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Impact of metric and sample size 
on determining malaria hotspot 
boundaries
Gillian H. Stresman1,*, Emanuele Giorgi2,*, Amrish Baidjoe3, Phil Knight4, Wycliffe Odongo5, 
Chrispin Owaga5, Shehu Shagari5, Euniah Makori5, Jennifer Stevenson1,5,6, Chris Drakeley1, 
Jonathan Cox1, Teun Bousema1,3,* & Peter J. Diggle2,7,*

The spatial heterogeneity of malaria suggests that interventions may be targeted for maximum impact. 
It is unclear to what extent different metrics lead to consistent delineation of hotspot boundaries. 
Using data from a large community-based malaria survey in the western Kenyan highlands, we 
assessed the agreement between a model-based geostatistical (MBG) approach to detect hotspots 
using Plasmodium falciparum parasite prevalence and serological evidence for exposure. Malaria 
transmission was widespread and highly heterogeneous with one third of the total population living 
in hotspots regardless of metric tested. Moderate agreement (Kappa = 0.424) was observed between 
hotspots defined based on parasite prevalence by polymerase chain reaction (PCR)- and the prevalence 
of antibodies to two P. falciparum antigens (MSP-1, AMA-1). While numerous biologically plausible 
hotspots were identified, their detection strongly relied on the proportion of the population sampled. 
When only 3% of the population was sampled, no PCR derived hotspots were reliably detected and at 
least 21% of the population was needed for reliable results. Similar results were observed for hotspots 
of seroprevalence. Hotspot boundaries are driven by the malaria diagnostic and sample size used to 
inform the model. These findings warn against the simplistic use of spatial analysis on available data to 
target malaria interventions in areas where hotspot boundaries are uncertain.

Malaria is an important cause of global morbidity and mortality with an estimated 3.4 billion people at risk1. The 
past decade has seen a large reduction in the malaria burden in some areas with an estimated 47% global reduc-
tion in mortality compared to 20002. As national policies shift from control towards elimination new approaches 
are needed to supplement existing tools3,4. Research and programmatic activities are increasingly acknowledging 
the heterogeneous nature of malaria transmission at the community level.

Identifying ‘hotspots’ and targeting malaria control interventions at these, could lead to a more sustainable 
reduction in malaria burden5,6. Hotspots are typically defined in both public health and ecology as areas where 
estimates exceed those from other areas and may fuel transmission to the surrounding areas5,7,8. Malaria trans-
mission is difficult to measure directly and several metrics are typically used to estimate malaria burden as a proxy 
for transmission9. However, different malaria metrics measure different facets of the transmission cycle and may 
lead to different conclusions on the existence, size or location of hotspots. For example, in coastal Kenya hotspots 
based on clinical incidence were geographically distinct and showed different temporal dynamics compared to 
hotspots based on the prevalence of asymptomatic infections10,11.

The detection of malaria hotspots has become increasingly prominent in the malaria literature12–17. 
Model-based geostatistics (MBG) are increasingly being used to identify heterogeneity in malaria transmission 
and can predict areas of increased disease prevalence. MBG has been effectively applied in other disease sys-
tems that exhibit both large and small-scale variation in transmission18,19. In the context of malaria, MBG has 
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mainly been applied at the national or provincial scales, although it has yet to be widely applied for local level 
spatial analysis13,20,21. It allows incorporating environmental drivers of disease transmission and information on 
the intensity of sampling to obtain smoothed values of disease indicators to determine spatial patterns in disease 
occurrence. Determining the hotspot boundaries is of great public health importance if hotspot-targeted inter-
ventions are considered. Uncertainties about hotspot boundaries would complicate and potentially reduce the 
impact of hotspot-targeted interventions by potentially missing populations that are particularly relevant for 
onward transmission or misallocating resources22.

Using data collected in a large cross-sectional malaria survey carried out in the western Kenyan highlands, the 
aims of this study were to compare the agreement between spatial analysis based on the prevalence of molecularly 
detected malaria infections and serological evidence for malaria exposure and illustrate the impact of sample size 
on the delineation of hotspots of malaria. The results generated are not intended to provide a gold standard for 
hotspot detection, but to illustrate the realities of translating theoretical concepts of disease heterogeneity into 
actionable public health strategies.

Methods
Data sources.  Epidemiological.  Epidemiological data were obtained from a community cross-sectional 
malaria survey conducted in July 2011 in a 100 km2 rural area in the western Kenyan highlands (0°28′​S, 34°51′​
E)23. The site is characterized by low but heterogeneous malaria transmission, with Plasmodium falciparum being 
the predominant species24. Factors determining local malaria transmission patterns were recently described25.

All structures in the study area were digitized using high-resolution satellite imagery (Quickbird, DigitalGlobe 
Services Inc, USA) and were used as a proxy for the total population size and distribution22,23. Briefly, 17,503 
individuals residing in 3,213 randomly selected households (i.e. clusters of structures forming a family unit), or 
approximately 30% of the total population, were surveyed, with each participant providing blood spot samples on 
filter paper. The unit of analysis was the household with the proportion of household residents that were positive 
for malaria the main outcome. A random selection of 79% of the collected samples were assayed by PCR to detect 
the presence of a current malaria infection, corresponding to an estimated 24% of the total population26,27; all 
samples were tested for anti-malarial antibody response to AMA1 and/or MSP119 measured by enzyme linked 
immunosorbent assay to provide a measure of malaria exposure28,29. Seropositivity to each antigen was assessed 
using a mixture model and consisted of those individuals with optical density values greater than the mean plus 
three standard deviations of the distribution of those assumed negative30. An individual was considered to be 
seropositive if they were positive to either or both of the antigens tested. Ethical approval for collecting the epi-
demiological data was granted by the London School of Hygiene & Tropical Medicine (LSHTM-5721) and the 
Kenya Medical Research Institute (SSC-1802). All methods were performed in accordance with good research 
practices and written informed consent was obtained from all participants.

Environmental.  Elevation for each household was derived from the ASTER [v 2.0, NASA USA] global digi-
tal elevation model (DEM). The normalized-difference vegetation index (NDVI) was calculated for the study 
area using the Quickbird imagery. Mean, minimum, and maximum NDVI values from a single time-point were 
calculated for a 500 m circular buffer around each household. Multispectral image segmentation (MIS) of the 
Quickbird imagery was conducted with eCognition (v 4.0, Trimble Geospatial Imaging, Germany) software and 
the proportion of tree cover within the 500 m buffer was determined. Fishponds were identified using a refined 
MIS procedure capable of detecting smaller features and manually verified against the satellite imagery. The dis-
tance from each household to the nearest fishpond was calculated in ArcGIS (ESRI, USA).

Topographic wetness index (TWI) was calculated using the DEM as previously described31. The maximum 
and mean TWI values for the 500 m surrounding each household were calculated. Finally, the locations of all 
streams in the area were determined by first locating the likely location of streams using the topographic data and 
then manually digitizing the more precise stream path using the satellite imagery. The distances of each household 
to all stream orders were calculated32.

Determining hotspots of P. falciparum infection and exposure by MBG.  MBG was used to 
model the spatial variation in malaria parasite or antibody prevalence18,19. Two models were generated using the 
PrevMap package33: malaria infection was assessed using PCR positivity and exposure to malaria was assessed 
using seropositivity estimates for each household (see Supplementary file 1)34. Surfaces of predicted prevalence 
for both outcomes were generated. To guide MBG, thresholds of risks were used that resulted in 20% of the pop-
ulation being included in the hotspot based on the theoretical 80–20 assumption where 20% of the population 
constitutes 80% of the exposure and transmission events35. We acknowledge that this threshold selection is likely 
to be site specific and the hotspot sizes will vary based on the threshold selected: a high threshold would result in 
only those areas with the highest transmission being identified as a hotspot and a more granular map whereas a 
less stringent threshold would mean that hotspots would be more ubiquitous.

Next, the probability that any given area exceeded the threshold that encompassed 20% of the population was 
determined. Areas with greater than 80% probability of exceeding the threshold were considered hotspots. In an 
ideal scenario, the model will produce a probability surface that is polarized into areas with 100 or 0% probability 
of exceeding a specified threshold. The 80% probability threshold was selected to capture those areas that are 
almost certainly in a hotspot as well as including those most likely to be in a hotspot, a decision made to favour 
a higher sensitivity rather than specificity. To gauge the sensitivity of the exceedance threshold in determining 
hotspots, we also identified areas that had greater than 50% probability of exceeding the threshold (i.e. any likeli-
hood of being a hotspot). This process was repeated for both outcomes to generate separate surfaces for hotspots 
of current infection and exposure to malaria and there were no constraints placed on hotspot size or shape. The 
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households consistently identified, or agreement, between hotspots of infection and exposure was assessed using 
Cohen’s Kappa coefficient. All analyses were conducted in R v.3.0.2 (R-Project, USA).

Sample size.  The impact of sample size on the ability of the model to predict hotspots and therefore confidence 
in delineation of hotspot boundaries, was assessed by the change in metrics of model predictive performance: the 
integrated mean square error (IMSE) for the predicted surface and the discrimination index (DI) for the exceed-
ance probabilities18. To estimate the level of performance that would have been achieved had the entire (100%) 
population been sampled, we imputed a complete population data set using the complete set of digitized house-
holds and the predicted malaria risk surfaces to estimate household level prevalence23. Next, we selected a random 
sub-set of the imputed data for each of the sampling fractions 10–90% and re-fitted the geostatistical models to each 
sub-set. The corresponding IMSE and DI values were calculated and plotted as functions of the sampling fraction.

To determine the impact of sample size on hotspot boundaries, the geostatistical model was then re-fitted to ran-
dom subsets of the collected data, with sampling fractions between 10–90%. The resulting surfaces were imported 
into ArcGIS, hotspot boundaries determined, and individual households were assigned as hotspot or non-hotspot 
accordingly. The sensitivity and specificity of the structures correctly identified, using the complete sample as the 
reference, were calculated and compared using the area under the receiver operator curve (AUROC)36. A meaning-
ful change was considered to be those with non-overlapping confidence intervals for the AUROC.

Results
MBG models.  The results of the geostatistical model are consistent with previous studies and suggests a pos-
itive association between parasite prevalence and maximum and mean NDVI and a negative association with 
mean elevation, distance from fishponds and the proportion of tree cover (see Supplementary file 2 for model 
validation)22,25. The optimum model fit for seroprevalence also indicated a negative association with mean eleva-
tion, distance from fishponds and tree cover. In addition, maximum TWI, minimum NDVI and distance to 2nd 
and 3rd order streams had negative associations with seroprevalence, while mean TWI had a positive association 
(Table 1). The percentage of variability explained by the covariates was 3% for parasite prevalence and 18% for 
seroprevalence. The spatial stochastic process, which accounts for both local and global spatial trends, accounted 
for 53.4% and 49.5% of the unexplained variability according to PCR and seropositivity, respectively.

Comparing metrics: Molecular vs. Seroprevalence.  Areas with a predicted PCR prevalence (Fig. 1a) 
greater than 28% and predicted seroprevalence (Fig. 1b) greater than 70% encompassed 20% of the total popula-
tion. These thresholds were subsequently used to determine hotspots of infection and exposure, respectively, for 
the MBG approach. The probability of exceeding the defined thresholds was mapped for both current infection 
prevalence (Fig. 2a) and previous exposure, seropositivity (Fig. 2b). The agreement between households identified 
as part of hotspots derived using parasite and sero-prevalence with a probability >​80% of exceeding the thresh-
old was moderate (Kappa =​ 0.424). Using hotspot boundaries corresponding to areas with >​50% probability of 
exceeding the threshold resulted in only modest improvement in agreement (Kappa =​ 0.478).

Impact of sample size.  As expected, IMSE decreased proportionally to the inverse of the sample size 
(Fig. 3). Based on this analysis, the models using the survey data to generate predictive surfaces were generated 
with an estimated baseline error of a 40% relative increase in IMSE.

The parasite prevalence model showed a change in the number of structures correctly identified when sample 
size was reduced to 70% of the sampled population, or 21% of the total population (Table 2). A second significant 
difference in the consistency of hotspot delineation was observed with 30% of the sampled population, or 9% of 
the total population (Supplementary movie 1). The geostatistical model for parasite prevalence was unable to reli-
ably detect hotspots with less than 10% of the sampled, or 3% of the total population. The impact of sample size 
on the models for seroprevalence showed similar trends in terms of the proportion of the population required to 
consistently define hotspots. (Supplementary movie 2).

PCR Prevalence Seroprevalence

Estimate Std. error p.value Estimate Std. error p.value

Intercept 5.430 3.272 0.097 Intercept 7.972 2.165 0.0002

Mean Elevation −​0.007 0.002 <​0.0001 Mean Elevation −​0.005 0.001 <​0.0001

Maximum NDVI 1.532 1.030 0.137 Max TWI −​0.011 0.011 0.297

Mean NDVI 5.132 2.934 0.080 Mean TWI 0.230 0.104 0.028

Distance from 
Fish Pond −​0.001 0.000 0.000 Minimum NDVI −​0.227 0.229 0.320

Tree Cover −​3.094 1.473 0.036 Distance from Fish Ponds −​0.0005 0.0001 <​0.0001

Distance 3rd Order Stream −​0.0001 0.000 0.039

Distance 2nd Order Stream −​0.0002 0.0001 <​0.0001

Tree Cover −​2.921 0.8194 0.0004

Table 1.   Final adjusted mixed effects logistic regression models for both outcomes.
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Figure 1.  Predicted malaria prevalence using model based geostatistics. Results of the modeled predicted 
prevalence of (a) current malaria infection with overlaid hotspot boundaries showing the area that has a 
predicted PCR prevalence greater than 28% and (b) malaria exposure as measured by seroprevalence with 
overlaid hotspot boundaries showing the area that has a predicted seroprevalence greater than 70%. Maps were 
generated using the PrevMap package in the R statistical software (V3.0.2 R-Project USA).

Figure 2.  Probability contour maps of exceedance surfaces for malaria prevalence. Contour maps of the 
study area indicating the probability that the prevalence of malaria (a) infection by PCR and (b) exposure by 
seroprevalence exceeds 28% and 70%, respectively with the corresponding hotspot boundaries using both 
50% and 80% thresholds. Maps were generated using the PrevMap package in the R statistical software (V3.0.2 
R-Project USA).
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Discussion
We present a MBG analysis to define hotspots in an area with known highly heterogeneous transmission in the 
western Kenyan highlands. Different metrics and sample sizes resulted in variation in the households identified 
as being located in a hotspot. These results illustrate the uncertainties in determining precise boundaries at the 
local level that may be relevant for targeted control intervention.

This study utilized two metrics for defining malaria heterogeneity, the prevalence of current infections and 
the prevalence of serological markers that are indicative of previous exposure. These metrics measure different 
but analogous facets of malaria transmission and at an individual level are strongly associated22,25. In the current 
study and other studies determining spatial patterns in malaria transmission, the localization of hotspots based 
on the two metrics showed considerable overlap but imperfect agreement. Recent or transient malaria hotspots 
may be missed by serological markers of exposure if antibodies are only detectable following repeated exposure 
to malaria antigens10,37. However, serologically defined hotspots would be a more stable representation of areas of 
consistently or historically high risk but may not reflect areas with recent infections38,39. Recent advances in iden-
tifying serological markers of recent exposure may improve the agreement between serology and current parasite 

Figure 3.  Impact of sample size on geostatistical model efficiency. The impact of reduced sample size 
on model efficiency on the log-scale for both the predicted and probability surfaces for both PCR (a,b) and 
seroprevalence (c,d), respectively (solid line) with the circle representing the sample size achieved during the 
community survey.
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prevalence40 although it remains to be established whether these are as informative as the currently used antigens 
that show high sensitivity in low endemic settings41.

For both metrics, only a small percentage of the geographical variability that we observed in our study popula-
tion was explained by environmental covariates: the spatial residuals estimated by the geostatistical model formed 
the main component in identifying hotspots. Obtaining a better understanding of the spatial processes driving 
transmission and identifying covariates accordingly would lead to more precise delineation of MBG-defined 
hotspots. The specific ecological processing driving transmission will be setting dependent and the necessity of 
delineating this spatial dynamic will depend on how well these approaches are able to identify hotspots that are 
meaningful for control and elimination strategies.

As expected, variations in sample size also resulted in significant changes in the boundaries of MBG-defined 
hotspots. In our setting, intensive sampling of the total population was conducted for accurate hotspot delineation. 
If less than 20.9% of the total population was sampled (70% of all samples available for our survey), a considerable 
loss in accuracy was experienced. An average of 37.6% (seroprevalence) and 51.4% (PCR-prevalence) of the struc-
tures in hotspots were misclassified as not belonging to hotspots while the complete sample set identified them 
as hotspots. This suggests that one third to half of structures may be missed by interventions designed to target 
hotspots or unnecessarily targeted. The sample size thresholds identified here are likely not generalizable to other 
settings. The purpose of this element of the current study was to illustrate that where the hotspots are drawn will be 
impacted by the sample size used to inform the analysis. The current findings warn against conducting opportun-
istic analysis on available geocoded data7,42 if these data were only available for a small fraction of the population.

Although this comparison of metrics cannot determine which is better able to accurately identify and define true 
hotspots of infection in the community, these results indicate that the approach and assumptions used will affect 
the resulting map. The MBG approach is generally used to fit a spatial residual risk surface. It allows for a greater 
understanding of the nature of malaria hotspots by letting the overall risk surface depend on both measured and 
unmeasured risk factors18. However, the underlying inferential philosophy of MBG is that it is concerned not with 
how likely it is that a location has an above-average prevalence, but with how likely it is that a given location has a 
prevalence sufficiently high to be of practical concern in a specific setting. Therefore, the thresholds defined for both 
the prevalence of concern as well as the probability cut-off that an area has reached or exceeded that must be identi-
fied and affects the resulting map. This feature provides useful flexibility so that this approach can easily be tailored 
to different settings, but also makes it difficult to identify precise hotspots if such policy thresholds do not exist19,43.

Conclusions
This research has highlighted several gaps in our ability to reliably detect hotspots of malaria. The metric and sam-
ple size used has important consequences for hotspot boundaries in this setting. The operationally most attractive 
approach of sampling a small fraction of the population and use the most scalable and economically attractive 
malaria metric, in our study serology, has limitations in terms of the precision with which hotspot boundaries can 
be identified. It is important to note that the study setting was characterized by low, heterogeneous but widespread 
malaria transmission. There may be settings where malaria is more focal, where hotspots are more readily detectable 
and more consistent between metrics. For our study setting with widespread heterogeneous malaria transmission, 
we conclude that there are too many uncertainties surrounding hotspot location, stability and boundaries to allow 
evidence-based targeting of malaria hotspots with the aim of reducing community-wide malaria transmission.
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