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Serous epithelial ovarian cancer (SEOC) is the most lethal gynecological cancer in the
United States with disease recurrence being the major cause of morbidity and mortality.
Despite recent advances in our understanding of the molecular mechanisms responsible
for the development of SEOC, the survival rate for women with this disease has remained
relatively unchanged in the last two decades. Preclinical mouse models of ovarian cancer,
including xenograft, syngeneic, and genetically engineered mice, have been developed to
provide a mechanism for studying the development and progression of SEOC. Such mod-
els strive to increase our understanding of the etiology and dissemination of ovarian cancer
in order to overcome barriers to early detection and resistance to standard chemotherapy.
Although there is not a single model that is most suitable for studying ovarian cancer,
improvements have led to current models that more closely mimic human disease in their
genotype and phenotype. Other advances in the field, such as live animal imaging tech-
niques, allow effective monitoring of the microenvironment and therapeutic efficacy. New
and improved preclinical mouse models, combined with technological advances to study
such models, will undoubtedly render success of future human clinical trials for patients
with SEOC.
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INTRODUCTION
Mouse models provide a wealth of information for understand-
ing tumor biology. Through the validation of in vitro findings,
cancer progression, regression, and relapse in the physiological
setting is better understood. The continued high mortality asso-
ciated with serous epithelial ovarian cancer (SEOC) underscores
a need for tailored disease models and improved technology to
study such models. Several recent advancements promise to facili-
tate the success of preclinical models in refining our understanding
and treatment of SEOC. This mini-review will focus on the latest
mouse models of ovarian cancer and improved technologies for
using these models to study SEOC initiation, progression, relapse,
and therapeutic response.

Ovarian cancer is the most common cause of gynecological
mortality in the United States, accounting for more than 14,000
deaths annually (1). Most patients initially respond favorably to
platinum-based therapy, however, there is a high incidence of
recurrent, chemoresistant disease. Our knowledge of the clinical
and molecular attributes of epithelial ovarian cancer has improved
greatly over the last few decades, but survival rates for women with
this disease remain low. This is partially explained by the inabil-
ity of clinical trials to replicate the therapeutic response observed
in animal models. So far, about one-third of highly cited animal
studies saw success in human trials, however, improvements in
study design and data interpretation should increase that figure
(2, 3). Animal models in the personalized medicine era highlight
the availability of affordable genomic sequencing and molecu-
lar profiling. As the pharmaceutical industry relies heavily on
mouse models, such new refinements will be critical for producing

reliable preclinical data on personalized ovarian cancer therapeutic
approaches.

In order to generate accurate models, the biology of the dis-
ease must be understood. High grade SEOC is thought to arise
in a rapid fashion de novo from the surface epithelium of the
ovary or from the mucosa of the fallopian tube (4, 5). The
remaining ovarian carcinomas, categorized as low grade, follow
a stepwise adenoma-carcinoma sequence (4, 6). Whether high
or low grade, SEOC usually does not reach clinical detection
until late stage where it has spread well beyond the ovaries.
This feature has hampered efforts to identify the site of ori-
gin and understand the pathophysiology of SEOC. Most exist-
ing mouse models of SEOC present a disseminated abdom-
inal phenotype, which closely resembles late metastatic dis-
ease, and therefore may only provide a good model for ther-
apeutic response in the “average” patient. Some recent mouse
models provide a phenotype of early progressive disease com-
ing from defined genetic abnormalities identified from patient
subtypes.

MOUSE MODELS OF EOC
An extensive analysis of every mouse model is beyond the scope of
this mini-review, however, a summary of recent advances in mouse
models of ovarian cancer to place the technological advances
in context is presented here. Several recent reviews are available
detailing epithelial ovarian cancer experimental models (7–9).
Mouse models of ovarian cancer generally fall into one of three
categories (xenograft, syngeneic, genetically engineered), the most
suitable being dependent on the information being sought.

www.frontiersin.org February 2014 | Volume 4 | Article 26 | 1

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00026/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00026/abstract
http://www.frontiersin.org/people/u/95482
http://www.frontiersin.org/people/u/136419
http://www.frontiersin.org/people/u/71409
mailto:annunzic@mail.nih.gov
http://www.frontiersin.org
http://www.frontiersin.org/Women's_Cancer/archive


House et al. Mouse models for ovarian cancer

XENOGRAFT MODELS
A human tumor xenograft is the most widely used mouse model
in which human tumor cells are transplanted under the skin (sub-
cutaneous), into the abdominal cavity (intraperitoneal), or into
the organ of origin (orthotopic) of an immune-compromised
host. While intraperitoneal and orthotopic injections can mimic
metastatic dissemination, subcutaneously injected cells are largely
limited to tumor formation at the site of injection. The unique
presence of a bursa, a sac encapsulating the ovaries and fallop-
ian tubes, allows for intra-bursal injections in mice (10, 11). This
technique permits the study of early, localized disease, tumor cell
invasion, and dissemination in a more biologically relevant order
of events (12).

Xenograft models are particularly useful for evaluating tumori-
genesis in a timely fashion (13, 14). Within a few weeks, tumor
formation can be measured in vivo with histology representative
of the tumor of origin (12, 15, 16). Importantly, the pattern of
spread to the ascites, liver, and spleen, typical in human disease, is
replicated in many of these models and depending on the cell line
used, tumors representing the different histological subtypes of
epithelial ovarian cancer can be produced (8, 12). Xenografts are
versatile and often used in parallel with in vitro studies to generate
a majority of preclinical data.

Although quite valuable, xenografts carry important limita-
tions. One major disadvantage is the lack of immune response
inherent in these models. Nude mice are athymic and therefore
have a limited T cell response, and severe combined immunode-
ficiency (SCID) strains lack both T and B cell responses. Because
tumors can promote anti-tumor responses such as lymphocyte
and macrophage infiltration, these models may not accurately
represent disease progression and therapeutic response observed
in otherwise immune-competent individuals (17–19). Further-
more, these models are not suitable for studying immunother-
apy or mechanisms involving host–cell interactions. Cell line-
derived xenografts have had little success in predicting ther-
apeutic response in patients, thereby emphasizing a need for
improvements to current models.

An alternative to traditional cell line-derived xenograft models
involves the direct transfer of tumor fragments from individ-
ual patients. Minced fragments are delivered via orthotopic or
intraperitoneal injection into immune-deficient mice to create
“xenopatients” or tumor grafts (8, 20). Successful engraftment
is higher in SCID mice compared to nude mice, likely due to
the suppression of both cellular and humoral immunity (20–23).
Several reports have demonstrated that tumor grafts stably main-
tain the histopathology, immunophenotype, and heterogeneity of
the original tumor through multiple passages (21–26). Moreover,
these models have the capacity to recapitulate the same therapeutic
properties observed in patients (20, 25, 26). The better predic-
tive response value makes these models superior to traditional
cell line-based xenografts generated using a suspension of mostly
homogenous cells. Engraftment of the native stromal extracellu-
lar matrix that would normally accompany a tumor graft may
provide the most suitable microenvironment for replicating the
biology of the original tumor. This feature renders tumor grafts
more suitable for studying early metastasis, as it relies on dissem-
ination of cells from a tumor fragment rather than dispersion of

cells from a suspension (8). Thus, patient-derived tumor grafts
provide a means to model inter-patient heterogeneity known
to exist across high grade SEOC, and to study tumor evolution
through exposure to therapy. Tumor grafts, although promising,
are not without their own challenges. Generating a mouse model
using a tumor graft is labor intensive and expensive and, as in
traditional xenografts, the mice are immunocompromised; con-
sequently immune responses cannot be studied. Although well
suited for clinicians and personalized medicine, access to patient
tumor samples can be challenging for many basic and translational
investigators. Some research teams have generated banks of tumor
grafts to make these models more accessible (20, 23, 24).

SYNGENEIC MODELS
Some challenges of xenograft models can be overcome using syn-
geneic mouse models, wherein tumors are established in immune-
competent mice using cells from the same strain. In one of the
most widely used syngeneic models, generated by Roby et al., ovar-
ian surface epithelial cells isolated from immune-competent mice
were repeatedly passaged in vitro until transformation occurred,
and subsequently injected back into the same strain (27). Other
syngeneic models have been created using genetically modified
cells (28, 29) and highly metastatic cell lines stably expressing
luciferase for monitoring disease (30). The histopathologic char-
acteristics observed in the tumors of these models including the
presence of papillary structures, nuclear atypia, and malignant
ascites, closely resemble those seen in humans (29, 31).

The major advantage of this model is that the mice have an
intact immune system; therefore the anti-tumor immune response
can be examined and the risk of infection is minimized (19, 32).
Syngeneic models provide the opportunity to study the tumor
microenvironment, epithelial–stromal cell interactions, tumor-
secreting factors, immune cell infiltration, and vasculature (28, 29,
31, 33). This model, however, is completely derived from the ani-
mal system and therefore may not mirror every element of human
cancer. Although human and mouse tumors share similar features,
the complexity of human disease coupled with the heterogeneity
of cancer make it difficult to translate findings (34).

GENETICALLY ENGINEERED MODELS
Genetically engineered mouse models (GEMMs) are immune-
competent mice with genetic defects introduced using RNA inter-
ference, inducible gene expression, viruses, or DNA recombination
techniques. GEMMs provide a means for investigating the role of
genetic alterations in cancer development. These models allow
researchers to control and direct gene expression, which can be
limited to the tissue of interest using a tissue-specific promoter
to introduce the desired genetic alteration, or expressed through-
out the organism using germ-line mutations (35). Furthermore,
regulation of gene expression in the presence or absence of tetracy-
cline and its receptor allows for inducible gene expression systems
and provides the flexibility to turn on or off gene(s). For example,
transgenic mice carrying both the tetracycline-regulated transcrip-
tional transactivator and its respective binding site linked to a gene
of interest permits amplified expression of that gene. If mice are
provided with the tetracycline antibiotic in their drinking water,
this expression is reversibly suppressed. Thus, GEMMs provide

Frontiers in Oncology | Women’s Cancer February 2014 | Volume 4 | Article 26 | 2

http://www.frontiersin.org/Women's_Cancer
http://www.frontiersin.org/Women's_Cancer/archive


House et al. Mouse models for ovarian cancer

opportunities to identify which genes are necessary for disease
progression, regression, and/or resistance to treatment.

Extensive analyses of human ovarian cancer specimens have
identified several genetic alterations associated with malignancy
including TP53, C-MYC, K-RAS, AKT, and BRCA1 and BRCA2
(36–38). Subsequently, several genetically modified ovarian can-
cer models, summarized in Table 1, have been developed to explore
the contribution of these different aberrations to ovarian cancer
development (39–44).

Although GEMMs are labor-, time-, and resource-intensive,
they provide information that cannot be attained in xenograft or
syngeneic models. Early tumorigenesis and genetic events lead-
ing to tumor initiation, maintenance, and relapse can be ana-
lyzed. The flexibility provided by genetic manipulation permits
the study of different mutation combinations. These models are
ideal for target validation, treatment response, and chemopreven-
tion (45). The major challenge with this model is the scarcity of
tissue-specific promoters in ovarian surface epithelium or distal
fallopian tube. It is also challenging to accurately replicate the
contribution of genetic elements given that genes over-expressed
in mice are often at non-physiological levels or deleted through-
out the organism (46). GEMMs may fail to recapitulate the
genetic complexity of human SEOC, and the varied genetic back-
ground of different mouse strains can influence findings and
conclusions (8).

TECHNOLOGICAL ADVANCES IN USING ANIMAL MODELS
REPORTERS
Most ovarian cancer cell lines can be stably transfected with a flu-
orescent and/or bioluminescent reporter for monitoring tumor

cell growth and dissemination, pathway activity, and receptor
interactions.

This technology has been adapted to xenograft and syngeneic
mouse models of ovarian cancer. For example, NF-κB activity was
tracked in a syngeneic model of SEOC to confirm that activation
correlated with progression and influenced immune cells of the
microenvironment (47). Similarly, reporter-tagged tumor cells can
be used to monitor tumor response in real-time using digital imag-
ing following systemic targeted therapy (48–50). Using reporters
in live animals to track tumor cell dissemination allows for study-
ing cancer progression and therapeutic response, especially in
syngeneic models where the immune response is integral.

Luciferase complementation-based assays measure receptor
activation and protein interactions using monomeric enzyme
components that have enzymatic activity only when complemen-
tation is induced by the interaction of binding partners or small
molecules (51). Activation is proportional to the production of
light that occurs upon complementation. The flexibility of this
technology allows detailed quantitative measurements of com-
plexes, assessment of nuclear translocation, and identification of
pathway modulators (52). For example, this assay was success-
fully implemented for live imaging of the chemokine, CXCL12,
interacting with its receptor, CXCR4, in animal models of ovarian
cancer (53, 54).

IMAGING
Quantitative measurements of late-stage disease in ovarian cancer
models are challenging due to the presence of varying levels of
ascites and the poor correlation between total body weight gain
and tumor burden. Diagnostic imaging is a reproducible means to

Table 1 | GEMMs for ovarian cancer.

Original

reference

Genes

altered

Ovarian specific expression Cancer

histology

Comments

(39) p53, c-Myc,

Kras, Akt

Oncogenes were delivered in vitro into ovarian epithelial cells

from a transgenic p53-deficient mouse; modified cells were then

introduced into ovarian bursa of the same mouse

Ovarian

carcinoma

Illustrates necessity for p53 deficiency

in combination with at least two other

oncogenes for tumor induction

(41) p53, Rb1 Adeno-Cre was introduced into ovarian bursa of transgenic mice

carrying floxed alleles

EOC p53 and Rb1 cooperate in EOC

development

(40) p53, Brca1,

c-Myc

c-Myc and Cre were retrovirally delivered into ovarian explants

from floxed Brca1 and p53 transgenic mice; modified cells were

then introduced i.p. into recipient syngeneic mice

SEOC Identifies the requirement for Myc in

p53 and Brca1-induced transformation

(42) Pten, Apc Adeno-Cre was introduced into ovarian bursa of transgenic mice

carrying floxed alleles

OEA Illustrates the role of Wnt and PI3K

signaling in development of ovarian

endometrioid adenocarcinoma (OEA)

(43) Pten, Kras Anti-Mullerian hormone receptor directed Cre-expressing mice

crossed with mice carrying floxed alleles

Low-grade

serous ade-

nocarcinoma

Demonstrates role of Kras

transformation and loss of Pten for

elevated p53 levels and associated

low-grade phenotype

(44) p53, Rb,

Brca1 or

Brca2

Adeno-Cre was introduced into ovarian bursa of transgenic mice

carrying floxed p53 and Brca alleles and Rb deficiency directed to

epithelium by Keratin18 promoter for T-antigen expression

SEOC Genetic modifications recapitulate

human SEOC stages
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quantify tumor mass, monitor tumor progression, and interrogate
the tumor microenvironment. Imaging techniques used in the
clinic [e.g., magnetic resonance imaging (MRI), computed tomog-
raphy (CT), positron emission tomography (PET), ultrasound]
have been adapted for use in animals (55, 56). These modalities
are especially informative as they can be performed in intact living
animals. Interval imaging reduces the number of animals needed
for experiments as measurements are taken without sacrificing
the animal. The major challenge to imaging ovarian cancer in
animal models, as in humans, is the difficulty in detecting early
disease; by the time mice begin to show signs of morbidity the
cancer has often spread beyond the ovaries and throughout the
peritoneum.

Positron emission tomography imaging is a standard diagnos-
tic radiological technique commonly used to monitor drug action
in cancer patients. This modality allows the measurement of meta-
bolic activity in cancer cells and is especially useful in quantitative
monitoring of tumor response to anti-cancer therapies (56). PET
imaging can assess targeted therapies in both transgenic (57) and
xenograft (58) models of ovarian cancer.

Ultrasound imaging is another common tool used in small
animal models and is often combined with other imaging tech-
niques for a more comprehensive analysis (57). Ultrasound is
cost-effective and convenient for measuring individual tumors in
live animals (59). Doppler ultrasonography can measure changes
in blood flow and angiogenesis associated with disease progression
or response to anti-angiogenic therapy (59, 60).

Magnetic resonance imaging with gadolinium-based contrast
agent permits high-resolution serial imaging with minimum scan-
ning duration, allowing quantification of tumor volume over time.
MRI data are comparable to caliper-based measurements taken at
necropsy. This longitudinal imaging protocol is well suited for
monitoring therapeutic response (61). MRI can also be com-
bined with fluorescence molecular tomography (FMT) to monitor
tumor-specific biology, such as protease and integrin activity (62).
When coupled with a reporter gene such as ferritin heavy chain
(FHC), MRI can evaluate recruitment of other cell types, such as
fibroblasts, to the tumor site (63). Alternatively, MRI combined
with magnetic resonance spectroscopy (MRS) can characterize
tumor physiology and metabolic profiles over time (64).

METABOLIC PROFILING
Measurement of metabolites and their intermediates can illus-
trate the response of an organism to a genetic manipulation or
therapy. Metabolites are small, low molecular weight analytes and
include amino acids, oligopeptides, sugars, fatty acids, and vari-
ous intermediates of biochemical pathways, in contrast to large
proteins and nucleotides that are assessed using proteomics and
genomics, respectively (65). Nuclear magnetic resonance (NMR)
spectroscopy, liquid and gas chromatography, and mass spectrom-
etry (MS) are generally used to analyze serum, urine, or tissue
extracts. Such measurements provide insight into drug mech-
anisms and toxicities. Metabolic profiles represent a snapshot
of the biochemical reactions occurring at a point functionally
downstream of genome, transcriptome, and proteome (65).

Commonly used in human studies, (66, 67) this technology was
adopted in a GEMM of SEOC. The metabolic profile overlapped

with human SEOC and showed a temporal correlation with dis-
ease progression (44, 68), highlighting the feasibility of metabolic
profiling for identifying biomarkers and monitoring treatment
response in animal models (44).

TUMOR-INITIATING CELLS
The cancer stem cell (CSC) or tumor-initiating cell (TIC) hypoth-
esis suggests that a small population of chemoresistant cells reside
in the tumor, capable of reconstituting the tumor. These cells share
properties of normal stem cells, such as self-renewal and multi-
potency. Given the high recurrence of ovarian cancer, the TIC
hypothesis is an attractive model for explaining ovarian cancer
relapse.

Mouse models have been especially useful in evaluating TICs.
When injected into mice, these cells must recapitulate the het-
erogeneity of the original tumor. Animal models are essential
for defining TICs and for evaluating drugs and pathways impor-
tant for eradicating these cells. Patient-derived xenografts might
allow further characterization of the frequency of TICs in human
tumors, and their relevant biomarkers.

A number of markers have been used to identify and isolate
ovarian cancer TICs including CD133, CD44, CD117, and ALDH
activity; however it is unlikely that a single marker defines ovarian
TICs (69, 70). Several studies have demonstrated heterogeneous
tumor formation in xenograft mice after subcutaneous injection
of sorted ovarian cancer cells from primary tumors, cell lines, or
ascites (71–74). TICs have also been propagated in vitro using
low attachment culture plates and specialized serum-free media to
enhance the formation of multicellular spheroids with stem-like
features (69, 73).

Although much research has focused on characterizing tumori-
genesis of human TICs in xenograft models, recent studies eval-
uated endogenous TICs in mice (75–77). Syngeneic or GEMMs
offer the possibility of studying the role of the immune system in
TIC biology. Furthermore, with direct or indirect labeling of the
TICs, each of these models can facilitate tracking of the cells to
monitor tumor initiation and dissemination.

IMMUNE THERAPIES
The role of the immune system in ovarian cancer is studied exten-
sively using animal models (19). Representing a robust predictor
of outcome, tumor-infiltrating lymphocytes are associated with
better survival for ovarian cancer patients (78, 79). Immune ther-
apies involving vaccines, dendritic cell therapy, engineered T cells,
and immune modulators thus hold promise for ovarian cancer
treatment (80–86).

Current goals aim to enhance the anti-tumor immune response
through increased immune activation and decreased immune sup-
pression. Programed death-1 (PD-1) and CTL antigen-4 (CTLA-
4) signals silence the immune response in tumors. A syngeneic
mouse model of ovarian cancer showed that simultaneously block-
ing these pathways enhanced T cell infiltration into the tumor and
increased long-term survival (81). A related model found that
the therapeutic effect of gemcitabine is limited because of the
immunosuppressive network of CTLA-4 (83). Gemcitabine plus
anti-CTLA-4 antibody exhibited synergy in a strong anti-tumor
immune response. Likewise, anti PD-1 therapy shows synergism
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FIGURE 1 |Technological advances in mouse models allow detailed study of ovarian cancer biology.

with a variety of immunotherapies or vaccines (86). These findings
have translated well and are currently under evaluation in the
clinic.

Genetically modified T cells engineered to over-express recep-
tors for tumor-associated antigens have shown great success in
mouse models of ovarian cancer (87, 88). This emerging technol-
ogy is a logical avenue for ovarian cancer, an apparently immuno-
genic disease where T cell infiltration is associated with improved
survival (19, 88).

CONCLUSION
Despite our progress in understanding ovarian cancer biology,
there remains a high mortality associated with this disease. Excit-
ing advances in reporter assays, live imaging, metabolomics, TICs,
and immune therapies, provide new information about the tumor
microenvironment and further our understanding of SEOC devel-
opment, progression, and recurrence (Figure 1). Further refine-
ment of mouse models of ovarian cancer, an awareness of the
limitations each model presents, and taking advantage of the tech-
nologies available to study these models will undoubtedly expedite
the success of new treatments.
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