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Abstract. The goal of this work is to make a contribution to the development of
computationally efficient multirate Electrocardiogram (ECG) automated detectors
of arrhythmia. It utilizes an intelligent combination of multirate denoising plus
wavelet decomposition for an effective realization of the ECG wireless implants.
The decomposed signal subband features are mined and in next step these are
utilized by the mature k-Nearest Neighbor (KNN) classifier for arrhythmia diag-
nosis. The multirate nature substantially reduces the processing activity of the
system and thus allows a dramatic decrease in energy consumption compared to
traditional counterparts. The performance of the system is estimated also in terms
of the classification performance. Obtained results reveal an overall 22.5-fold
compression gain and 4-folds processing outperformance over the traditional
equals while securing 93.2% highest classification accuracy and specificity of
0.956. Findings confirm that the proposed solution could potentially be embedded
in contemporary automatic and mobile cardiac diseases diagnosis systems.
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1 Introduction

Cardiovascular diseases have drawn global attention. This is due to its increasing
prevalence and incidence [1, 14]. Electrocardiogram (ECG) measures electrical activ-
ities with respect to time. Manual examination of cardiac arrhythmias can be time
consuming and complicated. This challenge may be solved using computer-aided
automatic cardiac decision tools. The computer-aided or pattern-based recognition
systems could increase the effectiveness of cardiac health analysis by detecting subtle
differences in frequency and amplitude components of the heartbeat [2].

Many scientists have previously explored computer-assisted solutions for cardiac
health monitoring as reviewed in [7]. Preprocessing is the first ECG processing stage.
The popular ECG denoising methods are the finite impulse response (FIR) filtering,
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principle component analysis (PCA) and Kalman filtering [2, 8]. The extraction of
features is one of the essential steps of computer-aided ECG diagnostic solutions.
Certain extensively used ECG signal feature extraction approaches are the “Wavelet
Transform” (WT), “Discrete Cosine Transform” (DCT) and “Short Time Fourier
Transform” (STFT). The pertinent signal features are afterward employed for the
classification purpose. Techniques adopted for this purpose are the “Naive Bias”, the
“K-Nearest Neighbor” (KNN), the “Artificial Neural Networks” (ANN) and the
“Support Vector Machine” (SVM).

Classical ECG systems are by definition time-invariant [3, 4]. This can lead to
inefficient use of system resources and energy consumption [2, 5]. For such signals, an
effective solution can be achieved by diminishing the rates of data collection, pro-
cessing and transmission [5]. In this framework, multirate signal processing tactics
have been employed [6]. The subsampling is intelligently employed in the suggested
framework. It allows overcoming the downsides of the counter fix rate ECG processing
approaches [3, 4]. Therefore, it allows realizing a simplified and power efficient ECG
wireless implant with a real-time compression of data.

2 Materials and Methods

Figure 1 illustrates the adopted system block level diagram. A description of the dif-
ferent modules of the system is given in the coming subsections.
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Fig. 1. Block diagram of the adopted system

2.1 Dataset

In this study, the ECG signals, obtained from a standard ECG dataset are used [1].
3 different ECG classes the “Wolff-Parkinson-White” (WPW), “Right Bundle Branch
Block” (RBBB) and the “Normal Sinus Rhythm” (N) are considered. ECG analog
signals are band limited up to 60 Hz and each channel is recorded via an 11-Bit
resolution analog to digital converter (ADC). The employed sampling frequency is of
360 Hz. The digitized versions of intended ECG signals are splitted into fixed length
segments to split the continuous time signals into ECG impulses. Each impulse is
considered as an instance. In order to avoid any biasing an equal representation is
selected for each considered class. In this framework, 150 instances are considered for
each class. It results in total 450 instances from 3 ECG classes.
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2.2 Denoising

The digitized signal x, is denoised by using an offline designed band-pass FIR filter.
The denoising diminishes the noise like the “Power Line Interference” (PLI) and
“Baseline Wander” (BW) from the ECG signal. It improves the efficiency of collection
and classification of the features. The ECG signal’s useful frequency range lies between
[0.5; 50] Hz [9, 10]. Accordingly, a band-pass linear phase filter is configured offline
for the cut-off frequencies of [Fcp, = 0.5; Fcy = 50] Hz it resulted in a 122" order filter
designed for Fs = 360 Hz. For proper filtering, Fcy is kept less than half of the signal
sampling rate [5]. Therefore, Fs = 360 Hz fulfils this criterion.

2.3 Subsampling

The functioning of conventional ECG acquisition and analysis processes is of time-
invariant nature [2—4]. Consequently, a worst-case parameterization is enforced [5]. It
causes the processing ineffectiveness in the case of time-varying and sporadic ECG
signals. These inadequacies can be diminished by using multirate processing approa-
ches [2, 5, 6]. In this framework, the denoised signal xf, is subsampled with a factor of
D = 4 to obtain xd,, = xfp,. Subsampling without a prior digital antialiasing filtering
can cause aliasing [6]. However, a proper choice of D allows to perform subsampling
without prior filtering. In this case, the selected value of D should respect the condition:
D< s —36. Here, F s = 360 Hz, Fny; = 2. finax and fiqx is the bandwidth of xf, and

Finyg
is equal to Fcy = 50 Hz. It shows that for the chosen D = 3 subsampling does not
cause aliasing.

2.4 Segmentation

In order to split the continuous time ECG records into ECG pulses, xd, is divided in
0.9-s length segments. Each segment, xs,,, contains one ECG pulse. The segmentation
is realized by using fixed length rectangular windows [6]. The process can be math-
ematically depicted as:

T+LTT
yVs$n = E _ LTyann—r-
n=t1—L

Here, Ly and t are respectively the length in seconds and the central time of an
intended segment.

2.5 Discrete Wavelet Transform

The “Wavelet Transform” (WT) can be mathematically expressed by Eq. (1) where, s
and u respectively represent the dilation and the translation parameters.

W (u,s) = \/ls/;ocx(t)l,b * ((t_su))dt. (1)
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A discrete time wavelet transform (DWT) is used for decomposing the xs,,.
A translation-dilation representation is attained by employing digital filters. In this case,
each segment xs, is decomposed through the “Daubechies Algorithm” based wavelet
decomposition process. It consists of half-band low-pass filter and high-pass filter with
subsampling with a factor of two. It allows the computation of approximation, a,, and
detail, d,,, coefficients at each level of decomposition.

The mathematical processes of computing a,, and d,, are respectively depicted by
Eq. (2) and Eq. (3). Where, m represents the level of decomposition. In this study a
third level of decomposition is employed. Therefore, m € {1,2,3}. g2, and hy,— are
respectively the half-band low-pass and high-pass filters using a subsampling factor of
two.

K
am = Zkilysn'an—k' (2)

K,
dp = 5 ¥y Thon k. (3)

2.6 Features Extraction

The wavelet coefficients, obtained for each intended subband, d; = [60, 120] Hz, d, =
[30,60] Hz, d3 = [15,30] Hz and a3 = [0, 15] Hz are used for mining the discrimi-
native and classifiable features. 4 statistical features are extracted from each subband.
These are described in the following.

Energy (E) is calculated by adding all the absolute values of subband coefficients.
Kurtosis of the signal (K) is a measure of the curvature of the considered subband
coefficients. Peak positive value (PV) is the maximum positive value of the intended
subband coefficients. Peak negative value (NV) is the maximum negative value of the
intended subband coefficients.

2.7 Classification

After features extraction, each instance is presented in the form of a reduced data
matrix, composed of 16 features. The intended dataset is composed of 3 ECG classes
namely the “Normal Sinus Rhythm (N), the “Right Bundle Branch Block” (RBBB) and
the “Wolff-Parkinson-White” (WPW). For equal representation, 150 instances are
taken into consideration for every class. Thus, in total 450 ECG instances are con-
sidered. After features extraction, the resulting data matrix has a size of 450 x 16. To
classify this data matrix, the “k-Nearest Neighbor” (KNN) classification algorithm is
employed.

The KNN is well known for its ability of delivering high quality results even for
applications wit high complexity [16]. In a data set, the features’ distance is used by
KNN to decide which data belongs to what class. When the distance in the data is near,
a group is formed, and when the distance in the data is far, other groups are formed.
A category membership might be the output of the KNN classifier. The categorization
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of an object is done through the majority vote by its neighbors. That is, the object is
added to the class which is most common among its k closest neighbors (k could
generally be a small positive whole number). The object is assigned solely to the
nearest neighbor’s single classification if the £ equals one [11].

2.8 Evaluation Measures

Compression Ratio compares the designed system performance in terms of reduction
in the amount of information to be classified compared to the conventional approach
where acquired ECG data points are transmitted towards classifier without performing
any features selection. If N, and P are respectively the count of data points to be
classified, for a given time length of Ly-Sec., in the conventional and the devised
approach then the compression ration, Rcopp, can be calculated as:

R N

comp = 5
Computational Complexity compares the designed system performance with the
fixed-rate counter equals in terms of the count of required standard operations like
additions, multiplications and divisions [12]. In conventional case, the denoised signal
is segmented by employing a rectangular window. It splits the incoming samples
sequence in Lp-Sec. segments. Each segment is composed of N, samples. The pro-
cessing cost of this process is negligible compared to operations like additions and
multiplications [12]. Each segment is further split into subbands by using the 3™ level
Daubechies wavelet decomposition. It consists of half-band FIR high-pass and low-
pass filters with a subsampling factor of two. Let Kg be the order of half-band filters
and same filters are employed at all levels of decomposition. It is well known that a Kg
order filter performs Kg additions and Kg multiplications [5]. Therefore, the compu-
tational complexity of this fixed rate wavelet decomposition process Crr_wp can be
mathematically expressed by Eq. (4). This mathematical derivation is also clear from

Fig. 2.

Crr—wp = 3.5 x Kg.N, + 3.5 X Kg.N, . (4)

Additions Multiplications

For the case of designed solution xf, is firstly subsampled and then xd, is seg-
mented by employing a rectangular window. Each segment is composed of N =
0.25 x N, samples. If Kg is the order of half-band filters and same filters are employed
at all levels of decomposition then the computational complexity of this process Cp_wp
can be mathematically expressed by Eq. (5). If M = 0.5 x M, is the count of samples
processed by the denoising module then the total computational complexity for the
designed front-end processing chain can be expressed by using Eq. (10).

Cp_wp = 0.875 x Kg.N, 4+ 0.875 x Kg.N, (5)

Additions Multiplications
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Classification Accuracy and Specificity are used to evaluate the overall system
precision. The processes may be formally described by means of Eq. (6) and Eq. (7).
Where, “True Positives” (TP) and “True Negatives” (TN) are correct classifications.
“False Negatives” and “’False Positives” (FP) (FN) are wrong classification results [13].

Tp+ Ty
Accuracy = x 100%. 6
Y T To + Ty + Fp + Fy ¢ (©6)

T

3 Results and Discussions

Examples of the considered ECG signal classes are shown in Fig. 2. These incoming
signals x,, are denoised by employing the band-pass FIR filter. It improves the expected
signal SNR (“Signal to Noise Ratio”) and results in an increased classification preci-
sion. An example of the filtered version of signal for the (RBBB) class is shown in
Fig. 3-a. The de-noised signal xf, is down-sampled with a factor of D =3. An
example of the subsampled versions of signal for the RBBB class is shown in Fig. 3-b.

The decimated signal xd,, is splitted into fixed length segments of 0.9 s durations.
Onward each segment is decomposed into subbands via the application of a 3 stages
wavelet decomposer. Computational Gain of the designed front-end processing chain
over the fixed-rate counterpart is calculated by using Eq. (4) and Eq. (5). It results in 4-
fold reduction in terms of count of additions and multiplications of the designed
solution compared to the fixed-rate counterpart.
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Fig. 2. Examples of the ECG signals. Fig. 3. Example of denoised RBBB signal
(a) (N), (b) (RBBB) and (c) (WPW). (a) and example of decimated RBBB signal (b).
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In next step, four statistical features are extracted from each subband. In this way
each intended instance is presented by 16 parameters. The compression gain of the
designed framework over the conventional equal is computed by using Rcomp = % It
results in 22.5-fold real-time compression gain of the proposed solution over the
conventional equal.

Above results show that the devised solution outperforms the conventional equals
in terms of processing efficiency and compression gain. However, due to the multirate
processing feature it may lose its performance in terms of the precision. Therefore, the
overall performance of the system is measured in terms of the accuracy of the clas-
sification process. The KNN classifier is employed with £ = 5 configuration. Training
and testing sets are made of 3 distinct classes. Total 450 instances are used. The 10-fold
cross validation technique is used for all experiments. Classifier’s performance is
quantified in terms of the accuracy and the specificity by using Eq. (6) and Eq. (7). The
obtained results are summarized in Table 1. It shows that for the studied case, the
obtained classification accuracies are high. The highest classification accuracy is
obtained for the (WPW) class, 93.2%. The average classification accuracy of the
designed framework is 91.87% with an average specificity of 0.947. It concludes that
the suggested approach not only attains the outperformance in terms of compression
gain and processing efficiency but it also secures an appropriate ECG arrhythmia
classification precision.

Table 1. Classification performance for 3 class ECG dataset

ECG class Classification Specificity | Average accuracy Average
accuracy (% age) (% age) specificity

Normal (N) |90.3 0.935 91.87 0.947

RBBB 92.1 0.951

WPW 93.2 0.956

4 Conclusion

In this paper a novel multirate ECG processing, subbands decomposition and classi-
fication framework is designed. The decomposed signal subband features are mined
and in next step these are utilized by the mature k-Nearest Neighbor (KNN) based
classifier for an effective arrhythmia diagnosis. The multirate feature diminishes the
system processing load. It is shown that because of the multirate feature the system has
attained the 4 folds diminishing in the count of processing load as compared to the
conventional equals. Additionally, the features extraction process has induced 22.5
times compression gain in the system. It also assures a same factor of processing load
diminishing at the post classification stage. The overall performance of the system is
quantified in terms of the accuracy of the classification process. For the studied case the
designed framework has attained the highest classification accuracy of 93.2% and
specificity of 0.956. It assures that the devised solution is a potential candidate to be
embedded in contemporary automatic and mobile cardiac diseases diagnosis systems.
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A possible future direction of work is to adopt a model-based testing methodology for
validating the proposed approach [15-18]. Integration and investigation of event-based
processing modules [19-22] in this system is another prospect.
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