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Pyrinap ligands for enantioselective syntheses of
amines
Qi Liu1,2,4, Haibo Xu1,2,4, Yuling Li1, Yuan Yao3, Xue Zhang1, Yinlong Guo1 & Shengming Ma 1,3✉

Amines are a class of compounds of essential importance in organic synthesis, pharma-

ceuticals and agrochemicals. Due to the importance of chirality in many practical applications

of amines, enantioselective syntheses of amines are of high current interest. Here, we wish to

report the development of (R,Ra)-N-Nap-Pyrinap and (R,Sa)-N-Nap-Pyrinap ligands working

with CuBr to catalyze the enantioselective A3-coupling of terminal alkynes, aldehydes, and

amines affording optically active propargylic amines, which are platform molecules for the

effective derivatization to different chiral amines. With a catalyst loading as low as 0.1 mol%

even in gram scale reactions, this protocol is applied to the late stage modification of some

drug molecules with highly sensitive functionalities and the asymmetric synthesis of the

tubulin polymerization inhibitor (S)-(-)-N-acetylcolchinol in four steps. Mechanistic studies

reveal that, unlike reported catalysts, a monomeric copper(I) complex bearing a single chiral

ligand is involved in the enantioselectivity-determining step.
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Chiral amines have been not only used as resolving reagents,
chiral ligands, and versatile building blocks in organic
synthesis but also demonstrated wide applications in

pharmaceuticals and agrochemicals (Fig. 1a)1–9. Thus, the
development of highly efficient and enantioselective methods for
syntheses of amines is of fundamental interest10,11. Due to the
presence of a synthetically versatile carbon–carbon triple bond,

propargylic amines are a very important class of compounds
commonly used as precursors for other amines and diversified
organic motifs. Consequently, attention has been paid to the
synthesis of this type of compounds12–14. Enantioselective three-
component coupling reaction of terminal alkynes, aldehydes, and
amines provides one of the most straightforward approaches to
propargylic amines due to the easy availability and diversity of the
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Fig. 1 Background and concept design. a Selected biologically active chiral amines. b Known ligands for catalytic enantioselective A3-coupling reactions.
c The method developed in this study. d Conceptual advance: evolution of binaphthyl to phenyl-naphthyl to biphenyl bisphosphines and the design of
Pyrinap and Pyriphen.
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three starting materials. Chiral ligands listed in Fig. 1b have been
developed or applied for this reaction by Brown15, Knochel16–23,
Carreira24,25, Aponick26–28, Naeimi29, Seidel30, and Guiry31,32.
However, challenges still remain: (1) Lack of a powerful catalytic
system that could be applied to broad spectrum of very challen-
ging combinations for three types of substrates of terminal
alkynes, aldehydes, and amines. (2) More practical and efficient
catalytic systems are highly desirable. Developing ligands should
be the solution.

It is well known that for atropisomeric diphosphine ligands the
backbone skeletons greatly affect their catalytic performance in
terms of both reactivity and enantioselectivity. For example, when
binaphthyl ligand BINAP (2,2′-bis(diphenylphosphino)-1,1′-
binaphthyl) was replaced with the phenyl-naphthyl ligands

(MeO-NAPhePHOS and TriMe-NAPhePHOS) and biphenyl
ligands (MeO-BIPHEP, SEGPHOS, and Garphos), some of the
challenges in enantioselective hydrogenation reactions have been
properly addressed33–39.

In this work, inspired by such backbone effect on catalytic
activity and previous studies on axially chiral P,N ligands24,40, we
report the development of the ligands phenyl-naphthyl-type
ligand N-Ph-Pyrinap L1, N-Nap-Pyrinap L2, and the diphenyl-
type ligand L3 to address the challenges with respect to the scope
of the combination of alkynes, aldehydes, and amines (Fig. 1d)

Results
Synthesis of Pyrinap ligands. At first, we tried to synthesize
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Fig. 2 Synthesis of Pyrinap ligands and determination of rotation barrier between (R,Sa)-L2 and (R,Ra)-L2. Reagents and conditions: (i) Pd(OAc)2 (5
mol%), PPh3 (20mol%), Na2CO3 (2 equiv), DME/H2O= 3:1, reflux, (58%); (ii) (R)-1-phenylethyl amine or (R)-1-(1-naphthyl)ethyl amine (1.3 equiv), Pd
(OAc)2 (5mol%), rac-Binap (7.5 mol%), Cs2CO3 (1.4 equiv), toluene, reflux; (iii) HCl (3M in MeOH/H2O), r.t.; (iv) PhNTf2 (1.0 equiv), Et3N (1.0 equiv),
DMAP (10mol%), DCM, r.t. (for Ar= Ph, 83% yield in step (ii) and 90% yield over 2 steps (iii and iv); for Ar= 1-naphthyl, 86% yield over 2 steps (ii and
iii) and 90% yield in step (iv).) (v) NiCl2(dppe) (10mol%), HPPh2 (2 equiv), DABCO (4 equiv), DMF, 120 °C, 12 h. DME 1,2-dimethoxyethane, DMAP
4-dimethylaminopyridine, DCM dichloromethane, DABCO triethylenediamine, DMF N,N-dimethylformamide.
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not be realized by the Ni-catalyzed phosphorylation reaction. The
reaction gave only a complex mixture (see Supplementary
information for the details). Subsequently, we turned our atten-
tion to synthesize N-Ph-Pyrinap L1 or N-Nap-Pyrinap L2. The
synthesis of Pyrinap was successfully realized as shown in Fig. 2b:
the Suzuki coupling reaction of 3,6-dichloro-4,5-dimethylpyr-
idazine S2 with boronate S3 produced biaryl compound S4 in
58% yield. Subsequent amination reaction with (R)-1-phenylethyl
amine or (R)-1-(1-naphthyl)ethyl amine, deprotection, and tri-
flation afforded corresponding triflates S6 or S8, respectively.
Finally, Ni-catalyzed coupling of S6 or S8 with HPPh2 provided a
mixture of diastereomers of L1 or L2, respectively, which may be
separated easily via column chromatography separation on silica
gel. The absolute configurations of (R,Sa)-L1 and (R,Sa)-L2 were
firmly established by X-ray single-crystal analysis, respectively. (S,
Ra)-L2 and (S,Sa)-L2 could also be easily prepared by the same
synthetic procedure with (S)-1-(1-naphthyl)ethyl amine (see the
Supplementary Fig. 3 for the details). In order to understand
the nature of these ligands, we first determined the rotational
barrier between (R,Sa)-L2 and (R,Ra)-L2 in toluene at 100 °C to
be 30.8 kcal/mol, which is higher than those for O-PINAP
(27.6 kcal/mol)41, at 75 °C for Stackphos (28.4 kcal/mol)26, at
50 °C for StackPhim (26.8 and 27.5 kcal/mol)28, and at 80 °C for
UCD-PHIM (26.8 kcal/mol)31 (Fig. 2b). Thus, the ligand L2 is
configurationally more stable under ambient conditions.

Optimization of reaction conditions. With these two ligands in
hand, we tried the enantioselective A3-coupling of the most
challenging propargyl alcohol 1a with a much smaller steric
hindrance, benzaldehyde 2a, and pyrrolidine 3a. After some
screenings, it was observed that (R,Ra)-L2 ligand gave the highest
yield (84%) and enantiomeric excess (ee) (85%) at room tem-
perature (r.t.) (Table 1, entries 1–3). The reaction at 0 °C afforded
the product in 90% ee (Table 1, entry 4). When 1.2 equivalent
(equiv) each of 2a and 3a were applied, the yield was improved
(Table 1, entry 5). The catalyst loading could be reduced to 2.5
mol% with the same level of enantioselectivity (Table 1, entry 6).
Following the same conditions reported in ref. 32 (Table 1, entry
7), (S,S,Ra)-UCD-PHIM provided the product in 86% yield with
−85% ee (Table 1, entry 8).

Substrate scope. With the optimized reaction conditions in hand,
we firstly tested the reactivity and enantioselectivity of various
aromatic aldehydes22,25: in general, decent yields and over 90% ee
were obtained regardless of the electronic properties of the phenyl
groups and the position of substituents (Fig. 3a). A wide range of
synthetically useful functional groups, such as halogen (2b, 2j, 2k,
2l), alkoxy (2d, 2e), cyano (2g), ester (2h), trifluoromethyl group
(2i), and chiral allene (2m) were intact under the optimal reaction
conditions (products (S)-4aba, (R)-4aja, (S)-4aka, (S)-4ala, (S)-
4ada, (S)-4aea, (S)-4aga, (S)-4aha, (S)-4aia, and (S,Ra)-4ama).
Heteroaromatic aldehydes such as Ts-protected indolecarbalde-
hyde (2n), 2-benzo[b]thiophenecarbaldehyde (2o), and 2-
thiophenecarboxaldehyde (2p) all delivered the corresponding
propargylic amines (R)-4ana, (R)-4aoa, and (R)-4apa with good
yields and high ee. In addition, aliphatic aldehydes also reacted
efficiently to afford the desired products (S)-4aqa and (S)-4ara in
high ee.

The scope of terminal alkynes42 was subsequently examined
(Fig. 3b): non-sterically hindered homopropargyl alcohol 1b
could produce (S)-4bsa in 96% yield with 90% ee. Even
the reaction of 1°-alkyl-substituted terminal alkyne 1c without
the hydroxyl group afforded the corresponding propargylic
amine (S)-4caa in 90% ee at −5 °C. As for aryl-substituted
alkyne 1d, high enantioselectivity was also obtained for the
product (S)-4daa30. As expected, excellent yields and ee for
products (S)-4eaa and (S)-4eqa were observed for tertiary
propargylic alcohol 1e with aromatic aldehyde 2a or aliphatic
aldehyde 2q.

Encouraged by the above results, we turned to explore the
scope of amines (Fig. 3c)30: a range of amines with different types
of aldehydes and alkynes were tested (Fig. 3c). The ring size of 6-
to 8-membered cyclic amines had no obvious effect on the
enantiocontrol of the reaction (products (S)-4fab, (S)-4dab, (S)-
4aqb, (S)-4gac, and (S)-4had). For 4-piperidone 3e, which was
used as an ammonia equivalent25, chiral (S)-4dte was obtained in
76% yield and 90% ee under a further modified conditions.
Morpholine 3f could also furnish the product (S)-4iaf in 85%
yield with 94% ee by using dimethyl carbonate instead of toluene
as the solvent. Meanwhile, the reaction could be extended to
acyclic amines with good yields and excellent ee for products (S)-
4jag and (S)-4kah. As we know that dibenzyl amine 3i is an

Table 1 Optimization of the reaction conditions.

OH
+ +

CuBr (x mol%)
Ligand (1.1x mol%)

4 Å MS, Toluene
N

)S( )S(Ph

1.05 equiv
2a

1.05 equiv
3a

0.2 mmol
1a

OH25 °C, 24 h
N
H

PhCHO

(S)-4aaa

Entry Ligand x (mol%) Yield of 4aaaa ee of 4aaa (%)b

1 (R,Sa)-L1 5 68 −78
2 (R,Sa)-L2 5 75 −84
3 (R,Ra)-L2 5 84 85
4c (R,Ra)-L2 5 74 90
5c,d (R,Ra)-L2 5 79 90
6c,d,e (R,Ra)-L2 2.5 73 (70f) 90
7g (S,S,Ra)-UCD-PHIM 1 84 −98
8h (S,S,Ra)-UCD-PHIM 1 86 −85

aDetermined by 1H NMR analysis with CH2Br2 as the internal standard.
bDetermined by chiral HPLC analysis of the isolated product.
cThe reaction was carried out at 0 °C.
d1.2 equivalents of 2a and 3a were used.
eThe reaction was conducted on 0.5 mmol scale.
fIsolated yield.
gData taken from ref. 32.
hData produced in this laboratory using (S,S,Ra)-UCD-PHIM prepared in this laboratory.
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important amine due to the potential of debenzylation for further
possible functionalization of the nitrogen atom. It should be
noted that the known ligands for the reactions with dibenzyl
amine 3i afforded (S)-4eai and (S,E)-4lvi in 49% yield with an
ee of merely 32% and 96% yield with 82% ee, respectively22,32.
Thus, the scope of this transformation with dibenzyl amine 3i
was investigated: both aromatic and aliphatic aldehydes could
achieve excellent yields and ee with tertiary propargylic alcohol 1e
(products (S)-4eai and (S)-4eui). Even an alk-2-enal or 2-alkynal,
which may readily undergo conjugate addition with the
amine, worked with an excellent selectivity: cinnamaldehyde E-

2v smoothly yielded the corresponding product (S,E)-4lvi in
80% yield and 99% ee; the reaction of 3-phenylpropiolaldehyde
2w under standard conditions was very sluggish in toluene,
producing (S)-4lwi in merely 6% nuclear magnetic resonance
(NMR) yield. However, 88% yield and 94% ee of (S)-4lwi
could be obtained by using dichloromethane (DCM) as solvent
with 1.5 equiv of trimethylsilylacetylene 1l27. Importantly, all
four different stereoisomers of 4oti may be obtained in excellent
yields, ee, and diastereomeric excess (d.e.) by starting from
optically active propargylic alcohol (R)-1o43 or (S)-1o43 and
chiral ligand (R,Ra)-L2 or (R,Sa)-L2, respectively.
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Fig. 3 Substrate scope of the enantioselective A3-coupling reaction. a Aldehydes scope, b alkynes scope, c amines scope, and d biologically active
molecules. Reaction conditions: athe reaction was carried out using 1a (1.2 equiv), 2m (0.15 mmol), and 3a (1.2 equiv). bThe reaction was carried out using
1a (6.25mmol), 2o (1.05 equiv), 3a (1.05 equiv), CuBr (0.1 mol%), (R,Ra)-L2 (0.11 mol%), and 4 Å MS (1.9 g) in toluene (16 mL) at 0 °C for 4 d. cThe
reaction was carried out using 1a (12.5 mmol), 2p (1.05 equiv), 3a (1.05 equiv), CuBr (0.1 mol%), (R,Ra)-L2 (0.11 mol%), and 4 Å MS (1.9 g) in toluene (31
mL) at 0 °C for 2 days. dThe reaction was carried out using 1d (1.2 equiv), 2a (0.5 mmol), and 3b (1.2 equiv). eThe reaction was carried out using 1d (0.5
mmol), 2t (2 equiv), 3e·HCl (1.2 equiv), NEt3 (2.2 equiv), CuBr (2.5 mol%), (R,Ra)-L2 (2.75mol%), and 4 Å MS (150.3 mg) in DCM (1.25 mL) at 0 °C for
24 h. fDMC (1.25 mL) was used as solvent. gThe reaction was carried out using trimethylsilylacetylene 1l (1.5 equiv), 3-phenylpropiolaldehyde 2w
(0.5 mmol), 3i (1.0 equiv), CuBr (2.5 mol%), (R,Ra)-L2 (2.75mol%), and 4 Å MS (150.6mg) in DCM (1.25 mL) at 0 °C for 2.5 days. hThe reaction was
carried out on a 0.25 mmol scale. iThe reaction was carried out using 1 (0.5 mmol), 2 (1.2 equiv), 3·HCl (1.2 equiv), and NEt3 (2.2 equiv) in DMC (1.25 mL).
jThe reaction was carried out using 1 (0.5 mmol), 2 (1.2 equiv), 3·HCl (1.2 equiv), and NEt3 (2.2 equiv) in DCM (1.25 mL). The absolute configuration before
the compound no. refers to the newly generated propargylic chiral center.
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Having illustrated the broad substrate scope and efficient
enantiocontrol ability of this catalytic system, late-stage mod-
ification of biologically active or drug molecules were further
performed (Fig. 3d): alkynes derivatives of carbohydrate D-
fructose 1p and amino acid L-phenylalanine (S)-1q44 provided the
corresponding products (R)-4poa and (S,S)-4qaa smoothly in
high yields and d.e.; the terminal alkyne groups in commercial
drugs, ethisterone 1r, mestranol 1s, and Boc-protected Rasagiline
(R)-1t45, may be readily converted to corresponding chiral
propargylic amines (S)-4raa, (S)-4saa, (S)-4sxa, and (S,R)-4tba,
without affecting other functionalities. For ethisterone 1r, cases of
match and mismatch between the substrate chirality and the
ligand chirality were observed: the reaction with (R,Ra)-L2 or (S,
Ra)-L2 yielded (S)-4raa in 93% yield with 97% d.e. or 82% yield
with 98% d.e., respectively. As a comparison, with (R,Sa)-L2 or (S,
Sa)-L2, the same product was produced in 50% yield with 75% d.
e. or 83% yield with 67% d.e., respectively. The reaction of the
terminal alkyne derivative of dihydroartemisinin, indole carboal-
dehyde, and piperidine afforded (R)-4unb and (S)-4unb success-
fully via the current protocol: even the fragile bridged peroxide
group in the dihydroartemisinin, which plays an important role
in antimalarial activity46, was tolerated. In this case, the absolute
configuration of the newly formed propargylic chiral center was
completely controlled by the axial chirality of the chiral ligand,
regardless of the substrate chirality or the central chirality of the
chiral ligand. This may be explained by the fact that the chirality
in dihydroartemisinin is far away from the terminal sp carbon
atom. Moreover, amine-containing drug molecules, trimetazine
(3j), duloretine ((S)-3k), and paroxetine ((S,R)-3l), could be used

directly in this reaction to deliver products (S)-4daj, (S,S)-4dak,
and (S,S,R)-4dal in high enantioselectivity under slightly modified
conditions (Fig. 3d).

To demonstrate the practical utility, the reaction of simple
propargyl alcohol 1a, cyclohexanecarbaldehyde 2q, and pyrroli-
dine 3a was performed on 12.5 mmol scale with only 0.1 mol% of
CuBr and 0.11 mol% of (R,Ra)-L2 affording chiral propargylic
amine (S)-4aqa42 in 78% yield (2.17g) and 91% ee after a simply
acid–base extraction. Heteroaromatic aldehyde 2o could also
produce 1.12 g of (R)-4aoa in 66% yield and 93% ee on 6.25
mmol scale with 0.1 mol% of catalyst (Fig. 3a).

Synthetic applications. The colchicine degradation product (S)-
(−)-N-acetylcolchinol (S)-6 is the tubulin polymerization
inhibitor47–49. Previously reported enantioselective synthesis of
(S)-6 suffered from using stoichiometric amounts of chiral
reagents and step-economy9,50–58. We reasoned that our
methodology could be applied to the highly efficient enantio-
selective synthesis of (S)-6 as outlined in Fig. 4a. The key step
would be the enantioselective A3 reaction with the above-
mentioned challenging dibenzyl amine 3i (Fig. 4b): at first, the
enantioselective A3-coupling reaction of alkyne 1v, aromatic
aldehyde 2y, and dibenzyl amine 3i under standard conditions
at r.t. was very sluggish, affording the desired propargylic amine
(R)-4vyi in 81% yield and 96% ee with 19% of 1v being
recovered even after 7 days. Fortunately, this targeted trans-
formation could be efficiently achieved at r.t. with 1.0 mol%
of CuBr and 1.1 mol% of (R,Sa)-L2 in dimethyl carbonate
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Fig. 4 Synthetic applications. a Retrosynthetic analysis of (S)-6. b A catalytic enantioselective synthesis of (S)-(-)-N-acetylcolchinol (S)-6.
c Transformation of propargylic amines (S)-4aaa and (S)-4aqa. Reagents and conditions: (i) Ni(OAc)2·4H2O (1 equiv), NaBH4 (1 equiv), ethylenediamine
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producing (R)-4vyi in 98% yields and 95% ee within 48 h.
Followed by Pd/C-catalyzed hydrogenation/debenzylation and
acetylation, the key intermediate (S)-5 was furnished in 81%
yield and 94% ee. Finally, after intramolecular oxidative cou-
pling of (S)-5, (S)-(-)-N-acetylcolchinol (S)-6 was obtained in
50% yield and 95% ee (47% yield and 97% ee after recrystalli-
zation from MeOH/H2O; ½α�27D ¼ �37:5 (c= 0.99, CHCl3),
reported value: 94% ee, ½α�27D ¼ �34:0 (c= 1, CHCl3)56; ½α�20D ¼
�55:8 (c= 0.135, CHCl3)57.

As stated in the introduction, the unique structure of chiral
propargylic amine offers opportunities for further synthetic
elaboration for the asymmetric syntheses of different amines
(Fig. 4c): partial reduction of the C≡C triple bond in (S)-4aaa
using “P-2 nickel” in the presence of ethylenediamine or LiAlH4

provided highly selectively (R,Z)-7 and (R,E)-7 in excellent yields
and ee59,60; the Mitsunobu reaction61 of (S)-4aaa with phthali-
mide afforded 1,4-butynyl diamine (S)-8 in 74% yield and 91% ee;
primary α-allenols (R)-9may also be prepared with 75% yield and
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94% ee by TBS protection, ZnI2-mediated allenation reaction, and
deprotection62,63.

Mechanistic studies. It has been reported that Quinap demon-
strated a strong positive nonlinear effect16, while a weak positive
nonlinear effect was observed for StackPhos (see the Supplemen-
tary information file of ref. 27). Interestingly, a perfect linear effect
was observed between the enantiopurity of (R,Ra)-L2 and product
(S)-4aqa for the current reaction shown in Fig. 5a, which indi-
cated that the catalytically active species most likely involves a
monomeric copper(I) complex bearing a single chiral ligand. In
order to acquire more information of the catalyst species in this
reaction, we tried to isolate the Cu(I)-(R,Ra)-L2 complex64, but
failed. We then performed 31P-NMR experiment to probe the
coordination of CuBr with (R,Ra)-L2 in d6-toluene. A broad
resonance at δ=−4.7 p.p.m. was observed in the 31P-NMR
spectrum of the resulting mixture, while the resonance at δ=
−12.7 p.p.m. corresponding to the free ligand (R,Ra)-L2 dis-
appeared (for the details on 31P-NMR experiment, see Supple-
mentary Figs. 5 and 6). The reported 31P-NMR chemical shifts
for 1,3-bis(diphenylphosphanyl)propane (dppp) and [Cu(dppp)2]
BF4 are δ=−17.2 p.p.m. and δ=−8.5 p.p.m., respectively65. The
change in 31P-NMR chemical shift suggested that the P atom
should coordinate to the Cu(I) atom in the solution, but may not
be as strong as in the reported case. Moreover, DFT calculations
were carried out to investigate the stability of two coordination
modes: N,P-coordinated intermediate Int_N,P and N-
coordinated intermediate Int_N (Fig. 5c, see Supplementary
information, pp 87–92 for the detailed information of computa-
tional methods). The calculated results showed that Int_N,P was
more stable than Int_N by 1.5 kcal/mol.

Solvent-assisted electrospray ionization mass spectrometric
experiment (SAESI-MS) was further applied to unveil the nature
of catalytically active species in this reaction66. First, a solution of
CuBr (6.25 μmol), (R,Ra)-L2 (6.88 μmol), and alkyne 1d (0.25

mmol) in toluene (1 mL) was stirred at r.t. under Ar atmosphere.
After 10 min, a signal with m/z of 650, which matched the m/z of
mono-ligated species [Cu((R,Ra)-L2)]+ (MS-Int. I, Fig. 5c(i),
calcd for C40H34

63CuN3P+: 650.2) was observed. Meanwhile, an
alkyne-coordinated intermediate MS-Int. II was confirmed by a
SAESI-MS/MS experiment (Fig. 5c(ii)). Then, aldehyde 2a (0.3
mmol) and pyrroline 3a (0.3 mmol) were added. The signal m/z
of 928.7 and 990.7 were attributed to mono-ligated intermediates
MS-Int. V (Fig. 5c(iii), calcd for C59H55

63CuN4OP+: 929.3) and
MS-Int. VI (Fig. 5c(iv), calcd for C59H54

79Br63CuN4P+: 991.3),
respectively. Their identities were further confirmed by the
SAESI-MS/MS experiment (for details on MS study, see
Supplementary Figs. 7–14).

Based on these experimental data, we proposed a mechanism
shown in Fig. 6: the mono-ligated Int. I would interact with the
terminal alkyne 1d to generate Int. II, in which the chiral amine
in the ligand may act as a proton shuttle. The reaction of amine
with aldehyde generated Int. III, which would coordinate with
the Cu atom in Int. II to form Int. IV. H+-mediated elimination
of water formed the iminium species in Int. V. Enantioselective
1,2-addition would afford Int. VI (Re face attack is more
favored), which underwent disassociation to release the product-
propargylic amine (S)-4daa and regenerate the catalytically active
Int. I to finish the catalytic cycle.

In conclusion, we have developed axially chiral P,N-ligands
Pyrinap for the highly efficient catalytic enantioselective A3-
coupling reaction of readily available alkynes, aldehydes, and
amines to provide a variety of chiral amine-synthesis platform
molecules, chiral propargylic amines, in high yields and
enantioselectivity. Compared to known ligands, the salient
features of this work are: (a) a general catalytic system that could
be applied to a variety of challenging substrate combinations with
high enantioselectivity; (b) monomeric copper(I) complex bear-
ing a single chiral ligand has been identified as the catalytically
active species; (c) the reaction has been successfully applied to the
late-stage modification of some drug molecules with the sensitive
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functionalities survived; (d) synthetic potential has further been
demonstrated by enantioselective synthesis of (S)-(-)-N-acetyl-
colchinol in four steps. Further studies on applications of Pyrinap
and the development of diphenyl-type ligand Pyriphen L3 are
being actively pursued in this laboratory.

Methods
General procedure for the catalytic enantioselective A3-coupling reaction. To
a flame-dried Schlenk tube were added CuBr (1.8 mg, 0.0125mmol), (R,Ra)-L2 (8.1
mg, 0.01375mmol), 4 Å molecular sieves (150.5 mg), and toluene (0.75 mL)
sequentially under Ar atmosphere. After being stirred at room temperature for 30
min, 1a (28.0 mg, 0.5 mmol) and 2a (63.7 mg, 0.6 mmol)/toluene (0.5mL) were
added sequentially under Ar atmosphere. The resulting mixture was stirred at 0 °C
for another 10 min, followed by the addition of pyrrolidine 3a (42.7 mg, 0.6 mmol).
After being stirred at 0 °C for 24 h, the reaction was complete as monitored by thin
layer chromatography. The resulting mixture was filtrated through a short pad of
basic aluminum oxide (200–300mesh) eluted with dichloromethane/MeOH
(10:1, 44 mL). After evaporation, the residue was purified by chromatography on
silica gel (eluent: petroleum ether/ethyl acetate= 2:1) to afford (S)-4aaa (74.9 mg,
70%) as a liquid: 90% ee (high-performance liquid chromatography conditions:
Chiralcel OD-H column, hexane/i-PrOH= 95/5, 1.2 mL/min, λ= 214 nm, tR(ma-
jor)= 10.1 min, tR(minor)= 7.7min); ½α�31D ¼ �28:1 (c= 1.05, CHCl3); 1H NMR
(400MHz, CDCl3) δ 7.51 (d, J= 7.2 Hz, 2H, ArH), 7.33 (t, J= 7.2 Hz, 2H, ArH),
7.27 (t, J= 6.4 Hz, 1H, ArH), 4.62 (s, 1H, CH), 4.36 (d, J= 1.6 Hz, 2H, OCH2),
2.67–2.51 (m, 4H, 2 × NCH2), 2.04 (s, 1 H, OH), 1.83–1.71 (m, 4H, 2 × CH2); 13C
NMR (100MHz, CDCl3) δ 138.9, 128.24, 128.21, 127.7, 85.0, 82.7, 58.9, 50.9, 50.5,
23.2; MS (EI) m/z (%) 215 (M+, 20.49), 138 (100); IR (neat): ν= 3065, 2960, 2924,
2871, 2841, 2729, 1489, 1455, 1372, 1345, 1309, 1270, 1233, 1206, 1121, 1087, 1074,
1033, 1024 cm−1; HRMS calcd for C14H18NO ([M+H]+): 216.1383, found:
216.1381.

Data availability
All data that support the findings of this study are available in the online version of this
paper in the accompanying Supplementary information (including experimental
procedures, compound characterization data, and spectra).
The X-ray crystallographic coordinates for structures of (R,Sa)-N-Ph-Pyrinap and (R,

Sa)-N-Nap-Pyrinap reported in this Article have been deposited at the Cambridge
Crystallographic Data Centre (CCDC) under deposition numbers CCDC 1911487 ((R,
Sa)-N-Ph-Pyrinap) and 1911488 ((R,Sa)-N-Nap-Pyrinap). These data can be obtained
free of charge from http://www.ccdc.cam.ac.uk/data_request/cif.
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