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Searching for metastable particles 
using graph computing
Ashutosh V. Kotwal

The reconstruction of charged particle trajectories at the Large Hadron Collider and future colliders 
relies on energy depositions in sensors placed at distances ranging from a centimeter to a meter 
from the colliding beams. We propose a method of detecting charged particles that decay invisibly 
after traversing a short distance of about 25 cm inside the experimental apparatus. One of the 
decay products may constitute the dark matter known to be 84% of all matter at galactic and 
cosmological distance scales. Our method uses graph computing to cluster spacepoints recorded by 
two-dimensional silicon pixel sensors into mathematically-defined patterns. The algorithm may be 
implemented on silicon-based integrated circuits using field-programmable gate array technology to 
augment or replace traditional computing platforms.

The discovery of the Higgs  boson1–4 at the Large Hadron Collider (LHC)5,6 has confirmed one of the most impor-
tant building blocks in the relativistic quantum field theory of fundamental particles and their interactions—the 
standard model (SM) of particle  physics7–9. However, despite its enormous success in describing and predicting 
a vast number of phenomena, the SM is far from being a complete theory. The gravitational interaction of dark 
matter (DM) on the galactic and cosmological distance  scales10–12 is crucial for large-scale structure formation. 
Cosmological data are consistent with DM comprising about 84% of the matter in the  universe13. Dwarf galax-
ies comprised mostly of DM have recently been  discovered14. However, DM cannot be accounted for in the SM, 
which reveals one of the sources of incompleteness of the SM.

It is plausible that DM is comprised of one or more new species of  particles15. The LHC may copiously produce 
metastable charged partners of the DM  particles16,17 if they form a nearly-degenerate symmetry group multiplet 
under the electroweak  interaction18–22. In this case the decay of the charged progenitor to the invisible DM will 
produce negligible associated energy, which makes the identification of these metastable charged particles in 
a short time interval commensurate with the collision rate a challenging task. Research and development is 
ongoing in this  area23–40. Triggering on charged particles is currently based on their energy deposition in the 
calorimeters surrounding the tracking sensors, or on their ability to penetrate the calorimeters and shielding 
and reach the outermost sensors. The former case includes high-momentum electrons and positrons which 
have a sufficiently low mass to create in the calorimeter an electromagnetic cascade of radiated photons and 
their subsequent conversion to electron–positron pairs. It also includes pions, kaons and protons whose strong 
interactions with atomic nuclei create a hadronic cascade in the calorimeter. The latter case includes muons 
which are too massive to create an electromagnetic cascade and do not interact strongly with nuclei to produce 
a hadronic cascade. Thus, muons deposit a small amount of ionization energy in the calorimeters and penetrate 
the shielding to trigger the outermost muon sensors. In some models of new physics, a long-lived particle may 
induce a hadronic cascade that is not fully contained in the calorimeter, and the particles that leak out of the 
back of the calorimeter can trigger the muon sensors.

In this paper we describe a triggering scheme for “disappearing tracks”, which are sufficiently massive to 
interact like muons but not sufficiently long-lived to reach the muon sensors. The length of the charged-particle 
trajectory before its decay is distributed exponentially with a mean value of βγ cτ , where β ≡ v/c , v(c) is the 
particle (light) speed, γ is the Lorentz time-dilation factor γ ≡ (1− β2)−

1
2 , and τ is the particle’s proper lifetime. 

The probability for a metastable particle to decay beyond 25 cm, 1 m and 6 m of flight distance is shown in Fig. 1. 
These distances correspond, respectively, to the outer radius of silicon pixel sensors, the outer radius of silicon 
strip sensors, and the typical radius of the muon sensors, in the  ATLAS5 and  CMS6 experiments at the LHC. We 
note the substantial increase in the parameter phase space over which triggering is enabled by utilizing solely 
the silicon tracking sensors.
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Physics motivation
As an example, a theoretical model that motivates our method is based on supersymmetric partners of the 
photon, W±,Z and Higgs bosons, the former being the mediators of the electroweak interaction. As discussed 
in Ref.19–21, the supersymmetric partners (“winos”) of the W± bosons may be almost degenerate in mass with 
the lightest supersymmetric particle (LSP). In this scenario the metastable wino ( cτ ∼ 6 cm independent of 
mass) decays to a charged pion of very low energy and the stable, neutral LSP which is a dark-matter candidate. 
Figure 1 shows that, for the same triggering probability, the momentum p of a wino of mass m can be a factor of 
≈ 25 smaller if the wino is triggered using the silicon pixel sensors rather than the muon sensors. A wino with 
m = 100 GeV, p = 500 GeV and cτ ∼ 6 cm would have a trigger efficiency of 50% with the pixel sensor-based 
track trigger that we demonstrate in this paper. To achieve the same efficiency, p > 12 TeV would be required 
by the muon trigger, for which the production rate is vanishing. This example illustrates the benefit of using 
our method to devise a trigger on charged particles using only the tracking sensors at small radius, since the 
production rate at the smaller momentum will be orders of magnitude larger.

We quantify the gain in sensitivity by integrating the trigger efficiencies over the momentum spectrum of 
massive charged particles produced at the LHC. Pair production of weakly-interacting charged particles, denoted 
generically by χ± , is initiated by quark–antiquark annihilation and mediated by s-channel virtual-photon and 
Z-boson exchange in the Drell-Yan process qq̄ → γ ∗/Z∗ → χ+χ− . The production rate depends only on the 
mass of the χ particle and its weak charge and/or hypercharge which determines its coupling to the Z-boson; 
the kinematics are fairly model-independent and shown in Fig. 2. In particular, the product of the time-dilation 
factor γ and the transverse velocity β sin θ , which determines the relevant path-length before decay, has a dis-
tribution which is approximately independent of the particle mass mχ . Small values of β are phase-space sup-
pressed while large values of γ are suppressed by the virtuality of the mediator and the softness of the quark and 
antiquark distributions.

Integrating the trigger efficiencies over the respective spectrum of the boost and path-length factor for each 
mχ yields the effective trigger efficiencies as functions of the proper decay distance cτ of the χ particle. Given 
the approximate invariance of the boost spectrum, the effective trigger efficiencies are fairly independent of mχ , 
as shown in Fig. 3. Since the typical value of βγ is O(1), the differential efficiency gain with respect to a muon 
trigger is visible in the range 10 cm < cτ < 10 m. From the perspective of event rates from new physics, it is also 
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Figure 1.  (top left) The probability of a metastable particle to traverse the silicon pixel sensors ( rmax = 25 cm), 
silicon strip sensors ( rmax = 1 m), and the muon sensors ( rtypical = 6 m), before decaying. (top right) The 
incremental gain in triggering efficiency by deploying our method on the silicon tracking sensors, given existing 
muon sensor triggers. The incremental gain is defined as the difference between the pixel or strip sensor curve 
and the muon sensor curve in the top-left figure. Note that the muon sensors are located at radii between 4.5 m 
and 7 m (10 m) in CMS (ATLAS). (bottom) The incremental gain in triggering efficiency by using the silicon 
strip (left) and pixel (right) sensors, in the phase space of βγ (= p/m) and cτ . The probability in each bin is 
proportional to the box area, on a scale of 0–100%.
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interesting to consider the ratio of the silicon-trigger efficiency to the muon-trigger efficiency. This ratio is large 
for cτ ∼ 1 cm even though all efficiencies are small. Thus, depending on the χ-production cross section and 
the integrated luminosity, the triggered event rate at these small values of cτ may be raised above the discovery 
threshold by a silicon-based track trigger. To illustrate, we consider the pair-production of supersymmetric part-
ners of leptons (“sleptons”) and winos for 

√
s = 13 TeV at the LHC. In the mass range 100 < mχ < 1000 GeV, 

the cross section ranges from 366 fb to 15 ab (11.6 pb to 622 ab) for slepton (wino) pair  production41–49. Based 
on the effective trigger efficiencies, the number of slepton events observable for an integrated luminosity of 
3 ab−1 at the high-luminosity LHC (HL-LHC) is shown as a function of cτ in Fig. 3. A silicon pixel-based trig-
ger enables a substantial increase in event rate down to low values of cτ . The discovery reach in cτ for a range 
of slepton and wino masses is summarized in Fig. 4, for a discovery threshold defined as the observation of 200 
or 1000 signal events. The theoretically motivated value of cτ ∼ 6 cm for the nearly-degenerate wino’s proper 
decay  distance19–21 is rendered discoverable for wino mass values beyond 1 TeV by a pixel-based track trigger. 
Another model prediction is nearly-degenerate “higgsinos”, supersymmetric partners of Higgs bosons, with a 
shorter proper lifetime of 7–14  mm20,22 for the charged higgsino and the lightest higgsino being the neutral and 
stable DM particle. Fig. 4 illustrates the physics reach for the charged higgsino with the pixel-based track trigger.

In the absence of a track trigger, the initial-state QCD radiation (ISR) accompanying χ-pair production can 
provide a trigger, as demonstrated  in52–54. The disadvantage of this strategy is a substantial loss of acceptance, 
since the total transverse momentum qT of the ISR is required to be  large52–54 and the qT spectrum is soft. We use 
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Figure 2.  (Left) The distribution of transverse momentum pT of charged particles χ± pair-produced at the 
LHC via the Drell-Yan process, calculated using the pythia 8.219 event  generator50 and the nnpdf3.1 set of 
parton distribution  functions51. The approximate scaling property of this distribution is shown by plotting 
pT/mχ , where mχ is the particle mass. (right) The corresponding distributions of the quantity βγ sin θ , which 
takes into account both the Lorentz-boost and the path-length factors relevant for the trigger efficiency with 
cylindrical detectors. The distributions vary little over the wide range 100 < mχ < 900 GeV. The typical boost 
for lighter particles is slightly larger that the boost for heavier particles.
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Figure 3.  (Left) The effective trigger efficiencies (averaged over the boost spectrum) as functions of the proper 
decay distance cτ for a range of masses 100 < mχ < 1000 GeV, showing the small dependence on mχ . The 
difference between the spectrum-convolved efficiency of a pixel- or strip-based trigger, and the same for a 
muon-based trigger, is shown. The efficiency gain curves are shifted to lower values of cτ for lower values of mχ . 
(right) Based on the effective trigger efficiencies, the number of events observable for an integrated luminosity 
of 3 ab−1 at the HL-LHC is shown as a function of cτ for pair production of supersymmetric partners of leptons. 
For each trigger system, the four curves (from left to right) correspond to supersymmetric lepton masses of 100, 
400, 700 and 1000 GeV respectively.
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the dyqt  program61,62 to estimate the efficiency of the minimum-qT requirement. The dyqt program performs 
the perturbative QCD calculation of Drell-Yan production up to O(α2

s ) at high values of qT , where αs is the QCD 
coupling, and resums the logarithmically-enhanced O[αn

s ln
m(q2T/m

2
χχ )] QCD contributions at small values of 

qT up to next-to-next-leading logarithmic terms. The resulting efficiency is shown in Fig. 5, and ranges from 
0.1% or less for mχχ < 100 GeV to about 10% at high χ-pair invariant mass. Since the observation of meta-
stable charged particles requires their passage through the tracking detectors, the minimum-qT requirement’s 
efficiency factors directly into the observable rate. The resulting reduced rate and the loss of discovery potential 
is shown in Fig. 5, providing strong motivation for a pixel-based track trigger. Compared to the ISR trigger, the 
track trigger increases the observable signal rate by a factor of 10–1000, which, at the minimum, is equivalent to 
the increase in integrated luminosity provided by the entire HL-LHC run. A comparison of Figs. 4 and 5 shows 
that a track trigger can achieve a given signal yield at a factor of 2–3 lower lifetime over a broad range of masses, 
and can increase the mass reach for a motivated range of lifetimes. The example of the nearly-degenerate winos 
illustrates the gain at high mass. The increase in sensitivity at low masses is also visible when considering the 
example of the shorter-lived higgsino.

The chosen discovery thresholds for signal yield are illustrative, motivated by the disappearing-track analysis 
published by the CMS  Collaboration54. Using 101 fb−1 of integrated luminosity and the ISR trigger strategy, the 
analysis found the data to be consistent with the estimated background of 48± 9 events. The backgrounds are 
comprised of misreconstructed high-pT leptons from electroweak processes and spurious tracks from largely 
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Figure 4.  (Left) The discovery reach in cτ for metastable supersymmetric leptons of mass mχ for an integrated 
luminosity of 3 ab−1 at the HL-LHC. The values of cτ above the curves are in the discoverable range, defined 
as the observation of 200 (1000) signal events for the middle (upper) curve with a given trigger system. For 
the muon- and silicon strip-based triggers, an additional (lower) curve corresponding to 10 signal events is 
also shown. (right) The corresponding discovery reach for metastable winos and higgsinos. The theoretically 
motivated value of cτ ∼ 6 cm for the nearly-degenerate wino’s proper decay  distance19–21 is indicated by the 
dashed horizontal line. It is clear that this illustrative model is rendered discoverable for wino mass values 
beyond 1 TeV by a pixel-based track trigger. The theoretically motivated value of cτ ∼ 1 cm for the nearly-
degenerate higgsino’s proper decay  distance20,22 is indicated by the dotted horizontal line. The short-lived 
higgsino’s discovery in a motivated range of masses is enabled by the track trigger.
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Figure 5.  (Left) The efficiency of requiring a minimum χχ-system transverse momentum qT , imparted by 
initial-state QCD radiation (ISR). The efficiency is estimated using the dyqt  program61,62 for 

√
s = 13 TeV 

at the LHC and is shown as a function of the system invariant mass. (right) The reduced discovery reach for 
metastable winos and higgsinos, after folding in the efficiency of the minimum qT requirement, to be compared 
to Fig. 4, also for an integrated luminosity of 3 ab−1 at the high-luminosity LHC.
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random hit combinations. It is shown that these background processes are insensitive to event topology features 
such as the ISR trigger activity. Since the LHC experiments are being  upgraded55–58 for the HL-LHC to maintain, 
and likely improve upon, the current detector performance, a conservative estimate of the background, scaled 
to an integrated luminosity of 3 ab−1 is 1,500 events with the ISR-trigger strategy, requiring the observation of 
200 signal events for a discovery of 5σ statistical significance.

As a track trigger has never been deployed at the ATLAS or CMS experiments, background estimates without 
the ISR-trigger requirements have not been published since such an analysis has not been possible. In the absence 
of this information, we perform an estimation based on the dyqt calculation mentioned above. Since the CMS 
 analysis54 required at least one jet with pT > 110 GeV, we use dyqt to estimate the fraction of electroweak-boson 
production events satisfying this requirement. This fraction of 4% implies that a track trigger would experience a 
25× larger prompt-lepton background than the ISR trigger. Furthermore, it is shown in the CMS  analysis54 that 
the spurious-track background is approximately equal to the prompt-lepton background for tracks with five hits, 
which is guaranteed by our proposed method. Thus, the total background estimate for the track trigger is 38,000 
events, requiring the observation of 1,000 signal events for a discovery of 5σ statistical significance. The availabil-
ity of such high statistics will enable improvements in analysis and background-reduction techniques, and better 
control of systematic uncertainties, that will no doubt be needed to exploit the gain in statistical power. Based on 
these estimates, we have chosen signal event yields of 200 and 1000 events as illustrative discovery thresholds.

We emphasize that an analysis based solely on event counting, on which the above estimates are based, is 
likely to grossly underestimate the ultimate sensitivity that can be achieved with the track trigger. By providing 
10–100× more acceptance than the ISR trigger, the track trigger will enable a differential analysis, exploiting the 
difference between signal and background distributions. For example, the track pT distribution for the prompt-
lepton background is expected to fall rapidly with increasing pT , while the signal yield peaks near pT ∼ mχ . 
Spurious-track backgrounds are expected to increase with pseudorapidity, while the signal yield peaks at low 
pseudorapidity. Thus, the search for a high-mass signal can be reoptimized with much lower background than the 
estimates presented above based on an inclusive analysis. With lower backgrounds, the large acceptance increase 
will yield correspondingly larger physics sensitivity gains. As a simple rule of thumb, an acceptance increase of a 
factor of g increases the signal significance by a factor of √g  for a background-dominated analysis, but increases 
the significance by a factor of g when the background can be made negligible while maintaining an observable 
signal yield. Such optimization is enabled by a large acceptance trigger such as the proposed track trigger.

An estimate of the background for the muon-based trigger is provided by the ATLAS Collaboration’s search 
for heavy charged long-lived particles using 36 fb−1 of integrated  luminosity59. Searching for pair-produced winos 
of mass above 200 GeV, a background of 230 events was estimated, after suppressing prompt muons using time-
of-flight information from the muon detectors. Simply scaling this background estimate to 3 ab−1 implies that 
a 5σ statistical significance would require the observation of 700 signal events. Allowing for a larger or smaller 
background with the upgraded detectors and higher pileup conditions, our illustrative discovery thresholds of 200 
and 1000 signal events are also appropriate for a muon-triggered search. Again, we emphasize that backgrounds 
can be strongly suppressed by applying high-pT requirements, as demonstrated in this ATLAS  analysis59, where 
the estimated background reduces by a factor of 2–3 for a 100 GeV increase in the wino mass. This justifies our 
statement that at sufficiently high mass, the search is not background-limited but is rate-limited, and benefits 
more strongly from the substantially higher acceptance of the proposed track trigger. A preliminary ATLAS 
analysis released  recently60 also demonstrates that disappearing-track backgrounds are expected to reduce by 
one-two orders of magnitude as the track pT increases from 100 to 1000 GeV.

In any case, the substantial extension of the physics reach to lower lifetimes is clearly visible in Fig. 4, regard-
less of the background level in the muon trigger. Even under the aggressive assumption that backgrounds could 
be very strongly suppressed to O (1 event) for the muon trigger in the future, and a discovery could be made with 
as few as 10 signal events observed, Fig. 4 shows that the pixel trigger always has substantially higher sensitiv-
ity than the muon trigger, in the proper decay-distance range of a few mm to a few tens of cm for all wino and 
slepton masses considered.

The same conclusion can be drawn for the silicon strip-based trigger. Since such a trigger has never been 
deployed, an analysis studying the expected backgrounds for this trigger is not published. The background from 
spurious tracks has been shown to decrease, while the background from leptons has been shown to increase, 
for the longer strip tracks compared to the shorter pixel tracks in the CMS  analysis54. Nevertheless, Fig. 4 also 
shows the discovery potential for a strip-based trigger for an aggressive assumption of a very low background of 
O (1 event) and a signal yield of 10 events. Even in this unrealistic scenario, the pixel-based trigger extends the 
physics reach to a 2× lower lifetime compared to the strip-based trigger.

A final word on the muon trigger - as the particle has already reached the muon detectors and no subsequent 
measurements along the trajectory exist, a lifetime measurement is not possible since the reduction in rate with 
increasing decay distance cannot be measured. In comparison, the pixel-based track trigger provides data on 
the number of outer silicon-strip sensors traversed, and the subset of candidates reaching the muon detectors, 
before decaying. Thus, the pixel-based trigger enables the measurement of lifetime, which is of great importance.

In summary, a silicon pixel-based track trigger clearly offers an extended physics reach for promptly-produced 
metastable particles, in comparison to silicon strip-based and muon-based triggers. In comparison to ISR trig-
gers, the pixel-based trigger has substantially larger signal acceptance and a larger background as a consequence. 
Comparing Figs. 4 and 5, the short-lived higgsino sensitivity increases from 200 GeV with the ISR trigger to 
300 GeV with the pixel trigger, taking into account the increased background rate. The longer-lived wino sensitiv-
ity increases from 900 GeV to 1 TeV, similarly taking into account the background rate increase. In both cases, 
taking the rapidly-falling pT spectrum of the background and the signal-to-background differences of pseudora-
pidity distributions into account will further increase the realizable gains, as long as there is sufficient signal yield.
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Method
Our method can use data from the two-dimensional pixel sensors and from the one-dimensional strip sensors, 
both of which are arranged in concentric cylinders surrounding the colliding beams at the center of the LHC 
 detectors5,6. In this paper we present results based on the pixel sensors since their acceptance extends over a 
larger range of the metastable particle’s momentum and lifetime. Each cylindrical surface is covered by arrays 
of pixels with each dimension of O(100) µ m. Electric charge deposited by particles in the traversed pixels is 
recorded to provide three-dimensional spacepoints along their helical trajectories in the axial magnetic  field5,6. 
The HL-LHC will produce about 200 proton-proton collisions every 25  ns63, each collision producing about 70 
charged  particles64.

Helical trajectories are described by the azimuthal φ(r) and longitudinal z(r) coordinates, where r represents 
the cylindrical radius from the beam axis. Momentum perpendicular to the beam (z) direction, pT ∝ BR where 
B denotes the strength of the magnetic field and R is the helix radius. These helix coordinates can be calculated as

where the curvature c ≡ q/(2R) , q is the particle charge, and the constants φ0 , � and z0 specify the azimuthal 
angle, the cotangent of the polar angle and the z-position of the particle at emission, respectively. Each spacepoint 
measurement is denoted by h(r) with attributes of φ(r) and z(r) respectively.

Algorithm
The collection of spacepoints h(r) created by all charged particles is  represented65 by a matrix of spacepoints 
hi,l where l denotes the sensor layer ( l ∈ {0, 1, 2 . . .M − 1} increasing with radius for M layers) and i denotes 
the point’s ordinal number in that layer. Each spacepoint hi,l is associated with (φ, z) measurements in layer l as 
mentioned above, and is referred to as a “hit”.

Our algorithm makes use of the methods of graph computing, wherein each data point is considered a ver-
tex in a graph and is linked to adjacent vertices. Early work on graph theory was done by Leonhard Euler. An 
algorithm to find the shortest distance between nodes on a graph with positive link weights was invented by 
Edsger W. Dijkstra in  195666. We use the definitions of derivatives on a graph that are provided in Ref.67, though 
we are not training graph neural networks per Ref.67 nor are we using supervised machine learning of any kind. 
The hi,l matrix is converted into a graph by associating link weights wij,l between each hit hi,l and all possible hits 
hj,l+1 in the next outer layer, where wij,l ∝ (rl+1 − rl)

−167. Reconstruction of particle trajectories is achieved by 
eliminating all spurious links in the wij,l matrix, such that the surviving links connect the hits associated with a 
physical particle trajectory.

This graph computing problem is solved by defining the graph operator �ijk,l at each node (i, l) using the 
triplet of hits hi,l , hj,l+1 and hk,l−1 . From Eq. 1 it is straightforward to  show65 that for the high pT ( c → 0 ) parti-
cles of interest, dφ/dr = φ′ → c and d2φ/dr2 = φ′′ → rc3 , hence [φ′′ − r(φ′)3] → 0 . Similarly, Eq. 1  yields65 
dz/dr = z′ → � and d2z/dr2 = z′′ → rc2� for high-pT particles, and [z′′ − r(φ′)2z′] → 0 . The criterion for find-
ing valid trajectories is therefore the simultaneous minimization of |φ′′ − r(φ′)3| and |z′′ − r(φ′)2z′| at each point 
of the graph, which is equivalent to the minimization of the exact operator (|φ′′ − r(φ′)3| + |z′′ − r(φ′)2z′|)65.

In the high-pT limit the computation of the exact operator can be simplified to the linear graph operator 
�ijk,l = |φ′′

ijk,l | + |z′′ijk,l | (for l ∈ {1, 2 . . .M − 2} ). Our results show that, in comparison to the exact operator, this 
simplified �ijk,l operator gives excellent results when applied to the HL-LHC pixel-detector  configuration55,56 of 
five sensor layers with a radial spacing of 5 cm, while improving the computational efficiency by neglecting the 
non-linear (φ′)3 and (φ′)2z′ terms. The first derivatives are computed as the link-weighted differences of φ or z 
values at two hits connected by a link, and the second derivatives are computed at a middle layer as the respec-
tive differences of first derivatives to the next layer and the previous layer. The specific difference equations are 
available  in65 and the second derivatives can be expanded as

where the role played by the link weights is apparent. The link weights encode the radial distances between 
consecutive layers. Apart from an overall normalization factor which is irrelevant, the link weights differ from 
unity only to the extent that the radial distances between the sensor layers are not equal.

In order to optimally combine the information from the azimuthal and longitudinal views, the difference in 
the respective resolutions must be taken into account by incorporating the appropriate relative normalization 
between the two terms in the �ijk,l operator. We have incorporated this relative normalization factor, which is 
reflected in the similarity of track quality metrics between the two views as discussed below.

This method differs in important ways from other investigations of track  triggers23–40. One set of propos-
als being pursued primarily on the ATLAS experiment relies on pattern-matching using associative memories 
(AM). Our method is not based on pattern-matching and therefore does not require prior pattern generation 
and storage, which confers an immediate advantage because our method can be implemented on commercial, 
user-programmable integrated circuits (IC). In contrast, pattern-matching requires custom-designed AM  ICs23–28. 
Such custom AM ICs have only been deployed once, in the CDF experiment at the Fermi National Accelerator 
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Laboratory during the 1999–2011 data-taking period  (see68 for a review). Plans to deploy a similar pattern-
matching track trigger on the ATLAS experiment during the 2022–2024 data-taking period have been cancelled 
due to technical difficulties with the custom AM ICs and hardware. The second benefit of our method is its flex-
ibility; if the number of sensor layers is changed, reprogramming the commercial ICs is straightforward, while 
the custom AM ICs need a major redesign. Thirdly, the pattern-matching method has only been pursued for the 
large-radius silicon-strip  detector23–29. In contrast, our method can be deployed equally well on the small-radius 
(pixel) or large-radius (strip) sensors. We have demonstrated above that triggering on metastable particles in 
the highly-motivated range of sub-nanosecond lifetimes benefits enormously from a small-radius pixel-based 
trigger, which has never been investigated with the pattern-matching method. This gives our method a strong 
advantage in physics reach. The fourth and important physics benefit of our method is that it is intended to 
operate much faster than the pattern-matching method, such that it can trigger on a disappearing track with no 
requirement on any other detector. In other words, our method is amenable to a “first-level” track trigger with 
a latency less than 1µs65, which is compatible with the 4µ s upper limit set by the HL-LHC  experiments69. In 
contrast, the pattern-matching AM method has a latency of many tens of µs23, making it incompatible with the 
first-level trigger. As such, it is being pursued as a second-level trigger following a calorimeter- or muon-based 
first-level  trigger23–29, negating its efficacy as a disappearing-track trigger.

Variants of the above scheme have been  considered30,31 but they suffer from the same disadvantages com-
pared to our method. For example, the pattern-matching AM approach could be replaced with other pattern-
recognition approaches such as the Hough  transform30 or supervised learning methods such as deep  learning32–34. 
The latter can be implemented in commercial ICs, eliminating the reliance on custom AM ICs and reducing the 
technical risk. However, the physics advantages of our method remain, because these variants are still based on 
the large-radius tracker, and still rely on tracker regions of interest defined by the particle traces in the calorimeter 
or muon detectors. Furthermore, they are intended to provide second-level triggering. For these reasons, they 
do not provide a standalone first-level trigger on short-lived metastable particles, and none of the corresponding 
physics gains that our method does.

Another key aspect of our method is that it does not require a customized detector geometry. An alternate 
method being pursued primarily on the CMS  experiment29,35–40 relies strongly on track-trigger primitives sup-
plied by the detector in the form of directional stubs built from pairs of hits. Computation will be performed on 
commercial ICs. Compared to the ATLAS methods mentioned above, this stub-based method is expected to 
execute faster and enable a first-level trigger. However, its tradeoff is that these stubs require sensor layers to be 
arranged radially as closely-spaced pairs. The negative implications of this detector geometry on other aspects 
of tracker performance have been deemed undesirable by the ATLAS Collaboration, who are not pursuing 
this  option69. Our method has no such restriction and can be applied to any detector geometry, including strip 
and pixel sensors of arbitrary dimensions and radial placement. In particular, our method allows the detector 
geometry to be optimized on other experimental criteria, such as better momentum resolution and lower misi-
dentification rates, and still provide a first-level track trigger. Our second physics advantage is again that this 
stub-based method is being pursued for the large-radius tracker only, since the small-radius tracker will not have 
the pairwise radial placement required by this approach.

These comparisons with other track-trigger investigations show that our approach is the first to promise a 
standalone first-level track trigger using the small-radius silicon sensors, that can access short-lived charged 
particles (down to 10 ps lifetime) without the rate limitation of an ISR trigger.

We note that a first-level hardware trigger needs access to all of the detector information from each event, 
i.e. the detector readout bandwidth needs to be compatible with the 40 MHz beam-crossing rate at the LHC. 
While this capability has not yet been deployed by ATLAS and CMS for the silicon tracking detectors, it has 
been demonstrated by the LHCb experiment’s upgrade of its silicon-pixel vertex  detector70. One of the goals of 
this paper is to motivate the ATLAS and CMS experiments to consider a similar high-bandwidth readout for 
the HL-LHC. The motivation is provided by our silicon-based trigger that could process the data at this rate.

Detector and event model
We demonstrate the algorithm by performing an emulation in software. We generate a point cloud from the 
intersections of 200 particles traversing 5 cylindrical sensor layers spaced 5 cm apart in a 2 T magnetic field, 
over an azimuthal domain of 2π and a longitudinal length of ±1 m. This detector geometry is representative of 
the LHC detectors  ATLAS5 and  CMS6, which employ a cylindrical spectrometer with a magnetic field of 2 T 
and 3.8 T respectively.

The transverse momentum ( pT  ) spectrum in the emulation is realistically soft with a peak near 
pT ∼ 250  MeV71, as shown Fig. 6. The luminous region of the beam crossing is taken to be ±zluminous with 
zluminous = 15 cm and the z0 values are uniformly distributed in this interval. We generate 6000 “pileup” parti-
cles per event, based on the production of 7 charged particles per collision per unit of pseudorapidity ( η ), 200 
collisions per event, and a pseudorapidity coverage of |η| < 2.1 for the pixel barrel detector. The particles are 
distributed uniformly in azimuth and pseudorapidity, and we record all hits generated by them. 10% of all par-
ticles are assumed to be kaons and the rest to be pions. A fraction of these mesons, given by their time-dilated 
lifetimes, are decayed at a distance along their trajectory as determined from an exponential distribution. In these 
decays-in-flight, the daughter muon is propagated from its point of origin according to its momentum generated 
in the isotropic decay in the rest frame of the parent meson. Low-momentum particles perform multiple loops 
in the tracking detector, depositing hits in each helical loop. The number of loops executed by the particles is 
shown in Fig. 6. As a result, the number of hits deposited by a particle in the sensor layers is significantly more 
than unity, increasing from ≈ 3 on the outermost layer to ≈ 4 on the innermost layer.
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We embed high-pT signal “trigger” particles of unit charge and with pT > 10 GeV in this set of pileup hits. The 
signal pT spectrum is chosen to be uniform in p−1

T  and the η distribution is also uniform. For all particles (signal 
and pileup), the reduction of momentum due to ionization energy loss at each sensor layer is implemented, as is 
multiple Coulomb scattering which deflects the particle direction by an amount dependent on the momentum 
and the radiation lengths traversed. The radiation lengths of each sensor layer at normal incidence is taken as 
4%5. The hits are smeared uniformly by up to ±5µ m in the azimuthal direction and ±10µ m in the longitudinal 
direction. Hits closer than twice the pixel (rφ, z) dimension of (25, 50)µm55,56 are merged to emulate the passage 
of multiple particles through the same or adjacent pixels.

Algorithm emulation
The resulting hit set is parsed into two-dimensional “towers”. First, conical rings are defined by the longitudinal 
boundaries [−zluminous − w�r, zluminous + w�r] at each sensor layer’s radius r, where w� = 0.5 is a tunable road 
width. Each conical ring is further sliced into azimuthal wedges such that each wedge contains N hits. In the 
realistic implementation of this parsing scheme, fast preprocessors will be used to stream the hit collection into 
these towers, with N as a tunable parameter to optimize the tradeoff between speed and the amount of processing 
circuitry. In this study we use N = 16 as a test case.

The hits within each tower are processed by an N × 3 array of identical processing nodes which can be 
implemented in a field-programmable gate array (FPGA). Each node is associated with one hit hi,l in the middle 
layers (excluding the innermost and outermost layers) and is equipped to perform three functions; a difference 
engine, a sorting engine, and a scan engine. In our test case, an FPGA would contain 48 replicas of the circuits 
that implement these functions. A total of O(2000) FPGAs can process a full event. Since all O(105) processing 
nodes operate simultaneously, this massively parallel architecture can achieve low latency and high throughput.

The difference engine computes all first and second derivatives of the azimuthal and polar coordinates with 
respect to the layer radius. On the graph of hits, this corresponds to weighted differences where the weights 
are fixed by the detector geometry. Therefore the difference engine produces a list of N × N values of the �ijk,l 
operator, for the N values each of the j and k hit indices.

The criterion for the smoothest trajectory through any hit is the minimization of the two-dimensional � 
operator. The sort engine sorts the N × N list of �ijk,l values in increasing magnitude. Each �ijk,l value is stored 
as part of a tuple containing the associated j and k values which identify the corresponding triplet of hits.

Next, the sorted list of tuples is used by the scan engine to create a ranked list of j and k values, where the rank 
is defined as the ordinal number of first appearance in the sorted �ijk,l list. Thus, a j or k value with a large rank 
is one that never makes a smooth trajectory, while a low rank corresponds to a smoother trajectory. In each sort 
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cycle, the j and k values with large rank are dropped, which purges those links that are unlikely to form smooth 
trajectories. The number of links to be dropped at this step is a tunable parameter. For the results presented 
below, we drop half of the links that are present at the beginning of the sort cycle. In principle, a smaller drop 
fraction makes the algorithm more robust, while a larger drop fraction reduces the number of sort cycles required 
and increases the execution speed. We find that a link drop fraction of 50% provides a good tradeoff since the 
performance is robust and the total number of sort cycles is small.

The three steps above constitute a sort cycle. Each node performs the sort cycle synchronously with all other 
nodes. In the next sort cycle, the reduced set of valid links at each node is used to remake the sorted �ijk,l list 
and the ranked link list, by re-engaging the sort and scan engines. Even though the link drop fraction is 50%, the 
length of the list is reduced by more than a factor of two, because nodes at subsequent and prior radii have also 
pruned links that do not correspond to smooth trajectories. The number of sort cycles required to purge bad links 
is logarithmic in the number of initial combinatorics, which makes this algorithm efficient. Furthermore, the 
sorting granularity may be increased geometrically with each sort cycle, allowing the design of the sort engine to 
be fast and efficient in resource usage. The exponential reduction in the number of viable (k, i, j) triplets at each 
node i, and the corresponding reduction in the number of viable links (k, i) and (i, j) between hit hi,l and hits hk,l−1 
and hj,l+1 , are illustrated in Fig. 7. About 7 sort cycles are needed to converge on the smoothest trajectory through 
each hit, consistent with log2(N2) where N = 16 is the number of hits in each layer processed by one FPGA.

The sequence of sort cycles terminates when the minimum �ijk,l values at all nodes are below a threshold 
which depends on the hit resolutions in the two dimensions. The end product of the sort-cycle stage is a linked 
tree of hits where each linked list from one sensor layer to the next is a potential trigger track. A hit may be shared 
by multiple linked lists, which is allowed at this stage since multiple particles may pass through the same pixels.

We define track quality metrics in each dimension by comparing the three values of φ′′ evaluated at each of 
the three middle layers for a track candidate. The difference �φ′′ between the largest and smallest of these three 
(signed) values is a measure of the overall smoothness of the trajectory and its consistency with the azimuthal 
projection of a helix. Similarly, the difference �z′′ between the largest and smallest signed values of z′′ evaluated 
at the three middle layers is a measure of the smoothness and consistency with a helix in the longitudinal projec-
tion. Correctly-reconstructed signal particles have small values of �φ′′ and �z′′ . Occasionally, additional track 
candidates exist with larger values of these quality metrics. Appropriate thresholds on these metrics eliminate the 
spurious candidates while maintaining high efficiency for the true high-pT particles. These thresholds depend 
on the pixel dimensions and hit resolutions, with a smaller dependence on the multiple Coulomb scattering.

A second stage of pruning is performed by applying these thresholds on the track quality metrics, which 
removes spurious candidates and cuts off branches of the tree until high-quality tracks remain. The distribu-
tions of the quality metrics after this stage are shown in Fig. 8. The final consistency test of track properties is 
provided by the differences �φ′ and �z′ between the largest and the smallest of the four signed values of φ′ and 
z′ respectively. Correctly-reconstructed signal particles have small values of �φ′ and �z′ , while spurious track 
candidates tend to have large values of these consistency metrics. We study the properties of spurious tracks from 
our emulation without embedding the high-pT particle amongst the pileup hits, thus simulating bunch crossings 
of the colliding beams which produce 200 pileup collisions only. The distributions of these consistency metrics 
(Fig. 9) show that the requirements �φ′ < 0.005 and �z′ < 0.005 suppress the spurious track rate substantially, 
with negligible loss of signal efficiency.

Since the calculation of derivatives has already been performed, a well-defined curvature is obtained for a 
1-to-1 linked list by averaging the four values of the azimuthal first derivatives. A trigger decision on a high-pT 
track can be made at this stage by defining a threshold on this average curvature value, which is equivalent to p−1

T .
The algorithms presented here and in Ref.65 are both based on concepts of graph computing, but are sub-

stantially different in detail. The method of Ref.65 was simplistic and unable to process sensor data unless the 
following conditions were strictly satisfied: (i) each truth-level particle deposited a hit in each layer, (ii) proximate 
hits from different truth-level particles were never merged (iii) every hit was deposited by a truth-level particle 
(ie. there were no noise hits), (iv) all truth-level particles were within the acceptance of the slice of the detector 
being processed, and (v) particles did not decay in flight or execute multiple loops in the magnetic field. These 
limitations restricted that algorithm to the idealized situations depicted in Fig. 1 of Ref.65.
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The algorithm presented in this paper has been re-invented to be able to process an arbitrary collection of hits. 
There is no restriction on the origin of the hits, which can include noise, decaying particles, photon conversions 
and secondary interactions, and particles executing an arbitrary number of loops in the magnetic field. The hit 
collection may or may not contain a reconstructable trajectory from a truth-level particle; the new algorithm is 
unbiased and agnostic from this perspective, and does not suffer from any of the above limitations.

Another limiting aspect of the algorithm in Ref.65 was that it could only process one-dimensional hits, though 
its extension to two dimensions was mentioned as potentially realizable. The algorithm presented here is flex-
ible and can be configured for one-dimensional (ie. silicon strip) or two-dimensional (ie. silicon pixel) hits. In 
two dimensions, the new algorithm can accommodate different resolutions in the longitudinal and transverse 
views. Thus, the algorithm presented here is deployable under realistic conditions. It also supports the notion 
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of spurious tracks in an unbiased fashion, unlike Ref.65 where the inadmissibility of spurious hits resulted in a 
narrow interpretation of spurious tracks.

Results
The track parameter resolutions are shown in Fig. 10. The resolution on q/pT is ≈ 4 TeV−1 versus ≈ 0.4 TeV−1 
for the ATLAS tracker. The ratio is close to the expected ratio of ≈ 12 based on the inverse proportionality to 
the square of the track length (25 cm in this study and 1 m for the ATLAS tracker) and to the square root of the 
number of hits (5 in this study and ∼ 12 for the ATLAS tracker), and based on the proportionality to the position 
resolution (25 µ m in this study and 50 µ m in ATLAS).

Examples of signal tracks found amongst the pileup hits are shown in Fig. 11. Each hit on a reconstructed 
trajectory is compared to its progenitor particle trajectory, and the number of correctly assigned hits and wrongly 
assigned hits per trajectory is shown in Fig. 12. We note that a very large fraction of the tracks have the maximum 
of 5 hits correctly assigned, and very few tracks have wrongly assigned hits. The rate of loss of correct hits (ie. 
the inefficiency) and the rate of assignment of spurious hits both slowly increase with curvature, also shown in 
Fig. 12. The inclusive efficiency for finding particles with pT > 10 GeV is (99.995± 0.001stat)%.

For a viable trigger it is important that the rate of spurious high-pT tracks be sufficiently low, lest it overwhelm 
the bandwidth of the trigger and data acquisition (TDAQ) system. Typically, the production rate for the events of 
interest is much lower than the rate of spurious triggers and the latter dominate the TDAQ bandwidth. In 20,000 
simulated bunch crossings, and without applying the consistency metric thresholds, 28 tracks with pT > 5 GeV 
are found whose reconstructed pT spectrum is uniform in p−1

T  within statistics. Thus we estimate a spurious 
trigger rate per p−1

T  interval per bunch crossing of (7± 1stat)× 10−3 pT
GeV , which corresponds to an average of 

one spurious trigger with pT > 10 GeV in 1,400 bunch crossings. For a 25 ns bunch crossing time (40 MHz), 
the spurious trigger rate is thus estimated to be 28 kHz, which is already much smaller that the budgeted first-
level hardware trigger rate of 1 MHz at  ATLAS57 and 750 kHz at  CMS58 at the HL-LHC. The spurious trigger 
rate depends on the thresholds placed on the track quality metrics �φ′′ and �z′′ , the consistency metrics �φ′ 
and �z′ , and on the pixel dimensions and sensor alignment. No spurious tracks satisfy the consistency metric 
requirements �φ′ < 0.005 and �z′ < 0.005 , which reduce the spurious trigger rate dramatically to O(1 kHz), 
equivalent to a spurious trigger in O(40,000) bunch crossings. Studies are in progress to characterize the spuri-
ous rate in more detail. These and other metrics could be compared to other approaches such as geometric deep 
 learning67 applied to  tracking34.

In conclusion, we have developed a methodology to rapidly identify high-pT charged particles produced in 
proton-proton collisions at the HL-LHC and future colliders. By using information from silicon pixel sensors 
placed at small radius from the colliding beams, our method can be applied to trigger on meta-stable charged 
particles which decay invisibly before traversing other detectors, thereby accessing a motivated region of param-
eter space in the particles’ lifetime and mass. The trigger efficiency is essentially 100% for pT > 10 GeV and the 
pT-resolution of 4% at pT = 10 GeV implies a sharp trigger turn-on. The method, based on graph computing 
techniques, can be considered a form of unsupervised machine learning since it performs clustering of data 
points according to expected patterns without training data. It is designed to operate in the noisy environment 
in which the patterns of interest are embedded, and with one- or two-dimensional sensor geometries of various 
resolutions. Simulations under realistic conditions show that the method achieves a high signal efficiency and a 
low spurious rate which is well within the budgeted bandwidth. In future studies we plan to investigate alternate 
detector geometries and the impact of systematic deformations on the algorithm performance, as well as the 
processing speed and resource requirements of an FPGA implementation.
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Data availability
The datasets generated during and/or analysed during the current study are available from the author on rea-
sonable request.

Code availability
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