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Abstract Global change drivers, such as climate change and land use, may profoundly influence

body size, density, and biomass of soil organisms. However, it is still unclear how these concurrent

drivers interact in affecting ecological communities. Here, we present the results of an

experimental field study assessing the interactive effects of climate change and land-use

intensification on body size, density, and biomass of soil microarthropods. We found that the

projected climate change and intensive land use decreased their total biomass. Strikingly, this

reduction was realized via two dissimilar pathways: climate change reduced mean body size and

intensive land use decreased density. These findings highlight that two of the most pervasive

global change drivers operate via different pathways when decreasing soil animal biomass. These

shifts in soil communities may threaten essential ecosystem functions like organic matter turnover

and nutrient cycling in future ecosystems.

Introduction
Anthropogenic environmental changes are altering ecological communities and ecosystem

functions (Chapin et al., 2000; Sala et al., 2000). As one of the most pervasive drivers, climate

change tends to decrease invertebrate density in different ecosystems (Barry et al., 1995;

Kardol et al., 2011; Lister and Garcia, 2018). Moreover, climate change may shift the functioning

and evolutionary adaptations of communities (Briones et al., 2009; Hoffmann and Sgrò, 2011). For

instance, it has substantial influences on population-level phenotypic trait expression of organisms,

such as shifts in morphology, that is, body size and shape (Gardner et al., 2011).

As warmer conditions increase individual metabolism (Scheffers et al., 2016) and development

rates (Atkinson et al., 2003), many groups of organisms (e.g., plants, fish, ectotherms, birds, and

mammals) have already been reported to shrink their body size in response to

warming (Sheridan and Bickford, 2011). These shifts in body size may result in a wide range of

implications, e.g., biomass loss, including negative effects on the structure and dynamics of ecologi-

cal networks (Woodward et al., 2005).

Precipitation regimes drive shifts the structure (abundance and diversity) of soil microarthropod

communities across different terrestrial ecosystems (Sylvain et al., 2014). A meta-analysis showed

that the positive effect size of increased precipitation intensifies with experimental

time (Blankinship et al., 2011). However, precipitation may also disturb microarthropod communi-

ties, resulting in abundant loss of saturated conditions (Turnbull and Lindo, 2015). By contrast,

droughts generally reduce the abundance (Landesman et al., 2011) and change the morphology of

soil animals (Andriuzzi et al., 2020). For example, soil animals may decrease in body size and bio-

mass to reduce their physiological requirements in response to drought events. Corresponding

Yin et al. eLife 2020;9:e54749. DOI: https://doi.org/10.7554/eLife.54749 1 of 17

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.54749
https://creativecommons.org/
https://creativecommons.org/
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
https://elifesciences.org/?utm_source=pdf&utm_medium=article-pdf&utm_campaign=PDF_tracking
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


morphophysiological shifts may cause potential alterations in ecosystem functions, such as decom-

position and nutrient cycling (Eisenhauer et al., 2012; Wall et al., 2008). However, climate change

is often a combination of both warming and altered precipitation (e.g., ranging from periods of pro-

longed drought to extreme precipitation events), which may reshape biocenosis in terrestrial ecosys-

tems. Yet organisms with small body size in general, and soil-living organisms in particular, have not

received much attention in this combined context (Thakur et al., 2018; Torode et al., 2016).

Besides climate change, soil systems further strongly suffer from land-use intensification,

for example, conversion of grasslands into croplands and intensified management

practices (Foley et al., 2011). Such practices include tillage, mowing, livestock grazing, heavy

machine employment, as well as herbicide, pesticide, and fertilizer application, all of which may pro-

foundly endanger soil communities, as well as the functions and services they provide (Giller et al.,

1997; McLaughlin and Mineau, 1995; Newbold et al., 2015; Tsiafouli et al., 2015). Accordingly,

land-use change is considered as the major global threat for biodiversity (Sala et al., 2000), and this

view also holds for soil ecosystems (Smith et al., 2016). It has been shown that grasslands are more

suitable habitats for soil microarthropod (diversity and abundance) conservation, compared with

croplands (Menta et al., 2011). In cropland systems, benefits of organic farming (e.g., mechanical

weed control, organic fertilization, non-stained seeds, and restricted use of pesticides) on soil micro-

arthropod communities and associated ecosystem functions have been widely confirmed. As a result,

organic farming has been considered to represent a potential approach to reduce the environmental

impact of agriculture (Domı́nguez et al., 2014; House and Parmelee, 1985).

In grassland systems, intensively-managed grasslands (i.e., frequent mowing and fertilization)

appear to be incompatible with maintaining a high level of biodiversity and a complex community

structure (Plantureux et al., 2005), while the effects of grazing on soil biota are controversial and

may be species specific and context dependent (Qi et al., 2011). Generally, the trampling and feed-

ing behavior of livestock often has detrimental effects on both aboveground and belowground

communities; however, livestock manure may increase resource availability for soil food webs, e.g.,

increased biological activity, abundance, and diversity (Andrés et al., 2016; Epelde et al., 2017).

In this context, land-use intensification is deemed to decrease the abundance and biodiversity of

soil organisms (Bardgett and van der Putten, 2014; Flynn et al., 2009; Postma-Blaauw et al.,

2010), consequently threatening the functioning of soils and the ecosystem services that they

deliver, like soil fertility and nutrient dynamics (Beare et al., 1992; de Vries et al., 2013; Yin et al.,

2019), which may be fed back to primary production (Cardinale et al., 2004). Furthermore, land-use

intensification can have implications for trait diversity and functional composition in aboveground

and belowground arthropod communities (Birkhofer et al., 2017; Yin et al., 2020). For example,

frequent perturbations in intensive land use may select for soil microarthropods with particular life-

history traits, such as r-strategists with high reproduction rates and small body size.

Taken together, both climate change and land-use intensification may decrease the biomass of

soil microarthropods by decreasing their mean body size and density. Such changes in soil communi-

ties would be alarming given that many important ecosystem functions are determined by the bio-

mass of soil organisms (Höfer et al., 2001; Horwath, 1984; Petersen and Luxton, 1982).

Moreover, effects of climate change on soil communities and their functions can be dependent on

environmental contexts, such as different land-use regimes (de Vries et al., 2012; Foley et al.,

2005; Walter et al., 2013). That is, intensively-managed land characterized by higher levels of dis-

turbance and lower biodiversity may be more vulnerable to climate change (Isbell et al., 2017);

while extensively-managed land, with less disturbance and higher biodiversity potentially mitigates

these negative effects of climate change (Oliver et al., 2016). Therefore, disentangling the pathways

by which these main environmental change drivers contribute to changes in the biomass of soil

organisms and identifying potential interactive effects is crucial to better understand how ecosystem

functions and services may be affected and could be maintained in the future.

To address this critical knowledge gap, we tested potential interactive effects of climate and land

use on body size, density, and biomass of soil microarthropods. This study was conducted at the

Global Change Experimental Facility (GCEF) in Central Germany, where climatic conditions are

manipulated following a future scenario for the years 2070–2100 with increased temperature (ambi-

ent vs. ~0.6˚C warming) and altered precipitation patterns (i.e., 20% reduction in summer, and 10%

addition in spring and autumn, respectively) across five different land-use regimes (i.e., two crop-

lands and three grasslands differing in management intensity). We used data of multiple sampling
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campaigns to test how climate, land use, and the interaction of these two could affect the total bio-

mass of soil microarthropods. We hypothesized that (1) climate change, intensive land-use type (i.e.,

croplands), and intensified management practices (e.g., conventional farming in croplands, or inten-

sive management in meadows) will decrease the body size and density of soil microarthropods,

which then causes a reduction in total microarthropod biomass. Moreover, (2) we expected to find

synergistic effects of these two environmental change drivers as negative climate change effects

may be particularly strong in intensively-used land; by contrast, in extensively-used land, these nega-

tive effects can be diminished.

Results

Climate change reduces the body size of soil microarthropods
Climate change significantly reduced the body size of microarthropods by ~10% (Figure 1A;

Table 1A), which was driven by multiple taxa. Specifically, the body size of Oribatida, Mesostigmata,

and Sminthuridae significantly decreased under the future climate scenario (Figure 1C–D;

Table 1A). However, land-use treatments did not significantly affect the body size of microarthro-

pods and their taxa (Table 1A).

Figure 1. Effects of climate on the body size of (A) Microarthropods, (B) Oribatida, (C) Mesostigmata, and (D) Sminthuridae. The predicted mean ± SD

of body size for the ambient climate scenario (with all raw data as blue points), and future climate scenario (with all raw data as red points). * denotes

significant (P < 0.05) differences between climate scenarios based on post-hoc Tukey’s HSD tests.
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Intensive land use reduces the density of soil microarthropods
Land-use treatments significantly decreased the density of microarthropods by ~47% from the exten-

sively-used meadow to conventional farming (Figure 2A; Table 1B). More specifically, these signifi-

cant land-use effects on microarthropod density were due to the differences between the two main

land-use types (grasslands > croplands), and the two grassland types (meadows < pastures) but

were not due to differences between land-use management intensities within croplands (i.e., conven-

tional farming and organic farming), and the meadows (i.e., intensively-used meadows and exten-

sively-used meadows), respectively (Supplementary file 1A).

Among microarthropod communities, Acari (including its orders, i.e., Oribatida, Mesostigmata,

Prostigmata) and some Collembola taxa (i.e., Entomobryidae, Sminthuridae, Katiannidae) signifi-

cantly decreased in their density in response to land-use intensification (Figure 2B–H; Table 1B).

Similar to total microarthropod densities, these significant land-use effects were mainly caused by

the differences between the two main land-use types (with higher densities in grasslands than

in croplands) but were less due to the differences between land-use management intensities within

the croplands (conventional farming and organic farming), grasslands (meadows and pastures), and

meadows (intensively-used meadows and extensively-used meadows), respectively

(Supplementary file 1A).

Table 1. Results (F-values) from generalized linear mixed models testing the effects of climate, land use, season and their interactions

on (A) body size, (B) density and (C) biomass of soil microarthropods, Acari (including its order, i.e., Orib_: Oribatida; Meso_:

Mesostigmata; Pros_: Prostigmata), and Collembola (including its family, i.e., Isot_: Isotomidae; Ento_: Entomobryidae; Smin_:

Sminthuridae; Kati_: Katiannidae; Hypo_: Hypogastruridae; Onyc_: Onychiuridae).

Significant effects are indicated in bold font, with †=P < 0.1, *=P < 0.05, **=P < 0.01, ***=P < 0.001.

Independent
variable Df

Micro-
arthropod Acari Orib_ Meso_ Pros_

Collem-
bola Isot_ Ento_ Smin_ Kati_ Hypo_ Onyc_

(A) Body
size

Climate (C) 1,8 7.42* 2.52 5.52* 5.21* 0.28 2.26 3.24 1.52 4.81* 0.42 1.89 0.16

Land use (L) 4,32 1.34 1.32 0.65 2.13 0.52 0.49 1.21 1.79 0.44 0.65 3.55 0.47

C � L 4,32 0.65 2.09 1.85 1.11 0.96 0.62 1.66 1.45 1.6 2.48 16.76 0.41

Season (D) 2,16 63.87*** 52.13*** 83.35*** 1.15 0.42 4.74** 13.69*** 1.2 7.55** 3.25 0.11 4.87*

C � D 2,16 0.54 0.27 1.31 1.92 - 4 3.9 0.13 0.18 0.15 6.59 0.19

L � D 8,64 2.44 0.8 1.81 1.3 0.18 2.22 1.5 3.33** 0.86 1.97 2 0.91

C � L � D 8,64 0.37 0.81 0.95 0.76 - 1.1 1.36 0 2.1 2.49 - 0.37

(B)
Density

Climate (C) 1,8 4.78† 1.85 0.48 0.02 1.93 6.02* 5.03† 5.03† 0.01 0 0.12 1.44

Land use (L) 4,32 9.47*** 10.32*** 5.86** 5.49** 3.76* 0.74 0.81 3.68* 4.07** 3.4* 1.45 0.37

C � L 4,32 1.1 1.13 1.1 0.51 0.31 1.05 0.17 0.88 0.35 0.68 0.24 0.36

Season (D) 2,16 9.45** 13.28*** 14.44*** 6.04* 97.61*** 2.99 9.51** 22.96 14.85*** 5.88* 4.4* 8.63**

C � D 2,16 0.22 0.64 0.93 0.36 3.1 0.07 3.35 2.14 0.57 0.97 0.25 0.31

L � D 8,64 2.02 1.05 1.53 0.86 3.24** 3.71** 1.89 2.37* 4.3*** 2.67* 2.02 1.84

C � L � D 8,64 0.37 0.56 0.59 0.77 0.81 0.45 0.71 1.35 0.67 1.39 0.78 0.84

(C)
Biomass

Climate (C) 1,8 8.69* 7.15* 4.04† 6.76* 1.67 8.86* 7.89* 0.18 0.23 0.1 1.77 0.04

Land use (L) 4,32 4.73** 4.24** 4.91** 1.94 0.84 1.55 0.51 0.55 0.47 0.5 0.78 0.65

C � L 4,32 1.33 1.49 1.32 0.65 0.33 0.61 0.43 1.06 0.25 0.38 3.43 0.46

Season (D) 2,16 3.57 7.27** 5.49* 6.82** 4.04 13.7*** 13.58*** 0.34 0.53 1.57 1.31 5.85*

C � D 2,16 0.9 1.34 0.28 2.05 - 3.18 3.65 0.14 - 0.31 6.37 0.64

L � D 8,64 2.62 1.74 1.93 1.67 0.52 3.54** 1.9 2.08 - 0.33 25.78*** 1.17

C � L � D 8,64 0.61 0.85 0.43 1.33 - 1.29 1 1.44 - 0.59 - 0.51

The online version of this article includes the following source data for Table 1:

Source data 1. Density dataset of microarthropods.

Source data 2. Density dataset of microarthropods.

Source data 3. Biomass dataset of microarthropods.
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Additionally, climate change effects on microarthropod density were negligible. Specifically,

future climate did not significantly affect the density of Acari and most Collembola taxa (Table 1B).

It only marginally decreased the density of microarthropods, which was mainly caused by a decrease

in the density of Collembola (significant), Isotomidae, and Entomobryidae (both marginally signifi-

cant) (Figure 2I–L).

Climate change and intensive land use reduce the biomass of soil
microarthropods
The total biomass of microarthropods was significantly affected by both global change drivers

(Table 1C). Specifically, climate change significantly reduced the biomass of microarthropods

Figure 2. Effects of land use on the density of (A) Microarthropods, (B) Acari, (C) Oribatida, (D) Mesostigmata, (E) Prostigmata, (F) Entomobryidae, (G)

Sminthuridae, and (H) Katiannidae. The predicted mean ± SD of density for the conventional farming (CF, with all raw data as brown points), organic

farming (OF, with all raw data as orange points), and intensively-used meadow (IM, with all raw data as olive drab points), extensively-used meadow

(EM, with all raw data as lime green points), and extensively-used pasture (EP, with all raw data as lawn green points). Different lowercase letters denote

significant (P < 0.05) differences among land-use regimes based on post-hoc Tukey’s HSD tests. Effects of climate on the density of (I) Microarthropods,

(J) Collembola, (K) Isotomidae, and (L) Entomobryidae. The predicted mean ± SD of body size for the ambient climate scenario (with all raw data as

blue points), and future climate scenario (with all raw data as red points). * and † denote significant (P < 0.05) and marginal (P < 0.10) differences

between climate scenarios based on post-hoc Tukey’s HSD tests, respectively.
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Figure 3. Effects of climate on the biomass of (A) Microarthropods, (B) Acari, (C) Oribatida, (D) Mesostigmata, (E) Collembola, and (F) Isotomidae. The

predicted mean ± SD of body size for the ambient climate scenario (with all raw data as blue points), and future climate scenario (with all raw data as

red points). * and † denote significant (P < 0.05) and marginal (P < 0.10) differences between climate scenarios based on post-hoc Tukey’s HSD tests,

respectively. Effects of land use on the biomass of (G) Microarthropods, (H) Acari, and (I) Oribatida. The predicted mean ± SD of density for the

conventional farming (CF, with all raw data as brown points), organic farming (OF, with all raw data as orange points), and intensively-used meadow (IM,

with all raw data as olive drab points), extensively-used meadow (EM, with all raw data as lime green points), and extensively-used pasture (EP, with all

Figure 3 continued on next page
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by ~17% (Figure 3A; Table 1C), which was driven by both Acari (mainly due to its dominant taxa:

Oribatida and Mesostigmata) and Collembola (mainly due to its dominant taxon: Isotomidae)

(Figure 3B–F; Table 1C).

Additionally, the total biomass of microarthropods sharply decreased by ~37% from the exten-

sively-used meadow to conventional farming (Figure 3G; Table 1C), which was driven by a

decreased biomass of Acari (mainly due to its dominant taxon: Oribatida) (Figure 3H–I; Table 1C).

These significant land-use effects on the biomass of microarthropods (mostly that of Acari and Ori-

batida) were consistently driven by the differences between the two main land-use types (i.e., higher

biomass in grasslands than in croplands) but not by the different management intensities within

grasslands and croplands, respectively (Supplementary file 1B).

Pathways of biomass decrease in soil microarthropods
SEM results further confirmed that climate change and intensive land use reduced the biomass of

soil microarthropods indirectly via two different pathways. While biomass loss caused by future cli-

mate was mediated by reduced body size, biomass loss caused by intensive land use was mediated

by decreased density (Figure 4). Besides, in this model, we found that the mean body size of soil

microarthropods was negatively correlated with their density (Figure 4).

Figure 3 continued

raw data as lawn green points). Different lowercase letters denote significant (P < 0.05) differences among land-use regimes based on post-hoc Tukey’s

HSD tests.

Figure 4. Structural equation model (SEM) showing the pathways through which climate change and intensive land use influence soil microarthropod

biomass. The final model (AIC = 33.37) is the best-fitting model, with Fisher’s C = 3.37; P = 0.5; d.f. = 4. Numbers in the arrows are standardized path

coefficients. The blue (positive) and red (negative) one-way arrows indicate significant effects with * = P < 0.05, ** = P < 0.01, *** = P < 0.001. The

dashed arrows indicate non-significant effects (P > 0.05) that are still remaining in this model. The double-headed red arrow indicates a significant

correlation, with * = P < 0.05. The variance explained (R2) is shown in each panel.
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No interactive effects of climate and land use on soil microarthropods
Contrary to our expectation, there were no significant interactive effects of climate and land use on

body size, density, or biomass of soil microarthropods; neither on Acari nor Collembola (Table 1A-

C). Besides, the full model (overfit, with Fisher’s C = 0; p-value=1; d.f. = 0) with inclusion of the indi-

vidual and interactive effects of climate and land use also certified no significant interaction effects

on our response variables.

Seasonal patterns of microarthropod body size, density, and biomass
The body size of Acari was significantly larger in spring than autumn, but no significant effects

of season were detected on the body size of Collembola and total microarthropods

(Supplementary file 2A). The density of microarthropods (including both Acari and Collembola) was

significantly higher in autumn than in spring (Supplementary file 2B). The biomass of Collembola

was significantly higher in autumn than in spring, but no significant season effects were detected on

the biomass of Acari and total microarthropods (Supplementary file 2C).

Discussion
The main findings of the present study are as follows: (1) negative, but largely independent, effects

of climate change and intensive land use were found on soil microarthropod biomass; and (2) these

independent effects can be explained by two dissimilar pathways: climate change reduced microar-

thropod mean body size and intensive land use decreased microarthropod density. As climate

change and intensive land use operated via dissimilar pathways, our hypothesis of synergistic envi-

ronmental change effects was not supported, indicating that the underlying pathways of climate

change effects are consistent across land-use regimes and vice versa.

Climate change and land-use intensification reduce total
microarthropod biomass
In our study, climate change caused a significant reduction of total microarthropod biomass in the

soil. Our results are in line with those of Vestergård et al., 2015, who demonstrated that the bio-

mass of microarthropods was dramatically reduced by drought, especially when combined with

warming. Accordingly, climate warming was shown to exacerbate the drying of soil and thereby the

negative drought effects on soil microarthropods (Thakur et al., 2018).

For the soil system, we could show with our study that the future climate treatment simulated by

increased air and soil temperatures (+0.6˚C) and altered precipitation (�20% in summer and +10% in

spring/autumn) consistently reduced the body size and total biomass of soil microarthropods across

different land-use types and management. This adds to the existing body of literature reporting sim-

ilar effects for other groups of organisms (Daufresne et al., 2009; Gardner et al., 2011;

Sheridan and Bickford, 2011; Yom-Tov, 2001) and environmental contexts, thus underlining its

validity.

Reduction in body size is supposed to be a universal response of animals to climate change,

which is supported by the ecological rules dealing with temperature–size relationships, i.e., Berg-

mann’s rule (Bergmann, 1848), James’ rule (James, 1970), and Temperature–size rule (Atkin-

son, 1994), stating that warmer conditions would lead to organisms with smaller body size

(Gardner et al., 2011). This phenotypical variation is a widespread pattern across taxa, but there are

genetic differences between species (Forster et al., 2012). As a consequence, climate change only

significantly decreased the body size of some specific taxa (i.e., Oribatida, Mesostigmata, and Smin-

thuridae) in the present study.

Given the tight connection between ecological properties (e.g., longevity, fecundity, and mortal-

ity rates, as well as competitive interactions) and body size (Chown and Gaston, 2010;

Savage et al., 2004; Thakur et al., 2017), reductions in mean body size result in changes in commu-

nity biomass acquisition, and thereby the functioning of ecosystems. For example, the decreased

total biomass of soil microarthropods may decelerate the processes of litter decomposition and

nutrient cycling, which may also reduce nutrient mineralization processes, plant-available nutrients,

and aboveground production.
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Intensive land use also reduced the total biomass of microarthropods, but this negative effect

was due to lower densities in croplands than in grasslands. This is in accordance with other studies

reporting negative effects of intensive land use (Baker, 1998; Birkhofer et al., 2017) on the density

of soil fauna, whereas the conversion from croplands to grasslands was shown to have positive

effects (Zaitsev et al., 2006). Compared with croplands, grasslands (with less intensive disturbance

but more diverse plant communities) provide an environment with more habitats and more accessi-

ble food sources, can maintain higher densities of soil organisms (Alvarez et al., 2001;

Nyawira Muchane, 2012; Scherber et al., 2010). Accordingly, we found significantly higher levels

of microarthropod density and biomass in grasslands than in croplands, which is supported by previ-

ous studies (e.g., de Groot et al., 2016). Similarly, microarthropod density and biomass are

expected to be also reduced by the intensified management practices, e.g., monoculture, heavy use

of mineral fertilizers and pesticides in croplands, and frequent fertilization, mowing, and grazing in

grasslands; however, we did not find any evidence for this in the present study. This may be

explained by opposing effects of such management practices, as the described detrimental impacts

on soil communities can be compensated by positive effects, such as elevated plant productivity due

to mineral nutrient addition. Likewise, in grasslands, the negative effects of mowing or sheep grazing

may be partly compensated by the positive effects of enhanced plant productivity in response to fer-

tilizer usage and sheep manure (Epelde et al., 2017). Besides, these management practices appear

to have less pronounced impacts on belowground communities than on aboveground communities,

and less significant impacts on the abundance or biomass of soil biota than on their biodiversity

(Flohre et al., 2011; Tuck et al., 2014). Therefore, long-term studies are needed to explore if man-

agement intensity effects will change over time.

Extensive land use has limited potential to mitigate the consequences
of climate change
It is often suggested that extensive land use may effectively mitigate climate change effects due to

higher (aboveground and belowground) diversity and lower anthropogenic disturbance (Isbell et al.,

2017; Oliver et al., 2016). Accordingly, we hypothesized the negative effects of climate change on

soil microarthropods could be particularly strong in intensive land use, whereas they could be com-

pensated by extensive land use. In contrast to this hypothesis, we did not observe any significant

interaction effects of climate and land use on body size, density, and total biomass of soil microar-

thropods. These results showed that the effects of climate change on soil microarthropods were con-

sistent across different land-use regimes, suggesting that negative climate change effects will not be

exacerbated by intensive land use, nor mitigated by extensive land use. This finding calls for novel

management strategies to alleviate the consequences of climate change. Our study provides the first

mechanistic insights into the underlying pathways of changes in soil communities that may inform

such novel management approaches.

Climate change and land-use intensification decrease soil
microarthropod biomass via independent pathways
Climate change and intensive land use decreased microarthropod biomass via indirect and indepen-

dent pathways, namely, climate change reduced the mean body size and intensive land use

decreased overall densities. This is the first empirical evidence for such contrasting pathways under-

lying different environmental change factors in a full-factorial experiment. Consistent climate change

and land-use effects under different land-use regimes and climate contexts, respectively, suggest

that (1) the identified pathways may apply to a wide range of environmental conditions, and (2) cur-

rent extensive land-use regimes do not mitigate negative climate change effects on ecosystems.

However, we do not know yet if the outcomes are due to pure assembly mechanisms or if evolution

also plays an important role. Besides, the results of the SEM also revealed that the mean body size

of soil microarthropods was negatively correlated with their population density, which is supported

by a hypothesis of allometric (e.g., body size-abundance) relationships (Comor et al., 2014;

Mulder et al., 2011; Niu et al., 2015), but this observation needs further exploration.

Additionally, body size-mediated effects of climate change on soil microarthropod communities

may have profound implications for total community composition and ecosystem processes driven

by soil organisms, such as decreased litter decomposition rates (Taylor et al., 2010). We, therefore,
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encourage future studies to investigate how microarthropod biomass shifts affect soil ecological pro-

cesses (like litter decomposition and nutrient dynamics) and food web relations in the context of cli-

mate change. Moreover, future studies should investigate if decreasing mean body size of soil

microarthropods in response to climate change is due to species turnover toward smaller r-selected

species, shrinking body size within species, or both. By contrast, the reduction in microarthropod

densities in soil due to land-use intensification was not accompanied by reductions in mean body

size. Future studies should, therefore, explore which other traits of soil microarthropods are influ-

enced by climate change and land-use intensity and how they link to ecosystem functioning.

Materials and methods

Study site
The Global Change Experimental Facility (GCEF) is a large field research platform of the Helmholtz-

Center for Environmental Research (UFZ), which is located in Bad Lauchstädt, Germany (51˚ 23’ 30N,

11˚ 52’ 49E, 116 m a.s.l.) and was established on a former arable field with the last cultivation in

2012. This arable field is characterized by a low mean annual precipitation of 498 mm and a mean

temperature of 8.9˚C. The soil is a Haplic Chernozem with neutral pH (5.8–7.5), high nutrient con-

tents (i.e., total carbon and total nitrogen varied between 1.71–2.09% and 0.15–0.18%, respectively),

and humus content of 2% reaching down to a depth >40 cm. The soil is known for its high water

storage capacity (31.2%) and density (1.35 g/cm3), ensuring a relatively low sensitivity to drought

stress (Altermann et al., 2005; Iwg WRB, 2007).

Experimental set-up
The GCEF platform was designed to investigate the effects of future climatic conditions on ecosys-

tem processes under different land-use regimes (Schädler et al., 2019). Each of the 10 main plots

was divided into 5 subplots (each 16 m x 24 m), resulting in 50 subplots in total. The five subplots

within each main-plot were randomly assigned to one of the five land-use regimes: (1) conventional

farming (CF; cropland), (2) organic farming (OF; cropland), (3) intensively-used meadow (IM; grass-

land), (4) extensively-used meadow (EM; grassland), and (5) extensively-used pasture (EP; grassland).

Half of the main plots are subjected to an ambient climate scenario, the other half to a future climate

scenario (Figure 5B,C; Supplementary file 3). For our first hypothesis, we not only assessed the

general land-use effects, but also further contrasted the effects of land-use types (croplands vs.

grasslands), croplands (conventional farming vs. organic farming), grasslands (meadows vs. pastures),

and meadows (intensive meadows vs. extensive meadows).

Croplands and intensive meadows were established on the respective subplots in the summer

and autumn of 2013. The intensive meadow is a conventionally used mixture of forage grasses (20%

Lolium perenne, 50% Festulolium, 20% Dactylis glomerata, and 10% Poa pratensis). Within the study

period, winter wheat (2015) and winter barley (2016) were grown in these two croplands (the

detailed crop rotational sequences are shown in Supplementary file 3). In extensively-used meadow

and pasture, we repeatedly sowed target plant seeds (legumes, grasses, and non-leguminous dicots)

during the spring and autumn of 2014. See Supplementary file 3, and Schädler et al., 2019 for the

detailed description of land-use regimes.

The climate treatment is based on a consensus scenario for Central Germany in the period from

2070 to 2100, which was derived from 12 climate simulations based on four different emission sce-

narios using three established regional climate models: COSMO-CLM (Rockel et al., 2008), REMO

(Jacob and Podzun, 1997), and RCAO (Döscher et al., 2002). The consensus scenario predicts an

increase of mean temperature across all seasons by ~1˚C. For precipitation, the mean values of the

12 projections resulted in an experimental treatment consisting of a ~ 9% increase in spring (March–

May) and autumn (September–November) and a ~ 21% decrease in summer (June–August).

All main plots are equipped with steel framework elements (5.50 m height) to account for possi-

ble side effects of the construction itself. Main plots that are subject to future climate are further

equipped with mobile shelters, side panels, and rain sensors to allow for alterations in precipitation

amounts. Shelters were automatically closed from sundown to sunrise to increase night

temperature ~0.6˚C (Schädler et al., 2019). The night closing during these periods increased the

mean daily air temperature at 5 cm height by 0.55˚C, as well as the mean daily soil temperature in 1

Yin et al. eLife 2020;9:e54749. DOI: https://doi.org/10.7554/eLife.54749 10 of 17

Research article Ecology

https://doi.org/10.7554/eLife.54749


cm and 15 cm depth by 0.62˚C and 0.50˚C, respectively. Using an irrigation system, we added rain

water to achieve ~110% of ambient rainfall to the main plots with the future climate in spring and

autumn. Additionally, the rain sensors associated with the irrigation system were used to regulate

precipitation on the future climate main plots to ~80% of ambient rainfall in summer. As a result, pre-

cipitation was increased by 9.2% to 13.6% in spring and autumn, and decreased by 19.7% to 21.0%

in summer in both years, respectively. Climate manipulation started in spring 2014. During our

experiment, the roofs were active in 2015 (from 15th February to 11th December) and 2016 ( from

22nd March to 29th November).

Assessment of soil microarthropods
Soil samples were collected three times (autumn 2015, spring 2016, and autumn 2016) during a 1.5

year study period. At each sampling point, three soil cores (Ø 6 cm, 5 cm depth) were taken per sub-

plot to extract microarthropods (Collembola and Acari) using a Macfadyen high-gradient extraction

method (Macfadyen, 1961). Using a digital microscope (VHX-600, Keyence Corp., Osaka, Japan),

Acari were identified to the order level, that is, Oribatida, Mesostigmata, and Prostigmata; and

Figure 5. Global Change Experimental Facility (GCEF). (A) Aerial image of the experimental set-up of the GCEF in Bad Lauchstädt, Germany. Climate

treatments as the main plot factor with two levels: (B) Ambient climate vs. (C) future climate.

Ó 2013 Helmholtz Centre for Environmental Research - UFZ. Figure 5 is provided by Helmholtz Centre for Environmental Research - UFZ. It is not

covered by the CC-BY 4.0 licence and further reproduction of this figure would need permission from the copyright holder.
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Collembola were identified to the family level, that is, Isotomidea, Entomobryidae, Katiannidae,

Sminthuridae, Hypogastruridae, and Onychiuridae. For all taxa, we counted the number of individu-

als, and measured the body size (length, mm) of each individual using the measurement function of

the VHX microscope.

Statistical analysis
The biomass (M, mg) of microarthropod groups (Order level: Collembola, Oribatida, Mesostigmata.

and Prostigmata) was calculated according to a specific formula: Log M = a + b � log L with L as the

body size (length) of microarthropods (mm), with Collembola: a = –1.8479; b = 2.3002; Mesostig-

mata: a = 2.064; b = 2.857; Oribatida: a = 2.117; b = 2.711; Prostigmata: a = 2.124; b = 2.808 (Gani-

har, 1997; Mercer et al., 2001). For each subplot, the mean body size, population density, and

total biomass of microarthropods, Acari and its orders (Oribatida, Mesostigmata, and Prostigmata),

Collembola and its families (Isotomidea, Entomobryidae, Katiannidae, Sminthuridae, Hypogastruri-

dae, and Onychiuridae) were represented by mean ± SD and analyzed.

We analyzed the effects of climate (two levels: ambient vs. future), land use (five categories: OF,

CF, IM, EM, EP), season (three times, with two in autumn and one in spring), and their interactions

on the response variables using generalized linear mixed models with sampling season as repeated

factor (in SAS v 9.4). Body size and biomass data were log-transformed prior to analyses to meet the

requirements of parametric statistical tests. Count data (abundance/density) were analyzed assuming

Poisson-distributed residuals with a log-link function. In a few cases, there was indication of overdis-

persion according to generalized Chi-squared/d.f. ratios, and therefore we assumed negative bino-

mial-distributed residuals. The superior fit of the selected distributions was further confirmed using

the Akaike Information Criterion.

If the land-use effects were significant on specific response variables, then we further made

orthogonal contrasts to assess the effects of land-use types (croplands vs. grasslands), cropland man-

agement intensity (conventional farming vs. organic farming), grassland type (meadows vs. pastures),

and meadow management intensity (intensive meadows vs. extensive meadows), respectively. In

addition, we had an unbalanced dataset with two autumn samplings, but one spring sampling; there-

fore, we also ran a contrast (autumn vs. spring) to explore if there is a season effect on the body

size, density, and biomass of total soil microarthropods, Acari, and Collembola.

Furthermore, we ran path models using the ‘piecewiseSEM’ package (Lefcheck, 2016) to disen-

tangle the potential causal direct and indirect pathways by which climate, land use, and their interac-

tion influence the response variables. More precisely, (1) the models were created using generalized

linear mixed models in a full model with inclusion of the individual and interactive effects of climate

change (i.e., ambient ! future) and land-use intensification (i.e., following an increased intensity gra-

dient: EM ! EP ! IM ! OF ! CF) on the body size, density, and biomass of soil microarthropods.

According to Shipley’s test of d-separation yielding the Fisher’s C statistic (Chi-square

distributed; Shipley, 2009), our full model was saturated (overfit, with Fisher’s C = 0; P = 1; d.f. = 0)

and no interactive effects of climate and land use were detected. Therefore, we subsequently

reduced the number of pathways (i.e., climate � land use interaction) to meet the criteria of Ship-

ley’s test of d-separation in the reduced (final) model. We only reported the standardized coefficient

for paths of this final model in the results. (2) We tested if climate change and land-use intensifica-

tion affected soil microarthropod biomass (main response variable) via reductions in body size or

density, and if the two global change drivers differ in their pathways.
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Vestergård M, Dyrnum K, Michelsen A, Damgaard C, Holmstrup M. 2015. Long-term multifactorial climate
change impacts on mesofaunal biomass and nitrogen content. Applied Soil Ecology 92:54–63. DOI: https://doi.
org/10.1016/j.apsoil.2015.03.002

Wall DH, Bradford MA, ST. JOHNMG, Trofymow JA, Behan-Pelletier V, Bignell DE, Dangerfield JM, Parton WJ,
Rusek J, Voigt W, Wolters V, Gardel HZ, Ayuke FO, Bashford R, Beljakova OI, Bohlen PJ, Brauman A, Flemming S,
Henschel JOHR, Johnson DANL, et al. 2008. Global decomposition experiment shows soil animal impacts on
decomposition are climate-dependent.Global Change Biology 13:2677. DOI: https://doi.org/10.1111/j.1365-
2486.2008.01672.x

Walter J, Hein R, Beierkuhnlein C, Hammerl V, Jentsch A, Schädler M, Schuerings J, Kreyling J. 2013. Combined
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