike synchronization in the

absence of a network oscillation in the spiking activity: the

autocorrelation and cross-correlation structures of single units

(Fig. 2B--E) tend to exhibit a flat structure in the sense that all

their features are fully explained by predictors that preserve

the rate fluctuations (cf. also Murthy and Fetz 1996b; for an

analysis of spike train variability in comparable data, see Nawrot

et al. 2008).

In a first step, we characterize the synchronization between

all neuronal pairs on a fine temporal scale. To this end, we

Figure 2. Characteristics of LFP and spiking dynamics. (A) Two single-trial LFPs recorded simultaneously (gray) at different electrodes (during long trials with movement to the
right in the SELF task). Superimposed are the beta-filtered (10--22 Hz) signals (black) and their instantaneous oscillation phase (indicated by small black lines above). The
histogram visualizes the phase differences between the 2 signals across all time bins. (B) Spike raster of all trials (sorted by reaction time after the delay period) of one example
neuron recorded in the same session as the LFPs shown above. (C--E) Corresponding interspike interval distribution (C), the normalized autocorrelogram (D), and the cross-
correlogram (E) with a different neuron recorded in parallel (neuron 1 in Supplementary Fig. S1). Gray curves in D and E indicate the mean (solid) and 5% confidence intervals
(dashed) of the autocorrelogram and cross-correlogram obtained from 1000 surrogate spike trains where each spike was dithered uniformly in a window of ±10 ms around its
original position. The structure of the autocorrelation and cross-correlation is explained by the nonstationarity of the firing rate. The center bin is removed in (D); bin size in all
panels: 1 ms.
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identify time windows where the spiking activity of simulta-

neously recorded sets of neurons shows a surplus of co-

incidence events across trials compared with the number

expected on the basis of the firing rates using the UE analysis

(Grün et al. 2002a, 2002b). During these periods, we attribute

the excess synchrony of both observed neurons to a network

process that reliably activates a specific subset of neurons: the

assembly (Fig. 1 depicts the spikes of 2 different assemblies

shown in green and blue, respectively). Based on this detection

of precise spike synchrony (Grün et al. 1999) in all pairs of

simultaneously recorded neurons, we classify a neuron’s spikes

(all spikes) exclusively into 1 of 3 sets: isolated spikes (ISO),

chance coincidences (CC), and Unitary Events (UE). Spikes

involved in pairwise coincidences (within 3 ms) are classified

as CC if they occur during time periods (100 ms windows)

where the observed coincidence rate is explained by the

instantaneous trial-by-trial rates of the 2 involved neurons, and

as UE if their number significantly exceeds the expectation

(see Materials and Methods). When more than 2 neurons are

recorded in parallel, a spike is labeled UE if it forms a (pairwise)

UE coincidence with at least one of the simultaneously

recorded neurons. Likewise, spikes that form CC coincidences

but are not identified as UE in any neuron pair are labeled CC.

Finally, spikes not classified as CC or UE with respect to any of

the simultaneously recorded neurons are classified as ISO.

Consequently each spike is labeled according to the type of

event it belongs to, and an individual spike train may contain

spikes of different categories (compare gray, cyan, and red

boxes around spikes in Fig. 1). In a given UE period,

a distinction between coincidences stemming from the

activation of the assumed assembly and those due to chance

is not possible. Therefore, a substantial fraction (for an

estimate, see Discussion) of coincidences in the UE group

may still be due to chance coincident spiking (e.g., the leftmost

UE coincidence of trial 1 marked by an asterisk in Fig. 1).

The classification of data sections into CC and UE periods is

based solely on the occurrence of excess spike synchrony

between neuronal pairs, yet other features of the recorded

spike trains might also differ depending on this selection

process. To test for this possibility, we performed a series of

analyses separately for the CC and UE time periods. The

duration of UE sections (for a definition, see Materials and

Methods) composed of consecutive UE windows (136.0 ± 48.8

ms, all errors given as standard deviation; n = 840) is in general

shorter than the duration of CC sections (485.1 ± 371.1 ms;

n = 428), indicating their transient nature. In terms of firing

Figure 3. The magnitude of the STA depends on the occurrence of synchronized spiking activity. (A) STA of the LFP averaged over all 123 neurons (n5 297 484 spikes total) for
the 3 disjunct sets of spikes. The left panel compares STAs of ISO (dark gray curve, n 5 240 455) with CC (cyan curve, n 5 44 867). To account for the difference in variability
due to sample sizes, the STA of ISO is repeatedly recomputed using only 44 867 random trigger spikes. The light gray band encloses at each point in time 95% of all recomputed
STAs. The middle and right panel compare STAs of UE (red curve, n 5 12 162) with ISO and CC, respectively. (B) Percentage of neurons per animal (vertical) where the STA
obtained from one spike set exceeds (in area) the STA of another set (horizontal axis: the 3 comparisons of sets corresponding to the 3 graphs in A are represented by the color
codes). Wide, light bars: For each neuron the STA of one set qualifies as larger than the other if it exceeds q5 50% of its 1000 sample size corrected recomputations (performed
as in A). Superimposed narrow dark bars: more strict criterion q 5 95% (i.e., at a 5 5%). (C) Same comparisons as in B, however, now the 4 bars of each comparison
distinguish STAs obtained for neurons with the same number Np of partner neurons tested for pairwise coincidences (q 5 50%; pooled across both animals). (D) The correlation
of LFP amplitude and spike rate (200 ms windows, 100 ms overlap) is not significant (a 5 0.05, coefficient R). (E) Bottom: LFP-triggered histogram of ISO (left), CC (middle), and
UE (right) averaged across the population (expressed as the probability of spike occurrence). The trigger times are all local LFP maxima, which are separated by a minimum time
difference of 33 ms (i.e., allowing trigger frequencies of up to 30 Hz to single out the beta component). Each neuron is related to exactly one LFP signal. Top: LFP averages based
on the same triggers shown for each neuron (light gray curves). The dark gray curve is the average of the single-neuron LFP averages.
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rates (Supplementary Fig. S2A1), we observe no difference

between CC (average: 17.5 ± 11.0 Hz) and UE windows (18.2 ±
10.1 Hz) throughout the population. Similarly, the pooled

interspike interval distributions (Supplementary Fig. S2A2)

obtained from individual analysis windows are comparable for

CC and UE. Consistent with the UE analysis results, the average

probability of 0.332 to observe a UE coincidence in a single trial

within one analysis window is higher than the probability of

0.210 obtained for a CC coincidence (cf. Supplementary Fig.

S2A3). These few coincidences are rather equally distributed

across the trials (as opposed to occurring in rapid succession

within a trial) in both CC and UE periods as indicated by the

high probability to observe exactly one coincidence in a given

trial (Supplementary Fig. S2A4) opposed to 2 or more

coincidences. This observation strengthens the interpretation

that the UE method detects a consistent coactivation of

neurons across trials rather than a repeated coactivation within

a trial. To test for changes in the regularity of the spike train,

we quantify the amount variability of the interspike intervals by

the coefficient of variation (CV) in CC and UE sections

(Supplementary Fig. S2B1). The calculation of the CV is

sensitive to the length of the data segments used for its

estimation and hence the values obtained from the typically

short sections are biased to lower values (cf., e.g., Nawrot et al.

2008; to highlight this fact, we choose to denote the coefficient

as CVshort). Thus, to allow the comparison of the CVshort

distributions obtained from CC and UE sections, we only

consider pairs of CVshort values from CC and UE sections of

identical length (by cutting the longer of the 2 sections). As

a result, we observe no difference of the CVshort distributions

from spikes within CC and UE sections, allowing us to conclude

that there is no particular degree of spike regularity in UE

sections. As a control, we also show the distribution of CVshort

obtained for Poisson spike trains (rates corresponding to the

trial-average rate of UE sections) of the same lengths as the

sections entering the histograms (blue curve, identical in both

graphs). The resulting distribution is in strong agreement with

the ones derived from experimental data, exhibiting the bias

toward CVshort smaller than 1 (expected for infinite data

length) due to short windows. Finally, the structure of the

spike autocorrelogram is fully explained by the nonstationarity

of the firing rates as indicated by the autocorrelations of

surrogate spike trains in which the fine structure of spiking was

destroyed by spike dithering (Supplementary Fig. S2B2).

Further characterization of the occurrence of UEs in this data

set can be inferred from Kilavik et al. (2009). Taken together,

besides the fact that data segments differ in respect to the

occurrence of excess synchrony, we observe no difference in

the statistical features of the spike trains therein.

The Magnitude of Spike-Triggered LFP Averages Increases
with Synchrony

As a first approach to the relation of the various spike types

(ISO, CC, and UE) to the LFP, Figure 3A compares the STAs of

Figure 4. LFP-spike phase coupling reveals locking increase for coincidences. (A) Determination of phase and amplitude (example neuron). Top: single recorded LFP trial; middle:
trial-averaged power spectrogram. The beta activity during the PP (between PS and AT) disappears with movement (Mvt). Bottom: For analysis, phase (green) and amplitude
(blue) of the beta-filtered LFP (upper trial is shown in the top graph) is extracted at the spike times (ticks). Resulting phase distributions (green) are characterized by their circular
standard deviation r. Same neuron as in Figure 2. (B) Percentage of neurons with a circular standard deviation of the ISO (gray curve), CC (cyan), and UE (red) phase distribution
below r (horizontal axis). For the average rl 5 1.98 of the set of significantly locked neurons (all spikes, a5 0.05), the percentages are also shown as bars. (C) Comparisons of
the circular standard deviations r of the 3 sets for individual neurons: ISO versus CC (top, n5 291), ISO versus UE (middle, n5 142), and CC versus UE (bottom, n5 136). Each
dot represents one neuron in one experimental configuration. The percentages show the fraction of data points above the diagonal. The light (dark) gray filled ellipse covers 2 (1)
standard deviation(s) of the sample variance (outlined ellipse: predictor WISI, surrogate data ISO vs. CC with shuffled ISIs).
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the LFP for the 3 sets. Each STA is pooled across all neuron--LFP

pairs. We observe that the magnitude of the STAs of both, CCs

(left, cyan) and UEs (middle, red), exceed that of the isolated

spikes (gray). In order to account for random fluctuations in

the magnitude of STAs that arise due to the different finite

sample sizes of the ISO, CC, and UE groups, we tested that CC

and UE STAs are significantly larger than resampled versions of

the ISO STA constructed from the same number of spikes.

Moreover, the STA of UE is larger than that of CC (right). The

oscillatory structure of the STAs exhibits a strong beta

frequency component, and the STAs are typically centered on

the downward slope of the oscillation cycle. Although single-

neuron STAs also exhibit these differences, they are more

difficult to detect (for a typical example, see Supplementary

Fig. S3). The reason for this is 2-fold: First, individual pairs

exhibit a substantially higher sampling variance, especially

considering the typically low number of UE spikes. Second,

single-neuron STAs are more strongly influenced by variability

in the instantaneous LFP frequency, the spike--LFP phase

locking, and the oscillation amplitude. Nevertheless, we

quantify the STA increase between the 3 sets of spikes for

individual neurons using the area enclosed by the STAs and the

horizontal axis as a measure for its magnitude (see Materials

and Methods). Taking into account differences in the sampling

variance by a resampling procedure, we show (Fig. 3B,C) the

fraction of neurons where the STA of one set exceeds in

magnitude the median of the resamples (q = 50%) or exceeds

95% of the resamples (q = 95%) corresponding to a significantly

larger STA on a neuron-by-neuron basis with regard to sampling

variability of the sets. In particular for UE spikes, the STA

exceeds that of CC significantly (q = 95%) in a fraction of 23.7%

of the single neurons of both monkeys (Fig. 3B). In contrast, in

only 6.2% of neurons the opposite is true and the CC STA

significantly exceeds that of UE (not shown as bar graph). For

the other 2 comparisons, we obtain the following fractions of

neurons (q = 95%): CC > ISO: 18.8%, ISO > CC: 3.4% and UE >

ISO: 25.8%, ISO > UE: 2.9%. Taken together, we observe an

increase of the STAs from ISO to CC to UE. Moreover, we find

consistently more pronounced STAs for experiments where we

are able to evaluate a larger number of partner neurons Np for

potential coincidences (Fig. 3C), thus better sampling the

correlation structure of the neuronal population.

Three mechanisms could potentially underlie the differences

in the STAs: changes in the instantaneous frequency of the

dominant oscillatory component, in the LFP amplitude or in the

locking between LFP and spikes. Regarding the first of these

mechanisms, the oscillation observed in each of the 3 STAs

exhibits the same frequency. Moreover, the 2 distributions of

the instantaneous oscillation frequency of the beta-filtered

signal measured in the center of each detected CC and UE

section, respectively, are identical (Supplementary Fig. S2C1),

independent of the filter details. Therefore, frequency variabil-

ity does not explain the differences in the 3 STAs. For the

remaining 2 mechanisms (amplitude and locking), the picture

is much less clear. The LFP amplitude does not covary with the

spike rate (Fig. 3D). Therefore, increased amplitudes and the

disproportionate increase of the CC count during periods of

elevated rates is an improbable cause of the STA increase for

CC. Moreover, the amplitude (i.e., envelope) distribution of the

beta-filtered LFP exhibits no clear differences between CC and

UE sections (Supplementary Fig. S2C2). On the other hand,

spike histograms triggered on the peaks of the LFP oscillations

(Fig. 3E) reveal that spikes do not only tend to prefer the falling

phase but also avoid the rising phase of the LFP. Combined, this

evidence seems to suggest that the 3 sets of spikes differ

primarily in the degree of phase coupling to the LFP rather than

in the accompanying amplitude of the LFP. However, on the

basis of STA techniques alone, the 2 contributions cannot be

clearly disentangled. In particular, these difficulties in inter-

preting the STA prevent us from constructing a predictor for

the STAs of the coincident spikes (CC and UE) based on ISO

spikes.

Increased Spike Synchrony Improves Spike--LFP Phase
Coupling

In the following, we aim to obtain a more detailed picture

regarding which of the 2 features of LFPs and spike trains

(amplitude and phase coupling) are relevant in explaining the

differences between the 3 STAs. In order to clearly differentiate

between these mechanisms, it is necessary to formally

disentangle the dependence of spike timing on the amplitude

of the LFP from its dependence on the phase, which are

obscured in the STA. By identifying these contributions

individually, it will further become possible to make statistical

predictions on dependencies between isolated spikes and

coincidences in general (ISO vs. CC) and between CCs and

excess synchrony in particular (CC vs. UE). Figure 4A explains

the procedure (for details, see Materials and Methods). For

both monkeys, we consistently observe a prominent beta

oscillation (in both monkeys around 15--17 Hz) of the LFP

during the PP that stops with movement onset (Mvt).

Therefore, we focus on the beta frequency band by prefiltering

the LFP for further analysis. We ensure that the employed filter

band of 10--22 Hz, centered symmetrically on the mean beta

frequency, captures the observed beta oscillation by comparing

the resulting frequency composition (Supplementary Fig.

S2C1) to that obtained for a wider and asymmetrical filter (8--

30 Hz). We then extract the instantaneous phase and amplitude

(envelope) of the filtered LFP for each spike time. We are now

prepared to study the 2 contributions of phase and amplitude

in detail across the population.

Figure 4B shows that across the population of neurons CC

are systematically better locked (decreased circular standard

deviation r of the phase distribution) than ISO and UE better

than CC. As a suitable reference value to compare the fraction

of locked neurons in the 3 sets, we extracted the average

locking strength rl = 1.98 (marked as a dashed line) obtained

for those neurons that are significantly locked if all spikes are

considered (ISI surrogate test for locking, see Materials and

Methods). In the following, we investigate how the systematic

differences in locking strength between the 3 sets of spikes are

affected by the overall spike--LFP relationship of a particular

neuron. To this end, we classify a neuron as strongly locked if

the set of all its spikes exhibits significant locking to the LFP

(ISI surrogate test). Nonsignificantly locked neurons are

categorized as weakly locked. This differentiation (Supplemen-

tary Fig. S4A) between strongly (39%) and weakly (61%) locked

neurons does not introduce a bias by affecting the percentage

of neurons that contribute CC (strong: 55.0%; weak: 50.0%) and

UE (strong: 28.4%; weak: 23.4%). Both groups exhibit the same

general relation between ISO, CC, and UE (Supplementary Fig.

S4B) as shown in Figure 4B. As expected, the percentage of

neurons better locked than the chosen reference value rl in
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the ISO group differs considerably (53% vs. 6%, gray bars in

Supplementary Fig. S4B) between strongly and weakly locked

neurons. However, this difference between strongly and

weakly locked neurons is less pronounced for CCs (63% vs.

32%) and further decreases for UEs (65% vs. 46%). The

conservation of the locking of UE spikes in strongly and

weakly locked neurons compared with the declines for ISO and

CC hints at different dynamical origins of the coincident spikes

in CC and UE.

Figure 4C confirms that individual neurons are consistent

with the findings for population ratios (Fig. 4B). The scatter

plots of the circular standard deviation reveal that in 71% of the

recorded neurons CC spikes are better locked than ISO spikes

and in 85% of the neurons UE spikes are better locked than ISO

spikes. Finally, in 68% of all neurons, UE spikes are better

locked to the LFP than CC spikes. In contrast to the

experimental data, only 58% of surrogate spike trains that

retain the original interspike interval statistics (predictor WISI,

see Materials and Methods) show an increase in phase locking

for coincident spikes (outlined ellipse). Indeed, compared with

the STA analysis, even for individual neurons it is possible to

detect differences between ISO, CC, and UE separately for the

distribution of LFP phase (Fig. 5A, same example neuron as in

Figs 2 and 4) and LFP amplitude (Fig. 5B).

The consistency in the population allows us to focus

subsequent analyses on the phase locking of strongly locked

neurons. The rationale is to reduce the differences in locking

between the 3 sets of spikes to obtain a conservative estimate

of the differences in their locking strengths (cf. Supplementary

Fig. S4B). The corresponding phase distributions in the top

graphs of Figure 6A constructed from all spikes of neurons that

meet this selection criterion show that the locking to the LFP is

strongest for UEs and weakest for isolated spikes. An even

stronger discrepancy between the 3 distributions is observed

when not constraining the analysis to the set of strongly locked

neurons (Supplementary Fig. S5A).

The phase distribution exhibited by isolated spikes may

equally be interpreted as a modulation of the spiking

probability in time. Indeed, mapping LFP phase to time is

supported by the high level of synchrony observed between

LFPs from different electrodes (Fig. 2A). In consequence, the

probability of observing a coincidence by chance is naturally

determined by the individual phase-locking distributions of the

2 neurons forming the coincidence. One may therefore argue

that the increased modulation of the phase distribution of CC is

simply given as the joint phase distribution taken from both

neurons (predictor WPHASE assuming independence of neurons,

see Materials and Methods). Interestingly, the phase distribu-

tion of CC is indeed largely in agreement with this predictor

(black curve in Fig. 5A and in the top graphs of Fig. 6A), while

that of UE is not. By definition, UEs extract time windows with

a high coincidence count and therefore could in principle be

biased to detecting coincidences that occur in close temporal

proximity. However, it is improbable that rapid sequences of

UEs underlie the observed increase of locking strength since

each UE window encompasses around 2 oscillation cycles of

the LFP, and on average, we observe less than 1 coincidence

Figure 6. Relation of spike synchrony to the interplay of phase and amplitude. (A)
Joint histograms of the phase and amplitude for ISO (left), CC (middle), and UE (right)
pooled across the population (25 3 25 bins; color bars indicate counts; phase p
indicates LFP troughs). The top and left projections display the phase and amplitude
distributions, respectively. The top middle and top right graphs compare the phase
distribution with the distribution shown in the graph to the left: The shaded areas
enclose at each phase 95% of 1000 phase distributions randomly chosen from the set
to the left with the same number of spikes as in the current set. Black curves are the
predictions based on the phase distributions of the individual neurons (WPHASE). The
histograms include the neurons which have a minimal spike count (total of 25 spikes
and a mean rate of 5 Hz per trial) and for which the phase distribution of all spikes is
significantly locked (a 5 0.05). (B) Phase distributions of the 3 sets, considering only
the 50% of the spikes at highest LFP amplitudes (Hi spikes, h 5 50%, above dashed
black lines in A).

Figure 5. Distributions of LFP phase and amplitude extracted at the spike times of
a single neuron. Same neuron as in Figures 2 and 4. All distributions are normalized to
unit area and are shown separately for ISO (left), CC (middle), and UE (right). (A) The
modulation of the 3 phase distributions increases from left to right. Phase p is the
location of the trough of the LFP oscillation. The black curve in the middle and the
right graph is the predictor based on the individual phase distributions of the
contributing neurons (WPHASE). (B) LFP amplitudes are expressed as z-score.
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per trial (Supplementary Fig. S2A3,A4). Moreover, removing

those spikes (12%) from the 3 sets that occur in quick

succession (within 6 ms) of a previous spike in each of the 3

sets yields a similar qualitative result for the locking (Supple-

mentary Fig. S5B). Taken together, despite the impossibility to

remove the substantial fraction of coincidences originating by

chance from the UE group, the locking of UE cannot be

explained on the basis of the intrinsic phase locking of the

neurons forming the coincidences as in the case of CC.

Magnitude of LFP Oscillation Influences Spike Locking

Earlier studies (e.g., Murthy and Fetz 1996b) demonstrate that

spikes occurring during periods of high LFP amplitudes exhibit

a stronger locking to the LFP. At a given time the amplitude of

the LFP oscillation is defined by its envelope (blue curves in Fig.

4A). To examine the dependence of spike locking on the

amplitude of the LFP (Denker et al. 2007), we form 2 exclusive

sets of spikes, termed ‘‘Hi’’ and ‘‘’Lo,’’ based on whether a spike

occurs at an amplitude above or below a certain value,

respectively (Fig. 7A). We account for the session-by-session

variability of the LFP amplitude by defining the threshold h in

terms of the fraction of spikes an individual neuron contributes

to the Lo category (Fig. 7B).

For threshold ranges between 0.2 and 0.8, we observe that

the percentage of significantly locked neurons (Rayleigh test,

a = 0.05) as determined by the Hi set of spikes decays only

slightly from 41% to 36% (Fig. 7C). This percentage is in the

same range as the percentage of locked neurons considering all

spikes (dashed line; cf. also Fig. 4B). We emphasize that even

for high thresholds, where only few spikes are included, the

strong locking of Hi spikes explains the percentage of locked

neurons found using all spikes. In contrast, when considering

spikes of the Lo set, the percentage of locked neurons starts at

9% and increases approximately linearly with h, as spikes at

increasingly higher amplitudes are included in the Lo set. This

result shows that the degree of LFP phase locking exhibited by

a neuron is to a large extend determined by spikes that occur at

high LFP amplitudes.

Combined Effects of Synchrony and LFP Amplitude

Combination of the previous results raises the question of

whether coincidences, and in particular UEs, predominantly

occur at high LFP amplitudes. Figure 6A (density plots) shows

the number of spikes as a function of both LFP phase and

amplitude for each of the 3 sets ISO, CC, and UE. Here, CC and

UE occur at similar amplitudes as ISO, even though the

amplitude distributions (left) reveal a small shift toward high

amplitudes for CC and UE (cf., h = 50% lines in 2D histograms).

The phase distributions (top graphs), however, clearly show

a progressive increase in the degree of phase locking from ISO

to CC to UE. Finally, observing that UEs exhibit similar

amplitudes to CC, we can ask the reverse question of whether

at high amplitudes ISO, CC, and UE still exhibit the systematic

increase in locking. Figure 6B shows that for the 50% of the

spikes occurring at the largest LFP amplitudes (i.e., Hi spikes,

h = 50%, above black dashed line in Fig. 6A), the effect of

improved phase locking for the UE group is strongly amplified.

In contrast, the ISO and CC phase distributions do not change.

Despite the differences in the degree of phase locking

described so far, it is instructive to observe that the average

phase exhibited by individual neurons shows a strong prefer-

ence for the falling phase of the LFP independent of the LFP

amplitude and of whether ISO, CC, or UE spikes are considered

(Supplementary Fig. S6).

To better quantify the interplay of LFP amplitude and spike

synchrony in affecting the phase locking of spikes to the LFP,

we calculate the increase in locking from ISO to CC separately

for spikes at all amplitudes and Hi spikes by means of the root-

mean-square (RMS) value between the corresponding phase-

locking distributions (Fig. 8A, left). To compensate for the

different number of samples in the 4 sets of spikes entering the

analysis (ISO and CC, all amplitudes and Hi), we show the

distribution of RMS values obtained from 1000 resamples using

a common number of samples for each of the respective phase-

locking distributions. The RMS distributions obtained for all

amplitude spikes and Hi spikes are nearly identical. In contrast,

the increase in locking from CC to UE spikes (Fig. 8A, right) is

markedly stronger for Hi spikes than for all amplitude spikes.

To better resolve the dependence of modulation of phase

locking with amplitude, we compute the RMS difference

between the CC phase distribution and the squared ISO phase

distribution (ISO2) in an amplitude-dependent manner (Fig. 8B,

Figure 7. Influence of oscillation magnitude on locking of spikes to LFP. (A) Spikes in
periods with an LFP amplitude (i.e., envelope of LFP, light gray curve) above a certain
threshold (dashed line) are termed the ‘‘Hi’’ set (light gray ticks) and the remainder
the ‘‘Lo’’ set (dark gray ticks). (B) Separation of spikes into Hi and Lo for the same
example neuron as in Figures 2, 4, and 5. Spikes are rank ordered according to LFP
amplitude; the histogram on the right shows the distribution of the respective
amplitudes (normalized to maximum). The threshold h is defined as the fraction of
spikes labeled as Lo. The dark gray arrow illustrates a threshold choice of h 5 0.5
and corresponds to a relative amplitude specific to each neuron (light gray arrow).
Spikes at extremely low LFP amplitudes (lowest 10%) do not enter the analysis. (C)
Percentage of neurons with significant (Rayleigh test, a 5 0.05) phase locking of
their Hi spikes (light gray curve) and of their Lo spikes (dark gray curve) as a function
of the amplitude threshold h. Even for large h (0.8), the set of Hi spikes shows
significant locking in 36% of the neurons, although it contains only few spikes. The
dashed line shows as a reference the percentage (39%) of locked neurons computed
if spikes are not separated into Hi and Lo (i.e., all spikes).
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left). Here, each data point represents the mean RMS distance

obtained from 1000 resamples of the 2 contributing phase

distributions sampled from spikes that occur in a confined

range of LFP amplitude values (horizontal axis). The ISO2

distribution is an approximation of the predictor WPHASE and is

obtained by squaring bin by bin the ISO phase distribution and

normalizing the result to unit area. The observed difference

between ISO2 and CC is not dependent on the LFP amplitude.

However, the difference between the UE and the ISO2 phase-

locking distribution (Fig. 8B, right) depends strongly on the

amplitude and grows rapidly for large amplitudes (same

number of data points used for resampling as in the left graph).

These findings show that those coincidences in UE periods that

occur during strong LFP oscillations have a disproportionate

influence on UE locking, whereas the amount of increase of CC

locking is little affected by the amplitude.

Discussion

In this report, we explicitly reveal how the LFP relates to

precise excess spike synchrony in motor cortex. Spikes, which

are emitted at the same time as spikes of other neurons, exhibit

a better phase locking to the dominant beta-range LFP

oscillation than those which occur in isolation. However, in

time periods where the number of spike coincidences is at

chance level, the quality of the locking is explained by

a predictor assuming independence of the spikes constituting

a coincidence. In contrast, the pronounced locking to the LFP

in time periods with a significant excess of coincident spikes

(UEs) cannot be explained in this way. The probability of the

occurrence of coincident spikes is only weakly influenced by

changes in the magnitude of the LFP signal. Nonetheless, spikes

that coincide with episodes of high LFP amplitudes are on

average better locked to the LFP than those at low amplitudes.

A separate analysis of these 2 factors, spike synchrony and LFP

magnitude, demonstrates that the enhancement in locking of

UE spikes as compared with ISO spikes is dependent on the

LFP amplitude, whereas the improvement for CCs is largely

independent of the amplitude. What conclusions about

network dynamics and possible coding mechanisms do these

results imply, in particular in the light of the distinctive role of

UEs?

Features of the LFP signal correlate with external stimuli

(O’Leary and Hatsopoulos 2006), behavioral aspects (Scher-

berger et al. 2005), internal processes (Murthy and Fetz 1996a;

Roux et al. 2006: Poulet and Petersen 2008), memory (Pesaran

et al. 2002; Lee et al. 2005), and attentional modulation (Fries

et al. 2001; Taylor et al. 2005). In particular, several authors

have elucidated the functional role of LFP oscillations in motor

cortex in the beta and lower gamma range. These oscillations

are only loosely correlated across trials, that is, their phase is

not time locked to any external (e.g., stimulus) or internal (e.g.,

movement onset) event. Oscillatory beta-range LFP activity in

motor cortex is a unique feature of experimental protocols

including a waiting period before movement execution and

has been described in relation to attentional processes,

movement preparation, and motor maintenance (Murthy and

Fetz 1992, 1996a; Sanes and Donoghue 1993; Baker et al. 1997;

Donoghue et al. 1998; O’Leary and Hatsopoulos 2006). The

oscillations typically terminate at movement onset and may

well represent a top-down modulatory input from higher

sensory areas (e.g., Lebedev and Wise 2000). In addition, there

exists a large body of knowledge about delay-related spiking

activity in motor cortical areas and its functional implication in

sensorimotor integration and movement preparation (for

a review, see Riehle 2005). In particular, the occurrence of

transient precise spike synchrony observed among individual

neurons (such as detected by the UE method) is shown to

relate to behavioral aspects of the task (Riehle et al. 1997;

Kilavik et al. 2009) but does not depend on the mean firing

rate of the participating neurons (Grammont and Riehle 2003).

Reports in various brain areas demonstrate that single neurons

selectively participate in oscillatory periods of the LFP by

phase locking (Eckhorn and Obermueller 1993; Baker et al.

1997; Destexhe et al. 1999; Fries et al. 2001; Lee et al. 2005),

where occasionally the autocorrelations of the spike trains

themselves become oscillatory (Murthy and Fetz 1996b;

Lebedev and Wise 2000). Yet only a few studies relate LFP

oscillations to the correlation structure of the spiking activity

of multiple neurons (e.g., Murthy and Fetz 1996b; Nir et al.

2007; Womelsdorf et al. 2007), most of which concentrate on

interaction on the slower time scale of rates. However, the

apparent complexity of the simultaneous coding of neuronal

activity for different aspects of motor cortical processing

challenges the idea that LFP oscillations and the emergence of

transient UEs may represent 2 reflections of only one single

functional process performing the planning and preparation of

movements.
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Figure 8. Phase locking of UEs is more strongly affected by amplitude than that of
CCs. (A) Left graph: RMS differences between the CC and the ISO phase-locking
distributions (25 bins) calculated for 1000 random resamples with a fixed sample size
to ensure identical variability (light cyan). The distribution shown in dark cyan shows
the 1000 RMS values exclusively considering spikes resampled from the Hi set. Right
graph: Comparison of UE and CC phase distributions (fewer spikes are used for
resampling as compared with the left graph). (B) Left graph: Mean RMS between the
CC and the squared ISO distributions (ISO2, approximate predictor WPHASE, see
Materials and Methods) as a function of LFP amplitude (z-score). Each data point is
the mean RMS obtained from 1000 comparisons of resampled ISO and CC phase
distributions with a fixed sample size n 5 69. Right graph: Comparison of the UE and
ISO2 phase distributions (same n as in the left graph). All graphs consider the same
selection of neuron pairs as in Figure 6.
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We interpret the observed excess synchrony as the result of

the specific and reliable coactivation of the neurons as part of

an assembly. An alternate hypothesis states that strong non-

stationarities of the firing rates are the cause for false-positive

detections of UE periods, which could explain the observed

phase locking of UE if rates were comodulated with the LFP

oscillation cycles. To investigate this possibility, we reanalyzed

the data by replacing the parametric distribution implementing

the null hypothesis in the original UE analysis by a distribution

derived from surrogates. The employed surrogate method

(spike train dithering, see Grün 2009) closely preserves the

rate profiles and the interspike interval distributions and leads

to a conservative (Louis et al. 2010) classification of excess

synchronous events. Despite the decreased sensitivity of the

surrogate-based method to detect excess synchrony, our

analysis confirms the phase distributions for ISO, CC, and UE

which are the essential finding of our study. Thus, they are not

explained as a consequence of rate covariations but express

excess synchrony as a reflection of coordinated network

activity.

Our study shows that the selection of UE periods leads to an

increased degree of locking of coincident spikes. A valid

concern is that this selection process may influence other

features of spike trains or the LFP, such that the increased

locking of UE coincidences can be attributed to a more basic

cause. An extensive analysis of periods classified as CC or UE

does not reveal any evidence for differences in either of the 2

recorded signals: LFPs show a similar frequency and amplitude

content in the 2 selections, and the rate, variability, and

regularity of spike trains remains unchanged (Supplementary

Fig. S2). In particular, we verified that the general degree of

locking between spikes and LFP is not dependent on the

separation into CC and UE sections by calculating the predictor

for CCs separately from those ISO spikes that occur in CC and

those in UE periods. These predictors likewise explain the

locking of CC coincidences but fail to explain the locking of

coincidences in UE periods (not shown).

It is therefore reasonable to assume that synchrony on

a spike-by-spike level, and population oscillations expressed by

the LFP both originate from network processes that involve the

pulsed synchronous coactivation of specific subsets of neurons.

One may argue that in this case, we should observe an even

more distinct relationship between the 2 measures as seen in

our data. However, our techniques to detect synchrony related

to the activation of neuronal assemblies are limited. The UE

analysis assesses indirectly which coincidences are more likely

to originate from such activations based on the comparison of

the time-resolved rate of observed and expected coincidences.

Nevertheless, the set of UEs may be composed of coincidences

resulting from assembly activation and a considerable fraction

of CCs (see estimate below). Therefore, although the differ-

ence in locking precision between significant (UE) and

nonsignificant (CC) time segments seems small at first glance,

in this light it is even more surprising that we are able to detect

an enhanced phase locking for the UEs. The argument implies

that the subset of coincidences caused by assembly activation

has a tight locking to the LFP. The conclusion that transient

contributions to the LFP rather than its overall wave form are

related to the generation of spike synchrony is supported by

previous work demonstrating that coherent membrane poten-

tial oscillations do not generate synchronized output spikes,

and that brief, simultaneous synaptic inputs to a cell are the

likely drive for action potential generation (Poulet and Petersen

2008).

The consistency of the phase at which UE spike locking is

increased suggests that UEs prefer a limited range of phases of

the LFP oscillation, a signal which is rather homogeneous

across the motor cortex (Murthy and Fetz 1996a; Rubino et al.

2006). Although within this limited range of phases our analysis

is probably not sensitive enough to resolve any differences of

the preferred phase between different UE periods, the former

finding renders unlikely a model of processing where

assemblies can be simultaneously active and still distinguished

(multiplexed) by locking to different phases of the complete

oscillatory cycle (e.g., Womelsdorf et al. 2007). In such a model,

we would observe shifts of the preferred phase as different

assemblies become active, whereas in our data, we observe

a locking increase at a specific fixed phase. Our results rather

suggest that neurons participate in different assemblies at

different times (see also Riehle et al. 1997) but predominantly

at the same phase of the LFP (cf., Singer 1999). This view is

consistent within the framework of excitatory--inhibitory

loops (Berens et al. 2008), which have been suggested as

a mechanism underlying oscillations (Klausberger et al. 2003;

Hasenstaub et al. 2005; Cardin et al. 2009) and could temporally

gate the activity within the network (Buzsáki and Draguhn

2004). Using the UE method we analyze expressions of

assembly activity in 20--30% of the neurons (cf. Supplementary

Fig. S4), which is in rough agreement with early estimates of

the likelihood to observe significant cross-correlations (e.g.,

Murthy and Fetz 1996b). However, even in this subset of

neurons, we can attribute only a fraction of spikes to assembly

activation. One hypothesis is that the motor cortex employs

parallel coding schemes, where assembly-related synchronous

activity occurring at specific time points defined by the LFP

phase can be dissociated from activity less localized in time, for

example, realizing a rate code.

To better understand the implications for the organization of

cortical processing, we consider a conceptual model where

spikes of a neuronal assembly are locked to the LFP (Fig. 9)

based on 1) the assumption that UEs reflect assembly activity

(Riehle et al. 1997) and 2) our observation that UEs have the

strongest locking to the LFP. A potential mechanism is that

assembly spikes originate from synchronous synaptic input to

local groups of neurons. The simplest explanation for the

finding that ISO and CC also exhibit locking, albeit weaker than

UE, is that the spikes of a neuron are composed of a mixture of

nonassembly (unlocked) and assembly spikes (locked). The

latter are not identified as UE due to the lack of corresponding

partner neurons in the recording (Fig. 9A). Consequently, the

phase histogram of the ISO spikes is a superposition of the

histograms of nonassembly and assembly spikes, with a factor c
determining their ratio (Fig. 9B, top row). CCs are composed of

spikes from independent sources (Fig. 9B, middle row) but the

combinatorics of nonassembly and assembly spikes enhances

the locking. Finally, periods identified as UE contain excess

coincidences (Fig. 9B, bottom row) resulting from the

activation of an assembly in which both neurons participate.

Their relative contribution b leads to an enhanced locking of

UE compared with CC. The structure of the model allows us to

derive estimates of the parameters c and b: By comparing the

experimental phase distributions of CC and UE, we

determine the minimal b consistent with the data. As the

minimal b requires maximal locking of assembly spikes, this
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simultaneously yields a minimal estimate of c (compare Fig. 9B;

for theoretical framework, see Denker et al. 2010). We find that

outside of UE periods c = 13% of the spikes of a neuron

participate in an assembly and b = 24% of the coincidences in

UE periods result from the joint participation in an assembly.

Even though this is clearly a highly simplified model, it provides

a quantitative bridge between functionally relevant spike

synchrony (Riehle et al. 1997; Singer 1999; Maldonado et al.

2008) and the LFP as a robust mesoscopic measure of brain

activity (Mehring et al. 2003).

Our results show that neuronal mass signals like the LFP

convey specific information about network processes. We

directly demonstrate in the brain of a behaving animal that the

LFP is related to excess spike synchronization. Nevertheless,

there is a substantial fraction of spikes without an apparent

relationship to the LFP. Thus, the 2 measures are observables of

the same neuronal network but do not necessarily carry the

same information. Taken together, we interpret our results as

evidence that LFP (beta) oscillations, especially at high

amplitudes, are reflections of the activation of neuronal

assemblies which propagate a synchronous volley through

the network. Complementing recent advances in tackling the

experimental (Nicolelis et al. 1997; Euston et al. 2007; Fujisawa

et al. 2008) and theoretical (Brown et al. 2004; Grün 2009)

difficulties in finding signatures of coordinated activity in spike

data alone, these findings indicate how the LFP may provide an

additional source of information to characterize the neuronal

population dynamics. With massively parallel recordings

becoming available we may be able to disambiguate the

superposition of multiple neuronal assemblies. This gives us

confidence that by improving our understanding of the various

components of the LFP signal we will eventually be able to use

the LFP as an antenna delivering news from several commu-

nicating network stations.

Supplementary Material

Supplementary material can be found at: http://www.cercor.

oxfordjournals.org/
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