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Mammary cell gene expression atlas links epithelial
cell remodeling events to breast carcinogenesis
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Susan L. Neuhausen3 & Shiuan Chen 1✉

The female mammary epithelium undergoes reorganization during development, pregnancy,

and menopause, linking higher risk with breast cancer development. To characterize these

periods of complex remodeling, here we report integrated 50 K mouse and 24 K human

mammary epithelial cell atlases obtained by single-cell RNA sequencing, which covers most

lifetime stages. Our results indicate a putative trajectory that originates from embryonic

mammary stem cells which differentiates into three epithelial lineages (basal, luminal hor-

mone-sensing, and luminal alveolar), presumably arising from unipotent progenitors in

postnatal glands. The lineage-specific genes infer cells of origin of breast cancer using The

Cancer Genome Atlas data and single-cell RNA sequencing of human breast cancer, as well

as the association of gland reorganization to different breast cancer subtypes. This com-

prehensive mammary cell gene expression atlas (https://mouse-mammary-epithelium-

integrated.cells.ucsc.edu) presents insights into the impact of the internal and external stimuli

on the mammary epithelium at an advanced resolution.
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A lthough complex cellular networks are known in the
mammary gland, epithelial cells are key drivers of its
development and the origin of mammary carcinogenesis.

Embryonic mammary stem cells (MaSCs) give rise to the epi-
thelium’s entire repertoire, which is composed of two major cell
types; the tubular luminal epithelial cell sheet is enclosed by an
outer layer of basal cells1,2. The luminal cell lineage includes
hormone receptor-positive sensing cells and hormone receptor-
negative alveolar cells1,3. Breast cancer is a heterogeneous disease
on a molecular level with distinct epidemiological and phenotypic
features4, as breast cancer subtypes originate from different cell
types in the mammary epithelium3–7. However, the relationship
between the mammary epithelial hierarchy and the cells of origin
of breast cancer is not totally clear, partly because the gland
lineage trajectory has not been fully resolved3,5,6.

During selective periods in a woman’s life, the mammary gland
increases its sensitivity to sex hormones and external stimuli,
simultaneously increasing the risk for breast cancer. These win-
dows of susceptibilities coincide with the major events during
which the gland undergoes complex epithelial remodeling,
including embryonic, pubertal, pregnancy, and menopausal
periods1,8. Several single-cell RNA sequencing (scRNAseq) stu-
dies of mouse mammary gland have examined the cellular
composition in the gland and its active reorganization during
different windows of susceptibilities9–14. However, challenges,
such as technical obstacles, batch effects, and lack of consensus in
the lineage trajectory, prevented comparisons between different
studies15,16.

Here we tested a hypothesis that a construction of integrated
data, covering key windows of susceptibilities, would compre-
hensively capture the reorganization of the mammary gland
throughout life. Furthermore, the projection of a consensus
lineage trajectory could infer cells of origin for carcinogenesis,
allowing us to assess the potential link of gland reorganization to
the risk of different breast cancer subtypes. As many breast cancer
cases develop after menopause and exposure of estrogen or
estrogen mimics are thought to promote postmenopausal breast
cancer17, we designed a new study to examine the gland after
menopause and its response to external stimuli. Then, by inte-
grating available scRNAseq data sets, we constructed a mammary
cell gene expression atlas and a putative consensus lineage tra-
jectory (https://mouse-mammary-epithelium-integrated.cells.
ucsc.edu). In addition, we extrapolated the lineage-specific fea-
tures to human normal and malignant breast epithelium for
inferring cells of origin of breast cancer. Eventually, we appraised
the reorganization of the gland over life stages to deduce their
potential linkages to increased risk of specific breast cancer
subtypes.

Results
Construction of a murine mammary cell gene expression atlas.
Four scRNAseq data sets of mouse mammary glands from the
embryo, neonate, puberty, and pregnancy were identified in a public
database (Fig. 1a and Supplementary Data 1)10–13. To address the
impacts of menopause and external hormone or endocrine-
disrupting chemical exposure during this period, we treated surgi-
cally menopaused mice with 17β-estradiol, progesterone, poly-
brominated diphenyl ether congeners (PBDEs) (i.e., environmental
chemicals interacting with estrogen receptor-α8,9,18), or combinations
of them. 17β-Estradiol treatment re-expanded the gland in the
menopaused mice with increased total duct length, branching points,
and terminal end bud-like structures that are considered to be active
proliferation sites of the gland9 (Supplementary Fig. 1). The addition
of progesterone, together with 17β-estradiol, increased branching of
the gland. Simultaneous exposure to PBDEs did tend to show weaker

regrowth of the gland (Supplementary Fig. 1). The mammary glands
from these treated mice were analyzed with scRNAseq.

The five scRNAseq data sets (Giraddi et al.10, Pal et al.11, Bach
et al.13, Tabula Muris Consortium13, and this study) covered eight
distinct developmental/life stages (embryonic, neonatal, pubertal,
virgin adult, pregnant, lactating, involuted, and menopause)
across three mouse strains (C57BL/6, FVB, and Balb/c), including
~75 K total barcodes (or cells) (Supplementary Data 2)10–13. The
data were processed to remove low-quality barcodes, potential
multiplets, and non-epithelial cells (Supplementary Figs. 2–4 and
Supplementary Data 2 and 3; see “Methods” for detailed
descriptions). The remaining high-quality 50 K putative single
mammary epithelial cells were merged using the anchor
correspondence-based data integration method implemented in
Seurat v319, which resulted in Uniform Manifold Approximation
and Projection (UMAP) plots exhibiting three major clusters
connected by a bridging population in the middle of its
trifurcation shape (Fig. 1b, c). Inter- and intra-data set differences
inherent to the experiments, mouse strains, and individuals were
removed by the data integration algorithm (Fig. 1c and
Supplementary Fig. 5a, b). Robustness of the data integration
was confirmed by the conservation of the trifurcation-like
structure, regardless of the various parameters input (Supple-
mentary Fig. 5c).

Community detection with the Louvain algorithm identified
six distinct clusters in the integrated data (Fig. 1c, Supplementary
Fig. 6a, b, and Supplementary Data 4). Visualization of published
marker genes9–12 revealed that the three major leaf clusters were
basal cells (Basal), luminal alveolar cells (L-Alv), and luminal
hormone-sensing cells (L-Hor). Cluster (C) 2 was positive for
basal cell markers such as Krt14, Acta2, Krt17, and Myl9, whereas
C4 and C6 expressed a luminal epithelial marker, Krt18 (Fig. 1d
and Supplementary Fig. 6c, d). There were two distinct luminal
cell types: (i) L-Alv (C4), which were positive for Csn3, Lalba,
Csn2, and Spp1, and associated with lactation and alveolar cells;
and (ii) L-Hor (C6), which expressed Areg, Cited1, Ly6d, and Prlr,
and were hormone receptor positive (Fig. 1d and Supplementary
Fig. 6c, d). At the center of the trifurcation were cells from the
embryonic glands (Fig. 1b–d and Supplementary Fig. 6b), which
contained true MaSCs capable of differentiating into the entire
repertoire of the mammary epithelium1,10. As UMAP dimension
reduction can recapitulate lineage differentiations with well-
conserved cell-to-cell continuity and global relationships20–22, the
mammary epithelium lineage trajectory was thought to initiate
from the embryonic MaSCs, in the middle of the trifurcation,
which differentiate into three distinct cell types. Detailed
examination revealed that MaSCs at embryonic day 16 reside in
the area slightly skewed to Basal clusters and start to differentiate
as early as embryonic day 18 (Fig. 1d). Accordingly, the bridging
clusters, C1, C3, and C5, were considered as putative progenitor
clusters for Basal (C2), L-Alv (C4), and L-Hor (C6), respectively.
These clusters shared the same marker genes with their
differentiated counterparts (Fig. 1d and Supplementary Fig. 6c,
d). They also express genes related to cellular proliferation,
somatic stem cell function, mammary gland development, and/or
breast cancer progression, such as Birc5, Hmgb2, and Stmn1
(Supplementary Fig. 6c, d)23–27. To strengthen this interpretation,
CytoTRACE, a recently developed non-biased bioinformatics tool
to predict the differentiation state of cells, was applied to the
data28. The algorithm leveraged the number of expressed genes
per cell to infer a lineage trajectory in the given data without prior
knowledge. The results revealed that putative progenitor clusters
had significantly higher CytoTRACE scores compared to the
corresponding leaf clusters (Fig. 1e and Supplementary Fig. 7a).
The stemness indicated by higher CytoTRACE scores gradually
decreased from the cells in the embryonic glands to those in the
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Fig. 1 Integration of the five scRNAseq data indicated a putative lineage trajectory in the mouse mammary epithelium. a The overview of the
integration process and the data. b The integrated data summarized in the 3D UMAP dimensionality and color-coded by the stages at the samplings. c The
2D UMAP projections of the integrated data color-coded by the clusters detected with the Louvain algorithm, the original studies, the mouse strains, and
the stages at the samplings. d The cells from the prenatal glands and the expression of the selected marker genes were visualized in the UMAP
dimensionality. Five thousand cells were sampled from the entire data for UMAP visualization. e The CytoTRACE scores are compared between C1 (n=
2404) and C2 (n= 2393), C3 (n= 2659) and C4 (n= 2429), and C5 (n= 828) and C6 (n= 2249) (biologically independent samples). Cliff’s delta values
for the comaprisons of C1 and C3, C3 and C4, and C5 and C6 were 0.72 (CI: 0.70–0.74), 0.81 (CI: 0.79–0.82), and 0.53 (CI: 0.49–0.57), respectively. CI,
confidence interval. The box-plot elements were defined as follows: center line, median; box limits, upper and lower quartiles; whiskers, 1.5× interquartile
range; points, outliers. f The inferred trajectory of the mammary epithelial starting from the embryonic MaSCs and differentiating into the three distinct
differentiated states (Basal, L-Alv, and L-Hor) through the corresponding progenitor clusters.
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adult glands (Supplementary Fig. 7b–d). Collectively, a mammary
gland lineage trajectory was suggested to start from embryonic
MaSCs (C1) and differentiate into Basal (C2), L-Alv (C4), and L-
Hor (C6) clusters through the corresponding progenitor states
(B-Pro (C1), LA-Pro (C3), and LH-Pro (C5), respectively)
(Fig. 1f). Three additional integration algorithms (Harmony29,
LIGER30, and scAlign31) yielded similar UMAP plots in overall
shapes, which further supported our conclusion. (Supplementary
Fig. 7e–g). The integrated data were deposited to the UCSC Cell
Browser and interactively explorable on the website (https://
mouse-mammary-epithelium-integrated.cells.ucsc.edu)32.

Trajectory reconstruction and mammary cell-type inference
based on lineage-specific gene sets. Next, the differentiation
trajectory was reconstructed on pseudotime to obtain more
insight into the branching timings, points of the three differ-
entiated states, and differentiation-specific gene expression. The
resulted cellular trajectory using the STREAM python pipeline33

(see “Methods”) and the marker gene expression on pseudotime
supported the inferred hierarchy of the mammary epithelium in
Fig. 1, showing that the embryonic MaSCs have an expression
profile more similar to basal progenitors and differentiate into
three epithelial cell lineages (Fig. 2a, b and Supplementary Fig. 8a,
b). The putative bipotent luminal progenitor (LP) state (the S3_S0
branch) was found and predominantly occupied by embryonic
cells, suggesting that luminal lineage determinations occur mainly
during embryonic development. There were very few putative
bipotent LPs in the postnatal glands (Supplementary Fig. 8c, d).
Putative oligopotent MaSCs in the S5_S3 branch were not only
composed of cells from embryonic glands10 but also from
pregnant12 and pubertal glands11 (Supplementary Fig. 8c).
However, when the absolute number of cells was counted, they
comprised only a very small fraction of the entire data set after
birth (Supplementary Fig. 8d). Differences between mouse strains
could not be evaluated, because cells from some important life
stages are exclusively from a single strain (Supplementary Figs. 6b
and 8c).

We then examined differential gene expression on pseudotime.
First, we focused on the putative unipotent progenitor popula-
tions (C1, C3, and C5 clusters in Fig. 1), which were not clearly
identified in the previous scRNAseq studies10–13. We analyzed
transcriptomic changes during the differentiation process in each
lineage (S0_S1: L-Hor differentiation, S0_S2: L-Alv differentia-
tion, and S3_S4: Basal differentiation). The progenitor popula-
tions were found to express genes associated with cell cycle
progression and myc pathways compared to their mature
counterparts (Supplementary Fig. 8e and Supplementary Data 5).

Second, by comparing the correlation between gene expression
and pseudotime, the top-ranked genes specific to each leaf state
were identified (Fig. 2c, Supplementary Fig. 9a, b, and
Supplementary Data 6). Using the identified genes, we built gene
sets to locate selected single cells on the mammary lineage
trajectory (see “Methods”). The performance of the gene sets, as
measured by single-cell gene set variation analysis (scGSVA)34,
plateaued at some points during the gradual increase in the
number of the top-ranked genes in the gene sets (Fig. 2c and
Supplementary Fig. 9c). The best performing gene sets included
the top 160, 240, 500, and 200 genes for “Stem” (S5 pseudotime),
“Basal” (S4 pseudotime), “Alv” (S2 pseudotime), and “Hor” (S1
pseudotime) states, respectively (Supplementary Fig. 9c). To
further evaluate the performance of the curated gene sets, we
systematically examined other RNA-based features available in
the Molecular Signatures Database (MSigDB n= 22,540; as of 3-
20-2020), two outputs from CytoTRACE (CytoTRACE and Gene
Count Signature (GCS)), and three basic biological characteristics

inherent to scRNAseq barcodes (gene count, transcript count,
and percentage of the mitochondrial genes) for their potential
association with specific states. As a result, the curated “Stem”
gene set outperformed all the other features or algorithms
regarding correlation with S5 pseudotime (Fig. 2c and Supple-
mentary Data 7). The appearance of GCS, CytoTRACE, and gene
sets associated with cellular stemness and proliferation at the top
of the list supported proper estimation of the lineage trajectory.
The other three curated gene sets also showed the best correlation
with the corresponding pseudotime (Supplementary Fig. 10).

Identification of the lineage-specific gene sets motivated us to
pursue de novo reconstruction of the mammary epithelium
trajectory for a more flexible and less computationally intensive
integration of scRNAseq data, as reported to estimate the
differentiation status of human oligodendroglioma cells35. We
summarized the scRNAseq data sets using the scGSVA scores for
the curated gene sets and the UMAP dimensionality (Fig. 2d).
The obtained cell distribution recapitulated analytical results of
the integrated data (Figs. 1c and 2d). Combining the data from
three gene sets for the differentiated states (“Basal,” “Alv,” and
“Hor”) also plotted cells on a similar trajectory (Supplementary
Fig. 11a). The scores categorized cells from individual data sets
into three distinct differentiation states on ternary plots
(Supplementary Fig. 11b). Quantitative evaluation of each
cluster’s scores matched the expectation that “Stem” score is
higher in cells from the putative progenitor clusters, whereas the
other three lineages’ scores were higher in their corresponding
clusters (Supplementary Fig. 11c).

Lineage dissection of the human mammary scRNAseq data.
The biological similarity between human and mouse mammary
glands has been well documented3,36. To evaluate the conservation
at a single-cell resolution, we unbiasedly transferred cluster
annotation of the mouse integrated data to publicly available
human scRNAseq data through canonical component analysis-
based anchor identification (see “Methods”)19,37. The three major
lineages identified in the mouse mammary epithelium (Basal, L-
Alv, and L-Hor) were found to largely correspond to B/Myo, L1.1/
L1.2, and L2 clusters, respectively (Fig. 3a, b and Supplementary
Fig. 12). The results supported that there is a close similarity in the
biology of mouse and human mammary epithelial cells. Although
the label transfer was able to meaningfully annotate the human
breast epithelium, the agreement differed between individuals and
inconclusive annotations were observed (Fig. 3a, b and Supple-
mentary Fig. 12). Thus, lineage-specific gene sets could be opti-
mized for each species, despite their shared basic biology.

The scRNAseq data from four individuals were integrated, a
putative lineage trajectory was generated with the STREAM
pipeline, and lineage-specific gene sets were identified as
performed in the integrated mouse mammary gland data (Fig. 3c,
Supplementary Fig. 13, and Supplementary Data 8 and 9). One
noted limitation was that data from four individual adults
probably did not include enough stem and progenitor cells.
Although both UMAP and STREAM suggested a junction point of
the three lineages in human breast epithelium, this point might
not be the true origin point based on the inconclusive
CytoTRACE scores and the transferred annotation in which the
MaSC/B-pro cells were clustered in the middle of basal cells (or B/
Myo cluster) (Supplementary Fig. 13b). Consequently, we decided
to adopt the stem gene set identified in mice to infer a trajectory of
the human mammary epithelium, assuming that they share a
similar, although not identical, differentiation machinery.

Breast epithelial cells (24 K) from four adults were scored on a
single-cell basis using the curated gene sets and were summarized
by UMAP dimension reduction (Fig. 3c). As expected, the three
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major clusters were separated and there was no bridging cluster
between them, indicating the absence of true MaSCs in the
human adult breast. B/Myo, L1.2/L1.2, and L2 cells showed
higher scores for Basal, Alv, and Hor gene sets, respectively
(Supplementary Fig. 14a–c). The GSVA scores for the stem gene
set showed a significant correlation with unbiasedly calculated
CytoTRACE scores (Supplementary Fig. 14d). Besides, MaSC/B-

pro cells in transferred annotation clustered together, budding
from Basal cells on the UMAP plot (Supplementary Fig. 14b).
These observations suggest that the adopted stem gene set from
mouse can be used to predict a lineage trajectory in the human
breast. Also, as observed in the analysis of mouse data, ternary
plots based on human Basal, Alv, and Hor gene sets could
separate the three differentiation states in individual samples
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(Supplementary Fig. 15a). To validate the robustness of the
obtained gene sets, scRNAseq data of human breast epithelium
from another three individuals37 were analyzed. The data were
processed according to the original publication and evaluated by
the curated gene sets (Supplementary Fig. 15b, c). The results
showed that the curated gene sets could indicate lineages of cells
from another data set generated using a different modality. When
mouse and human lineage-specific gene sets were compared, both
commonalities and differences were recognized (Supplementary
Fig. 15d). Although the known lineage markers and the relevant
gene signatures were preserved in the two species, many genes
were species specific (Supplementary Data 10 and 11).

Putative cells of origin for breast cancer inferred by human
lineage-specific gene sets. Cancer is thought of as the clonal
expansion of a single transformed cell6,38. As such, bulk tran-
scriptome analysis of the tumor tissue could reflect features of
cells of origin. Therefore, lineage inference based on the curated
gene sets would predict their cells of origin as previously
attempted7,37. Here, the pseudo-RNAseq data by combining
luminal and stromal cells from the scRNAseq data confirmed that
the lineage inference by the curated gene sets is robust, irre-
spective of sampling size and stromal contamination (Supple-
mentary Fig. 16a–d; see “Methods”). The gene sets could also
successfully infer the cell lineages of the real microarray data of
the fluorescence-activated cell (FACS)-sorted population from
both mouse and human7,36 (Supplementary Fig. 16e). Confirming
the applicability of the bulk transcriptome analysis method, breast
cancer RNAseq data in The Cancer Genome Atlas (TCGA,
https://www.cancer.gov/tcga) was retrieved39, which included
1102 primary breast cancer and 113 normal breast tissues. The
breakdown by PAM50 subtypes were as follows: Basal-like (Basal;
n= 194), Her2-enriched (Her2; n= 82), Luminal A (LumA; n=
567), Luminal B (LumB; n= 207), and Normal-like (n= 40). The
scGSVA scores for the curated gene sets were scored per sample
and results were visualized by UMAP dimensionality (Fig. 3d).
Three distinct clusters were identified: one almost exclusively
composed of Basal tumors, one enriched for normal mammary
glands, and another included the Her2, LumA, and LumB sub-
types. This lineage gene set-based classification showed clearer
cluster separation compared to the summarized data using the
whole transcriptome (Supplementary Fig. 17a). Detailed investi-
gation of each score revealed that breast cancer tissues had higher
Stem scores compared to normal mammary tissues (Supple-
mentary Fig. 17b). Normal-like tumors were scattered on the plot
and showed a similar profile to normal mammary tissues, except
for the higher Stem scores. Basal tumors showed lower scores for
the Hor gene set and higher scores for the Alv gene set. On the

other hand, Her2, LumA, and LumB tumors had higher scores for
the Hor gene set, with lower Stem scores for LumA. Con-
tamination of stromal cells had little influence on the scores
observed (Supplementary Fig. 17c).

When the transcriptome of human breast cancer was assessed
in more detail using the putative progenitor cluster-specific gene
sets defined in the mouse epithelial cell data (Supplementary
Data 4), LumB and Her2 subtypes had higher LH-pro scores when
compared to LumA subtype (Supplementary Fig. 17d). In contrast,
LumA tumors had higher L-Hor scores. A simplified visualization
with the three differentiation-associated gene sets on a ternary plot
supported the idea that most of Basal tumors originated from the
alveolar lineage, and Her2, LumA, and LumB tumors had their
origins in the hormone-sensing cell lineage (Fig. 3d). The normal
mammary tissues located at the center of the ternary plot reflected
the nature of the tissue composed of all three lineages
(Supplementary Fig. 16a, c). It was notable that a small fraction
of Basal and Normal-like tumors were biased toward the basal cell
lineage. Additional examinations revealed that they were histolo-
gically classified as metaplastic carcinoma and molecularly as
claudin-low breast cancer (Supplementary Fig. 18a, b).

Triple-negative breast cancer (TNBC), a clinical phenotype, is
classified into six (TNBCtype), or more recently four (TNBCtype-
4), subtypes by their molecular signatures40,41. When TNBCs in
the TCGA BRCA data sets were evaluated in light of the
differentiation lineage, most TNBC tumors were mapped onto the
Alv lineage (Supplementary Fig. 18c). However, the luminal
androgen receptor (LAR) subtype TNBCs were scattered into the
Hor lineage, indicating their different origins in the gland
hierarchy. The BRCA gene mutation status contributes to another
dimension of heterogeneity in breast cancer. It has been reported
that the majority of BRCA1 tumors are basal-like and BRCA2
tumors are mainly LumB42. In accordance with the subtype-
lineage relationship in Fig. 3b, BRCA1 tumors were found in the
Alv area, whereas BRCA2 tumors were observed in both the Alv
and Hor lineage with higher Hor scores (Supplementary Fig. 18d).
Although age at diagnosis has also been associated with intrinsic
subtypes, there was no correlation between age and lineage scores
in this cohort (Supplementary Fig. 18e).

In addition, the gene set-based lineage inference was applied to
scRNAseq data of human breast cancer from Chung et al.43. The
data set consisted of 317 tumor cells from 10 patients (Basal; n=
1, Her2; n= 2, LumA; n= 1, LumB; n= 4, and Normal-like; n=
2). The summarization with the curated gene sets showed that
Basal and Normal-like tumor cells had distinct lineage features
from others (Fig. 3e), whereas tumor cells were separated mainly
by individuals when a whole transcriptome was considered
(Supplementary Fig. 19a). Visualization on a ternary plot

Fig. 2 The trajectory inference of the mouse mammary epithelium scRNAseq data based on the lineage-specific gene sets. a The lineage trajectory
along pseudotime was learned in the Mlle space using the stream pipeline and visualized on a stream plot color-coded by the combination of the stage and
clusters. b The marker gene expressions are visualized on the stream plots along pseudotime. c Identification of the lineage-specific gene sets that
outperform the existing RNA-based features, algorithms, and cell characteristics. The pseudotime starting from the four distinct leaf states (“Stem,”
“Basal,” “Alv,” and “Hor”) are visualized on the UMAP dimensionality. Five thousand cells were sampled from the entire data for UMAP visualization. Then,
top-ranked genes were identified for each pseudotime and performance of the gene sets were evaluated regarding correlation to the corresponding
pseudotime with the gradual increase in the number of the top-ranked genes included in the gene sets. The X-axis represents the number of genes in the
gene sets and the Y-axis represents the correlation coefficients of the scGSVA scores for the gene sets to the corresponding pseudotime. The plotted lines
indicate LOESS regression of the results from the five studies and the colored area represents the confidence intervals. Finally, the performance of the
curated gene sets were compared to other RNA-based features. Correlation of the scGSVA scores for the examined features to S5 pseudotime (“Stem”

state) is shown as an example. The X-axis represents the rank of the features in terms of the correlation coefficients and the Y-axis represents the
correlation coefficients of the scGSVA scores with the S5 pseudotime. The results for the curated gene sets, the algorithms, the selected RNA-based
features, and the cellular characteristics are colored in green, blue, purple, and red, respectively. The numbers on the text labels indicate the ranking. d The
workflow of the lineage trajectory inference and the data integration (5 studies, N= 50,407) based on the mouse lineage-specific gene sets with the
scGSVA and the UMAP dimensionality.
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indicated the similar cellular origin as indicated in the TCGA data;
Basal tumors were biased to the alveolar lineage, and Her2, LumA,
and LumB tumors were located in the area for the hormone-
sensing cell lineage (Fig. 3e and Supplementary Fig. 19b). Two
Normal-like tumors in this study seemed primed towards the
alveolar lineage. Cancer cells from each patient clustered together
on the ternary plot, which also supports the clonal nature of

cancer deriving from a single transformed cell with its specific
location on the lineage trajectory (Supplementary Fig. 19c).

Mammary gland reorganization throughout life and its
implication for the risk of specific breast cancer subtypes.
Lastly and inversely, we tried to classify the constructed
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mammary gene expression atlas using the features associated with
breast cancer intrinsic subtyping. The PAM50 molecular classi-
fication at a single-cell resolution revealed that expression pat-
terns of genes that infer the breast cancer intrinsic subtypes differ
between epithelial cell types, which resulted in the varying sub-
type inference for each cluster (Fig. 4a and Supplementary
Fig. 20). The similarities in the corresponding clusters between
mouse and human (Basal and B/Myo; L-Alv and L1.1/L1.2; L-Hor
and L2) supported the conserved biology in both species

(Supplementary Fig. 21a). Cells with similar gene expression to
Basal tumors were preferentially found in the progenitor popu-
lation from basal and L-Alv cells. Her2 and LumB tumor-like cells
accumulated in the LP population, whereas the L-Hor cluster
were a major source for LumA-like cells.

We further investigated the reorganization in the mammary
gland under different intrinsic and extrinsic stimuli in light of the
lineage trajectory and inference for the specific types of breast
cancer. MaSCs found in the embryonic glands started to

Fig. 3 Lineage dissection of the human mammary scRNAseq data and the cells of origin of breast cancer. a The UMAP projection of the human normal
breast epithelial (Individual #4) clustered and annotated based on the definitive marker gene expressions or the label transfer using the integrated mouse
data as a reference. b The agreement between the definitive annotation and the label transfer for the human normal breast epithelium from the four
individuals. The progenitor and differentiated clusters from the same lineage in the mouse were merged and the cells are partitioned by the definitive and
transferred annotation. The point size indicates the percentage and the sum of each column equals to 100. c The workflow of the lineage trajectory
inference and the data integration (4 individuals, N= 24,377) based on the human lineage-specific gene sets with the scGSVA and the UMAP
dimensionality. The “Stem” gene set was adopted from the mouse data. d, e The UMAP projection and the ternary plot based on the four (“Stem,” “Basal,”
“Alv,” and “Hor”) and three (“Basal,” “Alv,” and “Hor”) gene sets, respectively, for the TCGA breast cancer RNAseq data (d) and the human breast cancer
scRNAseq data (e).

Fig. 4 The dynamic reorganization of the mammary gland through the development, pregnancy, and HRT, and its implication for the risk of specific
breast cancer subtypes. a PAM50 molecular subtyping classification at single-cell resolution in the human and mouse mammary gland visualized on the
UMAP dimensionality. b, c The mammary gland development and reorganization through the different life stages (b) and pregnancy (c). The cells from
each stage are plotted in red on the UMAP dimensionality and stream plots. Five thousand cells were sampled from the entire data for background UMAP
visualization. The proportion of each cluster in the mammary epithelium is summarized in the stacked bar plot. d The mammary gland reorganization
during menopausal HRT and exposure to the PBDEs. The changes in proportion of each cluster in the entire gland are summarized.
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differentiate as early as embryonic day 18 and the neonatal gland
had a full repertoire of the differentiated cell types (Fig. 4b). In the
fully developed glands with the influence of ovarian hormones,
many cells had LumA-inference other than Normal-like subtype
(Supplementary Fig. 21b). During pregnancy, the gland had the
highest CytoTRACE scores (Supplementary Fig. 7b) and went
through intensive reorganization with increased basal and
alveolar lineages, and their respective progenitors, which
potentially increased the risk of Basal tumor development (Fig. 4c
and Supplementary Fig. 21c). In contrast, the lactation period was
characterized by the dominance of mature basal and alveolar
cells, and lowest CytoTRACE scores. After involution, the gland
was repopulated by the three types of differentiated cells.

After menopause, with very low endogenous hormone levels,
the mammary tissue is thought to be hypersensitive to the
exposure of estrogen or its mimics (such as PBDEs)9,17. At
the single-cell resolution, 17β-estradiol induced regrowth of the
hormone-sensing lineage and the addition of progesterone
further induced expansion of the alveolar and basal lineage in
the gland, both of which led mainly to an increase of LumA cells
in PAM50 annotation (Fig. 4d and Supplementary Fig. 21d, e).
PBDEs counteracted the hormones’ effects by reducing the total
proportion of epithelial cells in the gland. In the murine estrus
cycle, the gland is under the strong influence of progesterone at
the diestrus phase. The alveolar and basal lineage progenitor
populations increased at diestrus, consistent with changes during
pregnancy and treatment with progesterone in our model.
(Supplementary Fig. 21f). The fluctuation in the well-known
secondary soluble messengers from the L-Hor lineage [Areg
(Amphiregulin) and Tnfsf11 (receptor activator of nuclear factor-
κΒ ligand, RANKL)], responsive to estrogen and progesterone,
respectively, reflected the stage- and experiment-dependent
influences of these hormones (Supplementary Fig. 21g).

Discussion
Technical advancement on scRNAseq analysis of the mammary
epithelium has expanded our understanding of its biology, which
had mainly been investigated by population-level analyses
through isolation of distinct, individual cell types. However, the
lack of a consensus lineage and the inherent differences between
scRNAseq studies have limited interpretations of the individually
collected data sets. Thanks to improved analytical tools for
scRNAseq data, our current study, which included five inde-
pendent data sets across three mouse strains, with four different
integration algorithms, revealed a putative lineage trajectory that
covered most key developmental stages of the mammary gland.
The integrated mammary gene expression atlas and its reflection
to cancer transcriptome support the previously suggested differ-
entiation trajectory and cells of origins for human breast cancer.
Our analysis also identified the putative unipotent progenitor
populations, adding important clues towards understanding adult
gland homeostasis and breast carcinogenesis. Finally, by referring
the scRNAseq data to the lineage trajectory and inferred cells of
origin, we visualized how different developmental stages and
external hormonal exposures can alter the cellular makeup of the
mammary epithelium, and ultimately evaluated the gland’s risk of
developing specific breast cancer subtypes.

Our pseudotemporal reconstruction of the integrated data
indicated that the differentiation from MaSC into the three epi-
thelial lineages occurs only in the embryonic gland, indicating
that the three lineages would be maintained by the unipotent
progenitors in the adult gland. Putative MaSCs could be present
in postnatal glands, but their multipotency would be restricted in
normal physiological conditions as indicated in a recent study44.
These results were consistent with the emerging concept of

mammary gland development as revealed by lineage tracing
studies1,45,46 and scRNAseq analyses2,10,37. For clarification, dif-
ferent names have been given to the same cell types in the
mammary gland. L-Hor cells are analogous to hormone receptor
(HR) positive mature luminal cells (ML) and L-Alv cells corre-
spond to estrogen receptor (ER) negative LPs, or secretory
alveolar progenitors, which expand in response to progesterone,
during pregnancy, and the diestrus phase3. There were scRNAseq
studies on the adult mouse mammary gland that reported the
presence of intermediate cell types between L-Alv and hormone-
sensing lineages, which potentially inferred the presence of
bipotent LPs in adult glands9,11,12. However, our analyses sug-
gested that the suggested clusters were composed of multiplets of
the cells from the two luminal clusters. Furthermore, a luminal
intermediate cluster was not found in the other scRNAseq
studies10,13,14,37. The lineage tracing studies have also revealed
that L-Alv and L-Hor clusters are sustained by the unipotent
progenitors in the adult gland3. The results of a recent scA-
TACseq study support this interpretation but also suggest
potential plasticity within the mammary gland47. Therefore,
physical validation of bipotent LP cells in fetal and adult glands
will be critical for a definitive conclusion. By filtering and inte-
grating the multiple data sets, the trajectory from the current
study could separate the putative unipotent progenitor popula-
tions, which have not yet been identified in prior scRNAseq
studies9–13. The indicated characteristics of the progenitor cells,
such as proliferative capacity and myc pathway activation, have
been repeatedly associated with progenitor populations in other
tissues48,49. Although further validation studies are warranted, the
obtained gene and pathway lists could be useful resources to
explore the repopulation and differentiation machinery in each
lineage of the mouse mammary gland.

In our analysis, the curated gene sets guided by the lineage
pseudotime could locate mammary epithelial cells on the trajec-
tory and outperform the existing molecular profilers for both
mouse and human cells. Furthermore, transfer of the murine
“Stem” gene set to human scRNAseq data inferred that the three
distinct lineages in human adult breast epithelium were main-
tained by individual unipotent progenitors lacking a connection
on the UMAP dimension as recently suggested37,45,46. When the
lineage gene sets were compared between the two species, both
commonalities and differences were apparent. Recently, scRNA-
seq data of dairy cattle mammary gland was reported50 and those
from other organisms could also appear in the near future.
The gene lists obtained in this study would be useful to explore
core gene sets for the function of the mammary gland and the
differentiation machinery, together with interspecies differences
and their biological meanings.

The analysis of the TCGA breast cancer data set in light of the
lineage trajectory indicated that there is no single tumor pre-
cursor for all human breast tumors as previously suggested.
LumA-type tumors are thought to originate from the mature L-
Hor lineage, which aligns with previous studies of FACS-enriched
ML cells and the original scRNAseq of the human breast
epithelium7,37. Our results support a possibility that LumB-type
cancers are from immature hormone-sensing lineage cells. The
unfavorable prognosis of LumB cancer may be associated with the
increased proliferation and stemness inherent to the progenitor
population. Meanwhile, the majority of basal tumors showed
higher Stem and Alv scores, which suggests their origins in
immature L-Alv cells. The concept linking TNBCs and the Alv
lineage is not new and has been proposed in BRCA-mutant basal
tumors6,7,37,51. BRCA1 mutation carriers have an expanded L-Alv
population7,51, which would result in the transformation of this
cell population later in life. Among TNBCs, the LAR subtype has
been associated with androgen receptor expression and luminal
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lineage gene signature52. Such tumors may lose ER and proges-
terone receptor (PR) expression during transformation from
hormone-sensing cells. Contrary to BRCA1, research on the
effects of BRCA2 mutations are currently limited53,54. Future
studies should aim at possible dysregulation of hormone-sensing
lineage cells in BRCA2 mutation carriers as suggested in this
study.

MaSCs/basal lineage has been suggested as cells of origins for
some breast cancers in mouse models6,55. However, little is
known about the true incidence of the MaSC-driven tumors in
humans, except for the finding that the transformation of CD10+

human basal/myoepithelial cells can mimic the rare, metaplastic,
and claudin-low-type cancer6,56. Consistent with this observation,
we confirmed that some Basal and Normal-like tumors had
increased MaSC/basal lineage features, and that they all had been
diagnosed as metaplastic carcinomas. They also shared claudin-
low tumor features. Collectively, our results underpinned the idea
that MaSC/basal cells are cells of origin of metaplastic, triple-
negative cancers. Lastly, to our best knowledge, almost nothing is
known about the cells of origin of Her2 cancer. Our analyses
reveal that HER2 tumors have features of the L-Hor cell lineage
and are indistinguishable from luminal-type tumors, especially
LumB tumors in terms of lineage features. This finding may
explain the existence of HER2+ and HR+ double-positive LumB
subtype. In other words, they may share progenitor cells in
hormone-sensing lineage as their cells of origin, but the driving
mutation shapes their clinical phenotypes.

The examinations of the gland reorganization and its rela-
tionship to breast carcinogenesis revealed a striking difference in
the gland composition between adult/postmenopausal glands and
glands at pregnancy, which corresponded to the human breast
cancer epidemiology; pregnancy-associated breast cancer is
characterized by a higher TNBC (35.9–48.4%) subtype rate
compared to the other life stages57–59. This could be attributable
to increased L-Alv lineage cells in the pregnant gland (Fig. 4c).
During the perinatal and pubertal stages, the gland has more LPs,
which are more proliferative and considered to be cells of origin
for multiple types of breast cancer (Fig. 4b). The relationship
between these characteristics and vulnerability to external expo-
sures needs to be further determined on a per-subject basis8.
Another important epidemiological observation is that parity is
associated with a decreased risk of breast cancer incidence60,61.
We observed a decrease in the luminal population and the general
stemness of the gland during lactation compared to that at
pregnancy. A recent study suggested that the protective effect of
parity against breast cancer was brought at a specific point
(34 weeks in humans) during pregnancy62. Future integration of
scRNAseq data from multiple time points during pregnancy and
lactation would help with understanding the mechanism more
precisely.

Epidemiologically, the inclusion of progesterone in hormone
replacement therapy (HRT) after menopause increased the breast
cancer risk compared to estrogen only17,63. Our study supported
this by finding that the addition of progesterone to estrogen
further expanded the luminal epithelial cells, especially alveolar
cells. Although an increase in progenitor population was not clear
during sampling in our analysis, this could be due to the relatively
lower doses and short half-life of progesterone in the blood64,65.
The recent reports from the Women’s Health Initiative indicated
that the combination HRT increases the risk for both hormone
receptor-positive and -negative breast cancers, whereas estrogen-
only HRT decreases the overall breast cancer incidence66,67.
Partial inconsistency between the epidemiology and our analysis
could be due to ignorance of external hormonal effect on pre-
exsisting lesions. Expansion of the L-Alv cells was also observed
in glands during pregnancy and the diestrus phase, accompanied

by RANKL elevation when the circulating progesterone level was
known to increase68.

PBDEs, which were once widely used as flame retardant, have
been reported to activate ER in vitro and further promote
estrogen-induced mammary gland regrowth in the 10-week
postmenopausal model9,18. However, PBDE exposure seemed to
partly inhibit gland regrowth by hormones in this 20-week
postmenopausal model, doubling the hormone deprivation time.
One possibility is that PBDEs, which are weak ligands of ER,
would competitively inhibit the binding of estrogen to its receptor
as the deprivation period increases63. It is also possible that
binding of PBDEs to multiple receptors, including progesterone
receptor and aryl hydrocarbon receptor, caused the complex
response with both epithelial and non-epithelial components9,18.
Although further studies are needed to define the mechanisms,
our serial studies expand our knowledge on the endocrine-
disrupting chemical- and HRT-induced reorganization of the
mammary epithelium at a single-cell resolution.

Although our results revisited, confirmed, and are also sup-
ported by multiple previous milestone studies, the limitation of
the study is its computational nature. The inferred cells of origin,
reorganization during different life stages, and the associated risk
increase for the specific types of breast cancer need to be deter-
mined on per-subject basis. Especially, the existence of bipotent
LP cells in fetal and adult glands should be explored further. The
data-filtering process removed a considerable number of cells, or
even an entire sample, due to the presence of putative multiplets
and low-quality cells. This should be carefully interpreted and
revisited, because the analytical pipeline of scRNAseq is still in its
early stage. Although the human lineage genes were validated
across two different scRNAseq modalities, the data came from
only seven individuals in one study. The analysis of human data,
including the TCGA data set, should be discussed with caution
until additional relevant human scRNAseq data becomes avail-
able and refines the lineage-specific gene sets.

In conclusion, we constructed a mammary cell gene expression
atlas and defined the lineage-specific gene sets to infer the loca-
tion of the given cell population on the trajectory. Our results
revisited and added insights to the relationship between the cel-
lular hierarchy in the gland and the development of the specific
breast cancer subtypes. The catalog of identified gene/pathway
lists and the integrated data are fully accessible in the Supple-
mentary Data, at the UCSC Cell Browser website (https://mouse-
mammary-epithelium-integrated.cells.ucsc.edu), or in a data
repository69, which could be a good resource in the mammary
gland development and carcinogenesis fields.

Methods
Chemicals. PBDEs (2,2’,4,4’-tetrabromodiphenyl ether (BDE-47), 2,2’,4,4’,6-pen-
tabromodiphemyl ether (BDE-100), and 2, 2’,4,4’5,5’-hexabromodiphenyl ether
(BDE-153)) were purchased from AccuStandard, Inc., New Haven, CT. These were
three major PBDE congeners detected in women from the California Teachers
Study70. 17β-Estradiol, progesterone, and dimethyl sulfoxide (DMSO) were pur-
chased from Sigma-Aldrich Corporation, St. Louis, MO.

Animal. Eight-week-old female BALB/cj mice were purchased from the Jackson
Laboratory (BarHarbor, ME) and housed in AAALAC (Association for Assessment
and Accreditation of Laboratory Animal Care International)-accredited Animal
Resources Center. Animal research procedures used in this study were approved by
the Institutional Animal Care and Use Committee of City of Hope and were
performed according to the institutional and NIH guidelines for animal care and
use. The housing environment was prepared to prevent animals from undesired
environmental exposures to chemicals and materials with potential endocrine-
disrupting activity9. Mice were housed in polypropylene cages with Sani-Chips
beddings and drinking water was filtered twice using reverse osmosis and carbon
block system. Corn-cob bedding was avoided due to the potential estrogenic
activity.
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Menopausal HRT and PBDE model. Mice were ovariectomized at the ninth week
after birth. Twenty weeks after ovariectomy (OVX), mice were randomized [vehicle
(OVX), 17β-estradiol (OVX_E2), 17β-estradiol+PBDE (OVX_E2_PBDE), 17β-
estradiol+ progesterone (OVX_E2_P4), and 17β-estradiol+ progesterone+
PBDE (OVX_E2_P4_PBDE); n= 8 each)] and treated for 7 days. Special food with
PBDEs mixture (BDE-47: 7.1 mg/kg, BDE-100: 0.4 mg/kg, and BDE-153: 0.9 mg/
kg) was prepared (Research Diets, Inc., New Brunswick, NJ) and administered
orally to mimic environmental exposure of human to PBDEs via ingestion and
diet71. The composition has been previously determined to achieve the relevant
exposure with the ratio of the three congeners found in human blood (1, 0.056, and
0.126 mg/kg/day for BDE-47, -100, and -153, respectively)9,18. Non-PBDE groups
were fed with nutrient-matched special food with DMSO (Research Diets, Inc.).
17β-Estradiol (1 μg/animal) and progesterone (0.1 mg/animal) were administered
by daily intraperitoneal injection. DMSO was used as a vehicle and injected into the
control groups. A day after the last injection, mice were killed to collect mammary
glands.

Mammary gland whole-mount analysis. Glands were fixed with 10% buffered
formaldehyde and delipidated with toluene for 72 h. Then, the glands were rehy-
drated with gradient ethanol and stained in 0.025% Toluidine Blue. Stained glands
were immersed in methanol, followed by ethanol, and a 4% ammonium molybdate
solution. Afterwards, the glands were dehydrated with gradient ethanol and cleared
using Histoclear (National Diagnostics, Atlanta, GA) overnight. The slides were
mounted with Permount Mounting Medium (ThermoFisher Scientific, Waltham,
MA). Images of the entire gland were captured using Cell3iMager Duos (SCREEN
Holdings Co., Ltd, Kyoto, Japan) with 20 µm-intervals for the z-axis. Subsequently,
the images were segmented for TEB-Ls and ductal structures using the machine
learning implementation of the instrument (Model file CC8P06004V00, SCREEN
Holdings Co., Ltd). The segmented ductal structures were skeletonized and sub-
jected to the branching analysis using the ImageJ software72.

Mammary gland dissociation and scRNAseq. The lymph node was removed
from the collected fourth gland. The gland was mechanically minced with a scalpel
and incubated with agitation in the digestion buffer [1.5 mg/mL DNAse I
(#10104159001, Millipore Sigma, Burlington, MA), 0.4 mg/mL Collagenase IV
(CLS-4, Lot: 47E17528A, Worthington Biochemical Corporation, Lakewood, NJ),
5% fetal bovine serum, 10 mM HEPES in Hank’s buffered salt solution] at 37 °C for
about an hour until dissociated. Then, samples were pipetted and strained through
a 70 μm cell strainer. Ammonium-chloride-potassium lysis buffer was used to
remove residual red blood cells and dead cells were removed using Dead Cells
Removal Microbeads (Miltenyl Biotec, Bergisch Gladbach, Germany) to ensure the
sample viability (> 80%) for scRNAseq.

Cells were then loaded onto the Chromium Controller (10× Genomics,
Pleasanton, CA), targeting 2000–5000 cells per lane. The Chromium v2 single-cell
3′-RNAseq reagent kit (10× Genomics) was used to partition cells into gel bead-in
emulsions and subsequently generate the sequencing libraries according to the
manufacturer’s protocol73. The libraries were sequenced with a Hiseq 2500
(Illumina, San Diego, CA) with a depth of 50k–100k reads per cell. Raw sequencing
data were processed using the 10× Genomics Cell Ranger pipeline (version 2.0) and
aligned to the mm10 mouse genome.

Data analysis environment. The subsequent computational analyses were per-
formed in the following environment: R was run using RStudio Desktop in Win-
dows 10 (ver. 1803)74,75 and Python was run using JupyterLab in Ubuntu (ver.
18.04 LTS) built on Windows Subsystems for Linux76,77. The version information
and availability of the softwares are summarized in Supplementary Table 1.

Five scRNAseq data sets of the mouse mammary gland. A database search was
performed to identify scRNAseq data of mouse mammary gland generated using
the droplet-based scRNAseq technique (10× chromium system) (as of September
2019)73. The data sequenced on other platforms were excluded to avoid potential
differences inherent to the techniques that would influence the data integration
process. As a result, four scRNAseq data sets were identified10–13. Giraddi et al.10

collected mammary glands at different developmental stages ranging from embryos
at pregnant day 16 to adult virgin mice. Pal et al.11 studied pubertal glands and
adult glands at different estrus statuses. Bach et al.12 analyzed samples from nul-
liparous, pregnant, lactating, and involuted glands. Data of scRNAseq of the adult
mammary gland was also retrieved from the Tabula Muris Consortium13. The data
from our study includes cells from surgically menopaused mammary glands, with
or without treatment of 17β-estradiol, progesterone, PBDEs, or their combinations.
The detailed information for each study can be found in Supplementary Data 1 and
2, and the original publications10–13. The number of barcodes before and after the
preprocessing was also summarized in Supplementary Data 2. The life stages
(embryonic, neonatal, pubertal, virgin adult, pregnant, lactating, involuted, or
menopausal) were manually assigned to each sample (Supplementary Data 2).

Quality check and preprocessing of the mouse scRNAseq data. The analyses
were performed using R and the Seurat package, unless otherwise specified19,74.
The purpose of preprocessing was to remove low-quality cells, epithelial doublets

(or multiplets), and stromal cells based on the number of gene features and
transcripts, and the percentage of mitochondrial genes. The additional examina-
tions included cell cycle, differentially expressed genes (DEGs), DoubletFinder, and
correlation analyses16,78.

As the first step, low-quality barcodes with <500 gene count (nFeature_RNA) <
1000 unique molecular identifier count (nCount_RNA), or >5% proportion of
mitochondrial genes (percent.mt) (>10% for the samples from Giraddi et al.10 and
this study) were filtered. The cutoff values for percent.mt were determined on a
data set basis to include the majority of cells in the data set (Supplementary
Fig. 2a). The relatively higher percent.mt values in the two data sets might be due to
technical differences or sample quality. These differences did not seem to influence
the data integration (Fig. 1c). Then, nFeature_RNA, nCount_RNA, and percent.mt
values were further compared between the data sets and the samples within each
data set (Supplementary Fig. 2). The five scRNAseq data sets had a comparable
number of genes expressed. The data set from Tabula Muris13 did not have any
gene expressions transcribed from the mitochondrial genome (Supplementary Fig.
2a, e). This was because the reference used for annotation in the Tabula Muris
project did not contain the mitochondrial genes as explained by the authors
(https://github.com/czbiohub/tabula-muris/issues/221). This feature did not seem
to influence the integration process either. One basal cell sample from adult
mammary glands (Adult_Basal(P)) had fewer number of genes expressed in cells
compared to the other samples in the same data set (Pal et al.11 and Supplementary
Fig. 2c). One possibility for this would be that fully differentiated cells (basal cells)
have fewer gene expressions compared to less differentiated cells (progenitors) that
are supposed to be included if the gland was digested and sequenced as a whole,
such as in Adult(P). A recent paper showed such a relationship between the
number of expressed genes and differentiation status28. However, such a drastic
difference was not observed for the basal cells in the Giraddi data set [Adult_Basal
(G) compared to other samples in the data set (Supplementary Fig. 2b)]. Therefore,
it was concluded that the quality of the Adult_Basal(P) data in the Pal data set
could be compromised. This sample was excluded from further analysis.

Following the initial filtering and quality check, each sample was processed
individually. The data were normalized and scaled using standard functions in
Seurat. Then, highly variable features were identified with the vst method. The
principal component analysis was performed based on the top 2000 variable
features. The UMAP dimension reduction and Louvain clustering were
performed16,20. The number of principal components used for UMAP and
clustering was empirically determined between 5 and 13 through an examination of
scree plots and UMAP plots in each sample. The resolution for Louvain clustering,
based on a shared nearest-neighbor graph, was also determined individually
between 0.1 and 0.6. These values were summarized in Supplementary Data 2.
After a sensible clustering was obtained, another quality check was performed on a
cluster basis to find potential contamination by dying cells (high percent.mito),
low-quality data (low nFeature_RNA and nCount_RNA values), and multiplets
(unreasonably high nFeature_RNA and nCount_RNA values compared to other
clusters). Then, the DEG analysis, cell cycle scoring, DoubletFinder analysis,
visualization of established marker genes, and correlation analyses of pseudo bulk
RNAseq were performed to putatively identify and, accordingly, filter out
multiplets and contaminating non-epithelial cell clusters. The DEG analysis and
cell cycle scoring were performed using FindAllMarkers and CellCycleScoring
functions in Seurat, respectively. DoubletFinder generates hypothetical doublets
from a random combination of cells in the data and compares them to the other
cells to point out potential multiplets78. The same principal component values for
the dimension reduction and pN= 0.25 were input for the doubletFinder_v3
function. pK values were determined using the find.pK function in each sample
(Supplementary Data 2). The estimated doublet rate in the 10× Chromium system
was reported to be ~10% by the manufacturer (10× Genetics)73. They determined
the number based on experiments in which mouse and human cell lines were
dissociated, mixed, and sequenced. However, the number can be much higher
(~28%) when one dissociates cells from the epithelial tissue, possibly due to the
strong cell–cell adhesion, as recently reported by Wang et al.79 using human
pancreas tissue. Therefore, an estimated doublet rate for doubletFinder_v3 was set
at 20%. The following representative markers were used to categorize cells: Epcam
(epithelial cells), Krt14 and Acta2 (basal epithelial cells), Krt18 (luminal epithelial
cells), Areg, Esr1, and Ly6d (L-Hor cells), Csn3 and Elf5 (L-Alv cells), Mki67
(proliferating cells), Fosb (stressed cells), Col1a1 and Vim (fibroblasts), Ptprc
(hematopoietic cells), Cd62 (macrophages), Des (pericytes), and Cdh5 (endothelial
cells)9–12,80.

Collectively, putative annotations of clusters were made (Supplementary
Data 3). Putative multiplets clusters were excluded from the data based on the
following criteria: (1) a cluster had increased values of nCount_RNA and
nFeature_RNA as a consequence of capturing >2 cells; (2) the multiplets had no
distinct marker expression, which exclusively separated a cluster from others; (3) a
suspected multiplet cluster was pointed out by DoubletFinder; and (4) the
multiplets had a gene expression pattern as a mixture of other existing cell types in
the tissue. When a cluster met criteria 1–3, a correlation analysis was further
performed to see if the cluster also met criterion 4. To perform the analysis, the
normalized gene expression in each cluster was averaged using the
AverageExpression function and a hypothetical doublet cluster was generated by
averaging gene expression of the two clusters of interest. Then, the correlation
between the observed and hypothetical clusters was calculated. When the suspected
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cluster and a hypothetical cluster had an extremely strong correlation (coefficient ≥
0.99), it was considered to be a multiplet cluster and was then removed from the
following analysis. Contaminating non-epithelial cells were also excluded based on
marker gene expressions (Supplementary Data 3). After the samples were
individually processed, all the samples in each data set were merged and the
merged data went through the same process to filter out rare multiplets or
contaminating cells that would not stand out as a distinct cluster in each sample
due to the small number of cells (Supplementary Data 3). In this second processing,
the estimated doublet proportion for DoubletFinder was decreased to 10%,
assuming that most of the doublets would have been removed in the first
processing. The cleaned data by this two-step preprocessing was used for data
integration.

Data preprocessing example 1: Adult(P) sample from the Pal et al. data set.
The raw data included Lin− (Ter119−, CD31−, CD45−) CD24+ mammary
epithelial cells from the mammary gland of the adult FVB/NJ mice (n= 3302)
(Supplementary Data 1 and 2)11. The low-quality barcodes were filtered out based
on the standard threshold. UMAP dimension reduction and Louvain clustering
were performed with ten principal components and at a resolution of 0.1,
respectively, which resulted in seven distinct clusters (Supplementary Fig. 3a).
Among them, cluster 3 (C3) drew attention as potential multiplets due to its higher
nFeature_RNA and nCount_RNA values when compared to the other clusters
(Supplementary Fig. 3a). The DEG analysis revealed the distinctive gene expression
profile between clusters, except for C3. The C3 cluster showed a mixed gene
expression, similar to both C1 and C2 (Supplementary Fig. 3b). Although pro-
liferating cells can have increased gene expression associated with cell division81,
the cell cycle analysis did not point out C3 as proliferating cells (Supplementary
Fig. 3c). Besides, the DoubletFinder analysis indicated C3 as a potential doublet
cluster with a pK value for the estimation of 0.5% (Supplementary Fig. 3d). By
checking the well-established marker genes for the mammary epithelium, C0, C1,
and C2 were putatively identified as basal epithelial (Krt14+ Acta2+), L-Hor
(Epcam+ Krt18+ Areg+ Esr1+), and L-Alv (Epcam+ Krt18+ Csn3+ Elf5+) cells,
respectively (Supplementary Fig. 3b, e)10–13. However, C3 showed expression of
both L-Hor and alveolar markers. According to these observations, a hypothetical
doublet cluster was generated by averaging the mean gene expressions of C1 and
C2, and a correlation analysis was performed. As a result, the gene expression
patterns of C3 and the hypothetical cluster (C1+ C2) were demonstrated to have
had a strong correlation with the correlation coefficient of 0.99 (Supplementary
Fig. 3f). Collectively, C3 was determined to be doublets derived from cells in C1
and C2, and therefore were excluded from further analysis.

An estimated doublet rate based on the equation79 of doublet rate= (frequency
of C3)/(2 × (frequency of C1) × (frequency of C2) was 36.5%. This is much higher
than the <10% multiple cell incorporation rate by chance in the Chromium system,
but is still comparable to the doublet rates from the scRNAseq analysis of the
human pancreas (~28%)73,79. This could be attributed to insufficient dissociation of
the tissue rather than the random incorporation of multiple cells into a single Gel
Bead-in-Emulsion. These specific cell types (hormone receptor-positive sensing
cells and hormone receptor-negative alveolar cells) are located adjacent to each
other, forming epithelial tight junctions in the mammary gland, which could be
resistant against enzymatic dissociation2,82. Supporting this idea, there are not as
many basal–luminal or epithelial–non-epithelial doublets as there are L-Hor-
alveolar doublets (Supplementary Data 3).

Further, C4 was identified as pericyte/endothelial (Des/Cdh5+), and C5 and C6
were considered to be fibroblast (Col1a1+ Vim+) clusters (Supplementary Fig. 3g
and Supplementary Data 3). In conclusion, C3–C6 were removed from the analysis
and C0–C2 were retained for the second preprocessing.

Data preprocessing example 2: OVX_E2(S) sample from our study. The
sample was generated from the adult mammary gland of the ovariectomized BALB/
cj mice treated with 17β-estradiol for 1 week. The raw data included 2229 barcodes.
After the removal of low-quality barcodes, cells were clustered and visualized on
UMAP dimensions with the top ten principal components and a resolution of 0.5.
Ten distinct clusters were identified, and C2 and C6 had higher nFeature_RNA and
nCount_RNA values compared to the others (Supplementary Fig. 4A). As the
scRNAseq was performed without cell sorting, more non-epithelial clusters were
present in the sample (Supplementary Fig. 4b).

Based on the gene expressions, cell cycle analysis, DoubletFinder (pK= 19%),
and the correlation analysis, C2 was considered to be doublets from L-Hor (C1)
and L-Alv (C5) cells (Supplementary Fig. 4b–f). Although C6 had a similar gene
expression to C2, C6 consisted of proliferating cells (G2M/S) and had unique
marker gene expressions, such as Mki67 (Supplementary Fig. 4g). Therefore, C6
was retained and labeled as proliferating luminal cells. Other clusters were labeled
as basal cells (C7; Krt14+), fibroblasts (C0, C3, and C4; Col1a1+ Vim+),
hematopoietic cells (C8; Ptprc+ Cd52+), and endothelial cells (C9; Cdh5+). C1,
C5, C6, and C7 were retained for further analysis.

Mouse scRNAseq data integration using Seurat v3 algorithm. After pre-
processing and before integration, the five data sets were merged, clustered, and
visualized on UMAP dimensions (Supplementary Fig. 5a). Pseudo-RNAseq was

also performed by averaging the gene expression of each sample, which was then
followed by a principal component analysis. The clusters were mainly separated by
the data sets on both UMAP and principal component plots rather than the sample
features (Supplementary Fig. 5a, b). These “batch effects” were irrespective of the
basic quality parameters of the data sets, such as nFeature_RNA, nCount_RNA, or
percent.mt (Supplementary Fig. 5a, b), and therefore considered to be inherent to
the techniques or conditions in each study. This confirmed an essential need for an
adequate data integration algorithm before any comparisons and analyses beyond
each data set could be made.

The integration of data was performed using Seurat v3 according to the
developers’ vignette19. Briefly, each data set was individually log-normalized and
the highly variable features were identified. Then, the 2000 integration anchors
were identified using the FindIntegrationAnchors function with the dimensionality
of 50 based on the default setting and the developers’ recommendations. Data
integration was performed with the IntegrateData function using a different data
set, combinations of multiple data sets, or none as the reference data set(s). The
resulting integrated data were visualized on the UMAP spaces using the top ten
principal components (Supplementary Fig. 5c), which revealed the consistency of
the structures of the integrated data; three major tip clusters were connected at the
center and the very central part of the structure was composed of embryonic cells
from Giraddi et al.10 in most cases. The representative integrated data were
chosen11 for further analysis in this study. The integrated data were scaled,
clustered, and visualized with the routine processing (Fig. 1 and Supplementary
Fig. 6). Pseudo-RNAseq was also performed using the integrated data, to confirm
an effective removal of the batch effect (Supplementary Fig. 5b). For three-
dimensional plotting, UMAP dimension reduction was performed in a three-
dimensional space and the result was plotted by plot_ly package (Fig. 1b).

CytoTRACE analysis. The CytoTRACE R package was used for this purpose28.
Three thousand cells from each cluster was randomly chosen in the mouse inte-
grated data. The original five data were subset for the selected cells, merged with
Scanorama-based integration, and evaluated regarding the GCS and CytoTRACE
score (iCytoTRACE). For the human normal breast data, 15,000 cells were ran-
domly selected from the integrated data and evaluated with the iCytoTRACE
function. Besides, the entire data from Giraddi et al.10 and Bach et al.12 were
individually scored using the CytoTRACE function, to confirm the results in the
non-integrated data. The barcode samplings were performed due to the limitation
of the computer memory. The results were visualized on UMAP and by box plots
grouped by the different life stages (Supplementary Fig. 7a, b). In this case, the
sample that only included the specific cell types [Adult_Basal(G)] or the samples
that received the HRT treatment [OVX_E2(S), OVX_E2_PBDE(S), OVX_E2_P4
(S), and OVX_E2_P4_PBDE(S)] were excluded.

Data integration by Harmony, LIGER, and scAlign. The integration was per-
formed according to developers’ vignettes (Harmony29, https://github.com/
immunogenomics/harmony; LIGER30, https://github.com/welch-lab/liger;
scAlign31, https://github.com/quon-titative-biology/scAlign). For integration using
Harmony, the cleaned data sets were merged, normalized, and scaled, and the top
50 principal components were calculated using 2000 variable features with Seurat.
The cells were then integrated and plotted on harmony dimensions based on the
principle components using the RunHarmony function with the default settings of
the harmony R package29. The data were visualized on a UMAP plot using the top
six harmony dimensions. For data integration using LIGER, the cleaned data sets
were merged, normalized, and then individually scaled using Seurat. Joint matrix
factorization was performed using RunOptimizeALS in the liger R package30 with
the default values of k= 20 and λ= 5. Subsequently, Quantile normalization and
joint clustering was calculated using the RunQuantileNorm function with its
default settings. The results were summarized on a UMAP plot using the top 20
iNMF dimensions. In scAlign integration, the cleaned data sets were individually
normalized and scaled, and variable genes were calculated using Seurat. Then,
common variable genes across the five data sets were identified and a canonical
correlation analysis was run by scAlignCreatObject in the scAlign R package31.
Subsequently, the data were aligned by scAlignMulti with the default settings.
UMAP was calculated using the top 64 aligned multi-Canonical Correlation
Analysis (CCA) dimensions.

The STREAM analysis of the mouse mammary epithelium. The STREAM
algorithm is a trajectory inference method that can robustly reconstruct develop-
mental trajectories with accurate pseudotime estimation from scRNAseq data33. As
the mapping function of STREAM cannot introduce new fate branches in addition
to the ones present in the reference principal tree, an initial trajectory is needed to
include all the states in the mammary gland33. We chose the data from Giraddi
et al.10 for the initial trajectory reconstruction, as the data included all the cell fates
identified in the integrated analysis from the embryonic true MaSCs to the three
differentiated cell types. Using the stream python package, the cells were projected
to the Modified Locally Linear Embedding spaces considering the 2000 genes used
for the data integration by Seurat. Then, the Elastic Principal Graph trajectory was
seeded, adjusted, and optimized using seed_elastic_principal_graph, elastic_princi-
pal_graph, and extend_elastic_principal_graph functions, respectively, with
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recommended parameters (Supplementary Fig. 8a). Visualization on stream plots
was performed with the stream_plot function (Supplementary Fig. 8a). The learned
trajectory was used as the initial trajectory.

Next, all the cells in the integrated analysis were projected on the initial
trajectory using the same 2000 anchor genes for the integration with the
map_new_data function to map the cells on the one consensus trajectory and
accordingly calculate pseudotime values (Supplementary Fig. 8b). The results were
summarized according to the data sets, stages, mouse strains, and samples
(Supplementary Fig. 8c, d). For visualization in the main figure, 500 cells were
sampled from each cluster and 2 embryonic samples (Fig. 2a, b). DEG analysis and
transitional gene analysis for each leaf branch (S0_S1, S0_S2, S3_S4, and S5_S3)
were performed using this sampled data with the detect_leaf_genes and
detect_transition_markers functions, respectively. The top transition genes were
visualized with pheatmap and subjected to enrichment analysis for the Hallmark,
C2, and C5 gene sets available at the MSigDB using the enricher function in the
clusterProfiler R package (Supplementary Fig. 8e and Supplementary Data 5)83. For
the visualization of the selected samples on the trajectory, a backbone trajectory
was generated by projecting 100 cells from each cluster in the integrated data
(Fig. 4b, c).

Identification of lineage-specific genes. The STREAM analysis output cell–cell
distance on the trajectory for any given pairs. This enabled us to obtain the
pseudotime of any given cell starting from any given leaf state. Accordingly, we
calculated pseudotime from S5, S4, S2, and S1 for all the cells and defined them as
“Stem,” “Basal,” “Alv” (L-Alv), and “Hor” (L-Hor) pseudotime, respectively
(Fig. 2c). Then, we calculated correlations of gene expressions with each pseudo-
time. The five studies were analyzed individually. Spearman’s rank correlation
coefficient was calculated between the scaled gene expression and the pseudotime,
and the resulting correlation coefficients for a given pair of gene and pseudotime
were averaged from the five studies. The results are shown in Supplementary
Fig. 9a, b and summarized in Supplementary Data 6. For example, Mif and Krt18
had the strongest positive and negative correlation with S5 pseudotime (“Stem”),
respectively (Supplementary Fig. 9a). Although the behaviors of the single genes
could predict differentiation status to some extent, we tried to improve the pre-
diction performance by generating lineage-specific gene sets with the top-
correlated genes, because gene set-based scoring is, in general, more robust to
background noises and have been shown to outperform single gene expression in
terms of cell-type identification in scRNAseq data84.

The lineage-specific gene sets and their performance evaluation. An empty
gene set was generated for each pseudotime and the top-ranked genes were
incorporated into the gene set in the order of their correlation ranking in incre-
ments of one gene up to 100, then 20 up to 1000. After each incorporation, the
performance of the gene set was evaluated by scGSVA34 (GSVA R package) and
Spearman’s rank correlation analysis with pseudotime. We expected that the
performance of the gene set would initially increase as the number of genes in the
gene set increased and then reach a plateau or start to decrease at some point as the
genes with lower correlation to the pseudotime started to be incorporated. In favor
of that expectation, the performance of the gene sets plateaued or started to
decrease for all of the four pseudotimes (Supplementary Fig. 9c). Similar trends
were observed in each of the five data sets investigated. The best performing gene
sets included the top 160, 240, 500, and 200 genes for “Stem” (S5 pseudotime),
“Basal” (S4 pseudotime), “Alv” (S2 pseudotime), and “Hor” (S1 pseudotime) states,
respectively (Fig. 2c and Supplementary Fig. 9c). The correlation of the curated
data sets with the corresponding pseudotime outperformed that of single gene
expression in terms of the correlation coefficient (Supplementary Data 6 and 7).

Then, we compared the performance of the curated gene sets with other existing
RNA-based features. A thousand cells were sampled from each study and scGSVA
scores for the gene sets available at the MSigDB (n= 22,540; as of 3-20-2020,
https://www.gsea-msigdb.org/gsea/index.jsp) were calculated. For the retrieval of
the data adjusted for the mouse transcriptome, the msigdbr R package was used.
Afterward, Spearman’s rank correlation coefficients of the pseudotime were
calculated to the GSVA scores, CytoTRACE, GCS, and the other basic
characteristics of each barcode (nFeature_RNA, nCount_RNA, and percent.mt).
The results were averaged between the studies and ranked accordingly (Fig. 2c,
Supplementary Data 7, and Supplementary Fig. 10a–c).

The lineage-specific gene set-based data summarization. The scGSVA scores
for the four curated gene sets were calculated for the five data sets using indivi-
dually scaled data. Then, the results were combined and projected to lower
dimensions using the UMAP R package. To reduce the computational burden for
the summarization of the 50 K cells, UMAP dimension reduction was performed
using the cells from Giraddi et al.10 and then all the cells were projected on the
constructed UMAP dimensionality with the predict function (Fig. 2c and Supple-
mentary Fig. 11a). For the visualization on the ternary plots, the ggtern R package
was used (Supplementary Fig. 11b).

Analysis of human breast epithelium scRNAseq data. scRNAseq data of the
breast epithelium from four healthy adults were retrieved from a public database37

(Supplementary Data 2). The data from each sample were individually processed
and annotated according to the original paper (Fig. 3a, Supplementary Fig. 12a, b,
and Supplementary Data 3). The original authors identified five distinct clusters,
which was simplified in this analysis to major three clusters by merging B and Myo
clusters into B/Myo, and L1.1 and L1.2 clusters into L1.1/L1.2. The following
representative markers were used to identify cells: KRT14 and ACTA2 (basal epi-
thelial cells), KRT18 (luminal epithelial cells), AREG and ANKRD30A (L2 cells or
L-Hor cells), SLPI and ELF5 (L1.1/L1.2 cells or L-Alv cells), MKI67 (proliferating
cells), and COL4A1 and VIM (fibroblasts). The human gene symbols were con-
verted into the corresponding mouse gene symbols using the Ensembl database
(Release 99; https://uswest.ensembl.org/index.html)85 for the label transfer analysis
(Fig. 3b and Supplementary Fig. 12c). Then, CCA-based transfer anchor identifi-
cation was performed with the annotated mouse integrated data set as a reference
data (FindTransferAnchors). Identities of human data were predicted using the
2000 transfer anchors and the dimensionality of 50 (TransferData).

Data integration were using Seurat_v3 algorithm, as performed in the mouse
data integration (Supplementary Fig. 13a, b). No reference data were set. The
integrated data were projected to a lower UMAP dimension using the top ten
principal components. For the CytoTRACE analysis, 15,000 cells were sampled
from the total barcode pool and the iCytoTRACE analysis was run using the
individual data.

For the STREAM analysis, 1000 cells were sampled from each individual and
the base trajectory was built using the top 10 principal components from the
integrated data (Supplementary Fig. 13c, d). The top PCs were selected as an input,
instead of integration anchors as in the mouse data analysis, because we did not
intend to visualize the expression of each gene on the trajectory and therefore tried
to decrease the computational burden. Then, all cells were mapped onto the base
trajectory and pseudotime was calculated for each leaf node.

The top-correlated genes and the lineage-specific gene sets were identified and
evaluated for the S4 (“Basal”), S2 (“Alv”), and S1 (“Hor”) pseudotimes
(Supplementary Data 8 and 9, and Supplementary Fig. 13e, f). The curated gene
sets outperformed the other RNA-based features, except for the one that slightly
outperformed the curated “Basal” gene set. The gene set was identified as
commonly upregulated genes in FACS-sorted MaSC/basal cell types from both
mouse and human mammary tissues36. The other gene sets identified in the same
study also appeared among the top gene sets for the S2 and S1 pseudotimes, which
strengthened the accuracy of our annotation. For consistency, the curated “Basal”
gene set was used for the subsequent analysis.

Using the curated gene sets, the scaled data were scored with scGSVA analysis.
Then, the results from the 24 K barcodes were summarized using a UMAP
dimension reduction (Fig. 3c and Supplementary Fig. 14a–c). The performance of
“Stem” gene sets adopted from the analysis of the mouse data was also evaluated in
comparison with the unbiased stemness inference by the CytoTRACE algorithm
(Supplementary Fig. 14d). The scores for the three differentiation gene sets were
also visualized on ternary plots (Supplementary Fig. 15a).

For further evaluation of the obtained gene sets, the additional data from the
three individuals sequenced using Fluidigm C1 were retrieved37. The data were
integrated and definitively annotated according to the original publication
(Supplementary Fig. 15b). Then, the scaled gene expression data were scored using
the human lineage-specific gene sets and visualized on ternary plots
(Supplementary Fig. 15c).

To gain insight about interspecies commonalities and differences, the human
and mouse lineage-specific gene sets were compared, and the common and species-
specific genes were identified (Supplementary Fig. 15d and Supplementary
Data 10). They were also subjected to enrichment analysis for the Hallmark, C2,
and C5 gene sets available at the MSigDB (Supplementary Data 11).

Adaptation of the lineage-specific gene set-based lineage inference to bulk
RNAseq data. Aiming to validate the feasibility of the lineage-specific gene sets in
the bulk RNAseq data, serial simulation analyses were performed. First, varying
numbers of cells (10–1000) were sampled from each cluster in the integrated
mouse data and normalized gene expression of the sampled barcodes was averaged
using the AverageExpression function in the Seurat R package. To mimic the actual
mammary epithelia, the sampling was also performed from the mixed barcode pool
(500 barcodes were pooled from each cluster) (“Mixture”). For each condition,
sampling was performed five times. Then, the data were scored using the scGSVA
analysis for the three differentiation gene sets (“Basal,” “Alv,” and “Hor”) and
plotted on a ternary plot (Supplementary Fig. 16a).

Next, we evaluated the effect of stromal cell contamination. For this purpose,
the Tabula Muris data set13 was used, as the data were generated without any
sorting processes and hence included stromal cells. Although our data also
included a stromal population, our mice were ovariectomized and may not
accurately reflect the representative population in the gland. The two samples from
the adult virgin mammary glands were merged, projected to a lower dimension
space, and clustered using the top ten principal components and a resolution of 0.1
(Supplementary Fig. 16b). Considering the annotation in the original publication
and our integrated analysis (Supplementary Fig. 16b), C3, C7, and C8 were defined
as Basal, Alv, and Hor clusters, respectively, in the following analysis. One hundred
cells were sampled from C3 (“Basal”), C7 (“Alv”), C8 (“Hor”), C3+ C7+ C8
(“Mixture”), and the rest of the barcodes from the data (“Stroma”). Then, “Stroma”
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cells were combined with “Basal,” “Alv,” “Hor,” or “Mixture” cells with the varying
percentage of epithelial cells in the data ranging from 50% to 100%. The sampling
was performed ten times for each condition and the data of the pooled cells were
averaged to make pseudo bulk RNAseq data. Subsequently, the data were scored
using the scGSVA analysis for the four gene sets. The results were visualized on a
ternary plot using the scores for the three differentiation gene sets (Supplementary
Fig. 16c). The changes in the scores with increasing stromal contamination were
also individually examined (Supplementary Fig. 16d).

Lastly, the mouse and human FACS-sorted microarray data of the mammary
epithelium were retrieved to access the applicability of the method in the bulk
transcriptome analysis. In the original study, the three distinct populations (MaSC,
LP, and ML) were isolated from the mouse and human mammary epithelium using
a panel of antibodies (EpCAM/Cd49f and CD24/CD29/CD61, respectively)
followed by microarray analysis7,36. MaSC, LP, and ML populations are considered
to correspond to the Basal, Alv, and Hor lineages, respectively, in light of the recent
mammary gland biology2,37. The mouse and human data were scored with
scGSVA analysis using the three differentiation gene sets (“Basal,” “Alv,” and
“Hor”) generated from the mouse and human scRNAseq data.

Analysis of the TCGA BRCA data. The RNAseq data and the clinical information
of the breast cancer in TCGA (https://www.cancer.gov/tcga) was retrieved through
the National Cancer Institute Genomic Data Commons (NCI GDC v22.0; accessed
on 3-20-2020)39 using the TCGAbiolinks R package86. The fragments per kilobase
of transcript per million mapped reads upper quartile (FPKM-UQ) values were
used for the principal component analysis and UMAP dimensionality as well as
calculation of the scGSVA scores for the curated gene sets. The molecular sub-
typing, histological classification, age at diagnosis, and the stromal proportion in
the tissue were also retrieved from the NCI GDC database. The results of TNBC
subtyping were retrieved from a previous publication87. The BRCA status was also
retrieved from a literature88. The UMAP dimension reduction was performed
using the top ten principal components, which considered all the transcripts in the
data (Supplementary Fig. 17a). The data were scored with scGSVA analysis using
the human lineage gene sets (Supplementary Figs. 17 and 18). The data were also
scored using the DEGs from the mouse integrated data (Supplementary Data 4) for
the progenitor gene signatures (Supplementary Fig. 17d).

Analysis of the human breast cancer scRNAseq data. The expression data and
metadata were retrieved according to the original publication43. The data included
the scRNAseq results of breast cancer from the 11 patients generated with the
Fluidigm C1 system43. The data processing was performed according to the ori-
ginal metadata and non-tumor cells were excluded from the analysis, which
resulted in the complete removal of one patient’s (BC09) data. The data were
visualized in the UMAP dimensionality using the top five principal components
from the whole transcriptome (Supplementary Fig. 19a). The PAM50 molecular
subtyping, scGSVA analysis, and data summarization using the scGSVA scores
were performed (Supplementary Fig. 19b, c).

Molecular subtyping. PAM50 and claudin-low molecular subtyping was per-
formed using genefu R package according to the developers’ vignette89. For normal
mammary epithelium scRNAseq data, the normalized data was used for the
PAM50 subtyping on a single-cell basis. For the breast cancer scRNAseq, the
averaged expression of the normalized data of the tumor cells from the individual
patient was used for the PAM50 subtyping. For the TCGA data, the PAM50
classification was retrieved from NCI GDC and claudin-low subtyping was per-
formed using the FPKM-UQ values.

UCSC cell browser. The data for submission at the UCSC Cell Browser were
prepared according the developers’ vignette (https://cellbrowser.readthedocs.io/
installation.html)32. Briefly, the data were exported by the ExportToCellbrowser
function in the Seurat R package. For the Seurat v3 and scAlign data, transformed
gene expression matrices (2000 and 411 genes) after integration were submitted.
For the Harmony and LIGER data, scaled gene matrices in Seurat, including all the
genes detected, were submitted. The data were available and interactively explor-
able at https://mouse-mammary-epithelium-integrated.cells.ucsc.edu. The Seurat
objects for the data are also available on the website.

Statistics and reproducibility. All the statistical analyses were performed in R.
Wilcoxon rank-sum test was used to compare the distribution of two samples.
Cliff’s delta values were calculated to estimate the effect size. Spearman’s rank
correlation coefficient was calculated for correlation analysis. p-Value < 0.05 was
considered as statistically significant. The error bars represent SDs. The number of
samples for statistical tests can be found in the figure legends where applicable. The
sample size of the study was determined based on the previous study9–13. To verify
reproducibility of the key data integration process, we input various parameters for
the process and used the four different algorithms. Regarding our in vivo experi-
ments, the model was verified by the previous publication9 and results were sup-
ported by the data from others through the integration analysis, although the
replication of the entire experiment including scRNAseq was not feasible due to its
experimental burden.

Reporting summary. Further information on this research is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The authors declare that all data supporting the findings of this study are available within
the article, the Supplementary Data, and the data repository or from the corresponding
author upon reasonable request. The data from the Tabula Muris Consortium was
available in the Figsharewith the identifier doi.org/10.1038/s41586-018-0590-413,90. The
other publicly available scRNA data sets were retrieved from the Gene Expression
Omnibus under the following accession codes: GSE111113 (Girradi et al.10), GSE103275
(Pal et al.11), GSE106273 (Bach et al.12), GSE113197 (Human normal breast, Nguyen
et al.37), and GSE75688 (human breast cancer, Chung et al.43). The scRNAseq data
obtained in this study were deposited in the Gene Expression Omnibus along with their
associated metadata (GSE149949). The integrated data are explorable on the web browser
and can be downloaded as Seurat R objects at https://mouse-mammary-epithelium-
integrated.cells.ucsc.edu. The Mouse and human FACS-sorted microarray data of the
mammary epithelium were also retrieved from the GSE under the code GSE19446 and
GSE16997, respectively7,36. The TCGA breast cancer data were retrieved from the NCI
GDC (https://www.cancer.gov/tcga)39. The data and custom codes in this study were
deposited and available in Zenodo (https://doi.org/10.5281/zenodo.4674274)69.
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