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Psychophysical, motor control, and modeling studies
have revealed that sensorimotor reference frame
transformations (RFTs) add variability to transformed
signals. For perceptual decision-making, this
phenomenon could decrease the fidelity of a decision
signal’s representation or alternatively improve its
processing through stochastic facilitation. We
investigated these two hypotheses under various
sensorimotor RFT constraints. Participants performed a
time-limited, forced-choice motion discrimination task
under eight combinations of head roll and/or stimulus
rotation while responding either with a saccade or
button press. This paradigm, together with the use of a
decision model, allowed us to parameterize and
correlate perceptual decision behavior with eye-, head-,

and shoulder-centered sensory and motor reference
frames. Misalignments between sensory and motor
reference frames produced systematic changes in
reaction time and response accuracy. For some
conditions, these changes were consistent with a
degradation of motion evidence commensurate with a
decrease in stimulus strength in our model framework.
Differences in participant performance were explained
by a continuum of eye–head–shoulder representations
of accumulated motion evidence, with an eye-centered
bias during saccades and a shoulder-centered bias
during button presses. In addition, we observed
evidence for stochastic facilitation during head-rolled
conditions (i.e., head roll resulted in faster, more
accurate decisions in oblique motion for a given
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stimulus–response misalignment). We show that
perceptual decision-making and stochastic RFTs are
inseparable within the present context. We show that by
simply rolling one’s head, perceptual decision-making is
altered in a way that is predicted by stochastic RFTs.

Introduction

We typically maintain upright head and eye
orientations with respect to the horizon (Pozzo et al.,
1990; Dunbar et al., 2004, 2008), despite potentially
increased energy expenditure. For example, during
hunting (Land, 2014), flight (Altshuler et al., 2015), or
motorcycle racing, it would be more energy efficient
to align the head with the inertial vector. Minimizing
vertical disparity has been suggested as one reason for
this behavior (Misslisch et al., 2001; Schreiber et al.,
2001).

A complementary reason could be that reference
frame transformations (RFTs) are stochastic
(Alikhanian et al., 2015), that is, RFTs depend on
internal, noisy (stochastic) estimates of transformation
parameters, such as rotation angles. Signal-dependent
noise in the RFT parameters then leads to added
variability in transformed signals. The effect of such
stochastic RFTs is apparent in both perception

(Schlicht & Schrater, 2007; Burns et al., 2011) and
motor planning (Sober & Sabes, 2003, 2005; McGuire &
Sabes, 2009; Burns & Blohm, 2010; Abedi Khoozani &
Blohm, 2018). If the encoding of visual motion evidence
is similarly degraded by stochastic transformations,
then maintaining specific head orientations while
making decisions about its velocity could be optimal
for the signal’s preservation, despite requiring energy
expenditure (Umberger et al., 2003).

Bounded accumulator models account for a wealth
of behavioral data from perceptual decision tasks under
the premise that noisy evidence for the alternatives
is accumulated until it reaches a criterion bound
(Smith & Ratcliff, 2004; Bogacz et al., 2006). Under
this framework, stochastic RFTs could influence
choice behavior in predictable ways. One possibility
is that RFTs can degrade the encoding of evidence
by lowering its signal-to-noise ratio. An example
of such evidence degradation is shown for a simple
theoretical decision process in Figure 1 (see inset
containing Gaussian distributions). In this case,
the decision-making performance should match the
expectations of increasing task difficulty: increased
reaction times (RTs) and decreased accuracy (percent
correct). A complementary hypothesis (Standage,
Wang, et al., 2014) is that different levels of noise
result in different neural decision dynamics (Faisal et
al., 2008), changing the balance between speed and
accuracy. In this case, we would expect to observe faster

Figure 1. Potential roles of noise in perceptual decision-making. Six separate perceptual decision processes (three different evidential
certainties with head upright/rolled) are simulated within a drift–diffusion framework for leftward target motion (see shaded curves
in inset). One possible role for RFT noise is in the degradation of motion evidence certainty (modeled by Gaussian distributions),
which can be seen in the inset. Another possible role for RFT noise is in stochastic facilitation of the decision dynamics (dotted lines).
Leftward color-matched arrows represent theoretical influence of stochastic facilitation on response times. Evidence accumulation in
this illustrative model is represented by the summed log ratios for random draws from each distribution, biased in the leftward
direction and with uniform noise added to the signal.
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Figure 2. Task and paradigm. (A) Participants performed the task under one of eight conditions—four for each response type (saccade
or button), organized in a block design. These were combinations of head and/or congruent screen rotations, giving rise to visual
motion that was separable across eye, head, and shoulder (screen) reference frames. (B) Each trial consisted of a fixation (500 ms),
motion (up to 1,500 ms), and decision epoch. Participants were instructed to determine the direction (left or right) of coherently
moving dots randomly chosen at 20%, 10%, or 2% coherence and make their decision using either a horizontal saccade or a button
press as quickly and accurately as possible.

and less accurate decisions by pushing decision circuitry
into a regime with faster dynamics (and therefore less
temporal integration). Direct evidence for either of
these hypotheses is lacking (for review, see Standage,
Blohm, et al., 2014).

A third possible role for noise in the perceptual
decision process is stochastic facilitation. In this
scenario, the presence of relevant, noisy endogenous
signals (e.g., head and eye orientation afferents)
improves information processing through an
enhancement of neural signals. Stochastic facilitation

has been shown to benefit many neural processes across
different behavioral paradigms, animal models, and
computational frameworks (for review, see McDonnell
& Ward, 2011). RFTs may similarly provide a benefit
to perceptual decision-making through faster, but no
less accurate, decisions. A model illustrating stochastic
facilitation’s possible role in a theoretical drift–diffusion
decision process for three levels of certainty for sensory
evidence is shown in Figure 1.

The goal of this study was to determine the influence
of stochastic RFTs on perceptual decision-making.
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To do so, participants were asked to perform a
two-alternative, forced-choice (2AFC) random dot
motion direction discrimination task either under
nonrotated (control) or under head roll and/or rotated
stimulus conditions (Figure 2). In a blocked design, they
were also instructed to indicate their decision regarding
the left or right direction of coherent visual motion
with either a saccade or a button press. Because eye
movements are executed in head-centered coordinates,
and, when the arm is stationary, button presses occur in
shoulder-centered coordinates, this paradigm allowed
us to correlate decision performance effects with
different visuomotor RFT requirements.

Materials and methods

Participants

Seven participants were recruited for the experiment
after informed consent was obtained. Six of seven
participants were naive as to the purpose of the
experiment. Participants were between the ages of
22 and 32 years (five male), and all were right-handed.
We also recruited five more participants for a second
experiment with seven participants (two participants
were in both experiments), representing an instance of
our reaction time task with no deadline. Participants
in this experiment were between the ages of 20 and
26 years (four male), and six of seven were right-handed.
All participants had normal or corrected-to-normal
vision and did not have any known neurological,
oculomotor, or visual disorders. All procedures were
approved by the Queen’s University Ethics Committee
in compliance with the Declaration of Helsinki.

Experimental paradigm

To test how RFTs affect perceptual decisions, we
developed an experimental paradigm with distinct
conditions consisting of (1) rotations of the visual
stimulus, (2) rotations of the head, and (3) changes
to the response type (saccade or button press). These
conditions allowed us to comprehensively investigate
the influence of different RFTs on the decision process
based on the coding frame of the motion evidence and
transformation of that evidence into a reference frame
appropriate for the motor response. These conditions
are illustrated in Figure 2A.

We determined participants’ baseline decision-
making performance using a control condition in which
participants’ heads remained upright (0° roll) and the
axis of coherent motion remained along the horizontal
(0°) screen-centered axis. Thus, comparing our other
experimental conditions to this one provided the effects

directly resulting from adding new requirements to the
transformation (Figure 2A, first column). For each
response type, the rotational conditions were rolling the
participants’ heads toward a shoulder, without rotation
of the on-screen stimulus (head roll–no stimulus
rotation, H-nS, Figure 2A, second column); head roll
with 45° rotation of the on-screen stimulus (head
roll–stimulus rotation, H-S, Figure 2A, third column);
and 45° rotation of only the on-screen stimulus (nH-S,
Figure 2A, fourth column).

Apparatus

Participants sat in complete darkness 50 cm in front
of a 36-cm × 27-cm Dell UltraScan P991 CRT monitor
(Dell, Round Rock, TX, USA). Participants’ heads
rested on a chinrest that allowed for head roll in the
frontoparallel plane. With their heads in an upright
position on the chinrest, the interocular midpoint
was aligned to the frontoparallel fixation position
on the screen. The visual stimulus was displayed on
the screen (120 Hz refresh rate) using the ViSaGe
Visual Stimulus Generator with VSG Toolbox for
MATLAB (Cambridge Research Systems, Rochester,
UK). Movements of both eyes were recorded at 400 Hz
using a Chronos head-mounted 3D video eye tracker
(Chronos Vision, Berlin, Germany) that was stabilized
to the head using a bite bar. Although torsional eye
movements were recorded by this system for some
participants, these data were unfortunately inconsistent
both within and between participants due to poor iris
illumination and/or focus. For the purposes of our
correlational analyses, we therefore assume a small (e.g.,
∼10%) ocular counter-roll gain for the contribution of
ocular torsion to the rotation of retinal input relative
to head roll based on previous experimental findings
(Blohm & Lefèvre, 2010; Murdison et al., 2013).
Head movements were recorded at 400 Hz using an
Optotrak Certus system (Northern Digital, Waterloo,
Ontario, Canada) with three infrared diode markers
placed on the Chronos helmet. For consistency in head
orientation measurements across slight differences in
camera positions, these helmet markers were calibrated
with respect to an external orthonormal axis defined by
a set of three orthogonal diodes located either on the
wall behind the participant or on the side of the CRT
monitor. Screen brightness and contrast settings were
adjusted so that participants could not see the edges
of the monitor screen in complete darkness, even after
0.5 hours of dark adaptation.

Procedure

The visual stimulus consisted of a centered array
of white circular dots (each 0.1° diameter) arranged
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in a circle (10° diameter), marking the boundary to
which participants were instructed to make saccadic
responses. At the center of this boundary, there was an
aperture (5° diameter) inside of which we displayed
the random dot motion stimulus. The central stimulus
was composed of a white fixation point (0.1° diameter)
positioned at the center and 200 red dots (each 0.1°
diameter) with constant speeds of 4°/s. We chose to
make all moving dots red to minimize CRT phosphor
decay time (avoiding streaking across the screen). On
each trial, we randomly selected a subset of the dots
in motion (2%, 10%, or 20% of all dots) to move
coherently in either the leftward or rightward direction.
In the stimulus rotation conditions (H-S and nH-S),
we rotated the on-screen motion axis by either 45° or
–45°. In the H-S condition, this on-screen rotation of
motion was congruent with the direction of head roll,
such that the motion axis lay approximately along the
interocular axis. In all saccadic trials, participants were
instructed to make eye movements toward the on-screen
0° (rightward motion) or 180° (leftward motion)
directions. The noncoherent dots had an average path
length of 4 pixels, after which their direction was
randomly determined on the interval from 0° to 360°.
Participants were also informed of all block conditions
(i.e., head roll, visual stimulus rotation) prior to the
start of each block.

A sample trial progression is illustrated in Figure 2B.
At the start of each trial, a fixation dot appeared in
the center of the circular saccade boundary (fixation
period, 500 ms). This fixation period was followed
by the visual motion stimulus, displayed within the
aperture in the center of the screen along with the
fixation point (1,500 ms max). Participants were
instructed to maintain fixation until they came to a
decision about the direction of the coherent motion
and were asked to do so as quickly and as accurately
as possible. Depending on the response condition,
they either made a saccade along the screen-centered
horizontal (left or right) or pressed a button with their
right hand’s index or middle finger corresponding to
the perceived horizontal component of motion (index
for leftward motion, middle for rightward motion). For
saccade response trials, participants were instructed
to press any button after making a saccade, ending
the trial. Importantly, we made the assumption that
any preparatory activity related to this button press
(which always followed the saccade response) did not
impact eye movement–related decision processes due to
significant elapsed time between the decision and the
button press. For button press trials, the decision also
ended the trial. Participants were not given feedback
about whether their response was correct. There was
an intertrial interval of 500 ms during which the screen
was completely black.

Each participant performed four sessions, each
consisting of seven 100-trial blocks for a total of

2,800 trials. All 14 conditions (left and right head rolls
and stimulus rotations included) were counterbalanced
across all participants using a reduced Latin squares
method with an initially randomized list of all
conditions (Shao & Wei, 1992). To counterbalance
potential learning and fatigue effects, participants
performed each condition twice: once in an initial
sequence determined by the Latin squares method
and a second time in the reverse sequence. Using this
method, each condition was uniformly distributed
across all blocks.

Raw signal analysis

Three-dimensional (3D) head orientation was
computed offline as the difference (using quaternion
rotation based on Leclercq et al., 2013) between a
reference upright position measured at the start of each
experimental session and head position throughout the
trials. Participants were instructed to begin the first
block of each experimental session with an upright
head position before responding to the verbal head roll
instruction.

The eye-in-head orientation was extracted and
calibrated, and saccades were detected using the same
techniques as those used by previous work (Blohm
& Lefèvre, 2010; Murdison et al., 2013). Briefly, the
eye-in-head orientation was extracted after each session
from the saved images of the eyes using Iris software
(Chronos Vision). This was done using a 9-point
grid of calibration dots (10° max eccentricity) with a
central fixation point, while the head remained upright
on the chinrest. Each participant was fitted with a
customized bite bar to stabilize the Chronos helmet
to the head. Eye-in-head orientation was low-pass
filtered (autoregressive forward-backward filter, cutoff
frequency = 50 Hz) and differentiated twice (weighted
central difference algorithm, width = 5 ms). Saccades
were detected using an acceleration threshold of
500°/s2, as previously done (Blohm & Lefèvre, 2010;
Murdison et al., 2013). We defined the eye movement
direction as the circular average of horizontal and
vertical eye velocity components over the duration of
the saccade. For each trial, the head roll measurement
was obtained by taking the average head orientation
from the motion stimulus onset until the decision time.

Trial selection

For the main experiment, we recorded a total of
19,600 trials from seven participants (2,800 trials per
participant from four sessions of seven 100-trial blocks
each). Of those trials, we removed those that contained
a head movement, blink, optokinetic nystagmus, or
smooth pursuit movement after motion stimulus onset
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but prior to the decision. Finally, we removed trials on
which participants had reaction latencies shorter than
200 ms (visuomotor processing delays) (Thorpe et al.,
1996), as these trials likely corresponded to decisions
made preemptively without the use of the visual
motion evidence. From the extracted saccades and
button presses, we determined trial-to-trial directional
choices and computed cumulative RT distributions
for each rotational condition. For saccades, left or
right decisions were classified as saccades whose
average direction (based on the entire movement) was
within a conservative directional window around the
screen-centered horizontal direction (0° or 180°) with
a width of ± 75°. Trials with saccades with directions
outside these windows were removed from the analysis.
Also, trials for which the participant failed to respond
before the end of the 1,500-ms response period were
removed from analyses (14% of all trials). Together,
these omitted trials comprised 22% of all trials, leaving
15,274 valid trials.

Behavioral analysis

We quantified task performance using three
main behavioral parameters capturing both speed
and accuracy aspects of task performance. These
parameters were RT (time elapsed between motion
stimulus onset and response), percent error (number of
valid incorrect trials divided by the total valid correct
and incorrect trials multiplied by 100; conversely,
percent correct = 100%-percent error), and reward rate
(sum of the number of correct trials divided by the
sum of all correct and incorrect reaction times). From
these parameters, we computed the cumulative RT
distributions for correct and incorrect trials, to which
we fit a modified version of the linear approach to
threshold with ergodic rate (LATER) model (Carpenter
& Williams, 1995).

Because of the short 1,500-ms response window,
some RT distributions were truncated, resulting in
LATER-estimated RT distributions that were not
necessarily representative of the data. To account for
this issue, we fit both correct and incorrect trial RT
distributions simultaneously using estimated percent
correct as a free parameter that scaled each distribution
relative to the other (correct representing percent
correct or 100%-percent error at RT = ∞). We also
performed all analyses with the empirical percent
correct using just the trials within the 1,500-ms window
and found results qualitatively similar to those based
on the estimated percent correct. We performed the fits
using a constrained nonlinear method that minimized
the sum of squared residuals. These LATER model
fits to the cumulative RT distributions revealed the
estimated median reaction time with its μ parameter,
the approximate slope of the distribution (representing

the variability of the distribution) with its σ parameter,
and the estimated percent correct, each of which we
used in behavioral analyses.

To capture behavioral differences across conditions,
we also fit participant and group-level psychometric
curves as cumulative Gaussians using the Psignifit
Toolbox for MATLAB (Wichmann & Hill, 2001;
Fründ et al., 2011) and fit chronometric data with a
scaled logistic function using a nonlinear least squares
method. From the psychometric fits, we extracted
the 75% points discrimination threshold (thr) and
computed the discrimination slope (slo) based on the
difference threshold, which is different from thr and a
function of the slope and the midpoint percentile for
2AFC tasks π (= 75%), described by (Equations 1)
and (2):

di f f erence threshold = 1
slope

∗ log
π

1 − π
(1)

discrimination slope = 2 ∗ di f f erence threshold (2)

Reference frame analyses

We then performed a reference frame analysis on the
observed behavioral effects for each rotation condition.
To do this, we first made predictions for these effect
sizes proportional to the complexity of the RFT
in each reference frame, then computed R-squared
coefficients for changes (relative to the nonrotated
condition) in RT, percent correct, and reward rate.
Transformation complexity is defined by the angular
rotation required between the assumed visually encoded
evidence reference frame and the response reference
frame, which has different relative angles depending
on motor effector (saccade or button, which are head-
or shoulder-centered, respectively). For example, in
the H-nS condition with rightward motion and a 30°
head roll (and 10% ocular counter roll of 3°), we may
assume an eye-centered input reference frame and a
shoulder-centered, button press response; for a spatially
horizontal (0°) response, this results in a required
rotation of RFT rotation = abs([response rotation] −
[encoded rotation] ) or abs([0°] − [(0° − (30° − 3°)]) =
27°, representing a qualitatively large expected effect
size. In the H-S condition with 45° motion and 30°
head roll and an assumed head-centered encoding of
motion evidence, a spatially horizontal, 0° saccade
response requires an abs(30° − 15°) = 15° rotation, or
a qualitatively intermediate expected effect size. In our
reference frame analysis of the effects, we used these
rotational requirements to derive general predictions
for each reference frame, with coarse effect size
expectations (see Figure 6A for visual representation
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across conditions). Briefly, null, intermediate, and
large effect sizes were represented by 0, 0.5, and 1,
respectively. Together, these effect size predictions
provided a theoretical framework within which we
could quantify the effects relative to different coordinate
systems.

Statistical analyses

We performed several n-way analyses of variance
(ANOVAs) (with four factors plus interaction terms)
to account for variance in decision-making behavior
(across RT, percent error, and reward rate) due to
coherence level, RFT requirements, participant, and
motor effector. To correct for statistical sampling
error, we also carried out a multiple-comparison
procedure based on Tukey’s honestly significant
difference criterion. We used the 95% confidence
intervals estimated using Monte-Carlo simulations
(Wichmann & Hill, 2001; Fründ et al., 2011) to
compare 75% discrimination thresholds and slopes
across RFT conditions in our psychometric analyses.
For group-level, cross-condition comparisons, we used
paired t tests.

Results

We utilized several different rotational conditions to
determine how the misalignment between stimulus and
response reference frames affected decision-making.
Different response modalities required different RFTs
when stimulus and/or head rotation was imposed for
saccade-related (eye-to-head) and button press–related
(eye-to-shoulder) performance of a 2AFC perceptual
decision task. Using these conditions, we analyzed the
effects of RFTs on speed (RT), accuracy (percent error),
and net performance (reward rate). This approach
allowed us to determine both if changing the RFT
requirements had any effect on the integration of
decision evidence and, if so, if these effects revealed
anything about the coordinate frames of the neural
circuitry underlying these decisions.

Head and stimulus rotations induced distinct
effects on response times and task performance
across conditions

We measured the 3D head (i.e., yaw, pitch, and roll)
and two-dimensional eye orientation (i.e., horizontal
and vertical) while participants performed the task.
Importantly, the degree to which head roll and ocular
torsion (assuming a small, ∼10% contribution from

head roll–induced counter-roll) must be accounted for
in each condition’s visual-to-motor transformation
defined the RFT complexity between visual and motor
coordinates in our task (see Materials and methods for
details). At the group level, participants were consistent
in head roll magnitude from condition to condition.
For the four head rolled conditions across each effector,
participants rolled their heads on average between
28° (minimum) and 32° (maximum), with standard
deviations between 7° (minimum) and 9° (maximum)
across all participants.

We found that head and stimulus rotations induced
different effects on RT and accuracy depending on
condition. As shown in Figure 3A (e.g., Participant
7), cumulative distributions of RTs showed that,
depending on the rotation condition, the estimated
median RTs shifted by various amounts relative to the
control condition in which the head was upright and
the stimulus motion axis was horizontally oriented. We
also observed overall increases in RT and decreases
in accuracy with task difficulty (20% to 10% to 2%
motion coherence), with each condition inducing
different effect magnitudes. These effects depended on
the response type, suggesting a systematic role for the
transformation required to convert sensory input into
the response frame used for decision-making.

RT and percent correct varied with effector, but
there was no speed–accuracy trade-off

We analyzed RT and accuracy effects relative to
control across response type and rotation condition.
Figure 4 illustrates this phenomenon with psychometric
and chronometric functions at the group level.
Psychometric functions (left column) show that
behavior qualitatively differed between conditions
depending on whether participants responded with a
saccade or button press and that the nH-S condition
(cyan) in general saw the worst task performance. Note
that these fits were meant only to compactly describe
the data points within the motion stimulus range tested
and allowed us to coarsely examine any relative speed
accuracy trade-offs for the conditions; these fits are not
meant to be interpreted as one would interpret classic
psychometric functions. A repeated-measures ANOVA
detected a main effect of rotation condition (F(3) =
2.87, p < 0.05) and an interaction effect of response
type and rotation condition on the discrimination
threshold (thr) and slope (slo) (F(3) = 7.73, p < 0.01),
although we did not find a main effect of response
type (p = 0.08). A one-way ANOVA detected main
effects of motion coherence (F(2) = 20.04, p < 0.01),
response type (F(1) = 11.67, p < 0.01), and rotation
condition (F(3) = 10.77, p < 0.01) on reaction time (μ).
Taken together, these observations suggest that there
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Figure 3. Single participant cumulative RT distributions. Across coherence levels (columns), specific patterns in RTs across rotational
conditions (color-coded, see legend) are shown for Participant 7. Differences in the order of these RT distributions can be seen when
comparing saccade (top row) to button responses (bottom row).

Figure 4. Psychometric and chronometric functions. Group-level psychometric and chronometric functions revealed that speed and
accuracy were not traded off across rotation conditions, as participants were generally less accurate (psychometric functions, left
column) and also slower (chronometric functions, right column) under rotated conditions. In the chronometric plots, each point
represents the group average of the LATER fit parameter µ approximating the median reaction time of each condition at each motion
strength. Left insets show the discrimination thresholds (thr), which represent the threshold coherence (%) at which participants
chose the correct direction 75% of the time for the 2AFC task. Right insets also show the discrimination slope (slo), which
approximates the sensitivity to motion strength.
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Figure 5. Variability of rotational effects on performance across participants. Changes in reaction time (top row), percent error
(middle row), and reward rate (bottom row) across coherence level (columns), with left axes representing scale for single participant
changes (colored line segments, see legend for participant numbers) and right axes representing group-level average changes across
rotation conditions (color-coded bars). Each vertex of the line segments represents one rotation condition, in line with the colored
bars at the bottom.

was an overall degradation of the encoded evidence
but no clear speed–accuracy trade-off across rotational
conditions (Standage, Wang, et al., 2014). Additionally,
the observed response type–specific patterns of
performance changes suggest that the reference frame
of the motor response played a role in the encoding of
evidence.

To better understand these results, we analyzed
behavioral task performance compared to the baseline
control condition across experimental conditions and
participants in Figure 5 through several ANOVAs.
We observed trends consistent with a degradation of
evidence encoding such that the task was more difficult
under rotated conditions. Across task difficulty, we
found that RT increased (F(2) = 12.73, p < 0.01),
percent error increased (F(2) = 326.5, p < 0.01), and
reward rate decreased (F(2) = 33.54, p < 0.01). We also
found a significant main effect of rotation condition on
RT (F(3) = 7.78, p < 0.01), percent error (F(3) = 4.76,
p < 0.05), and reward rate (F(2) = 34.25, p < 0.01). We
found that response type only affected reward rate (F(1)
= 21.58, p < 0.01). On average (inset bars on right axes),
participants had longer RTs and had lower reward rates
when making decisions under the nH-S condition (cyan
bars), when compared to control (Tukey’s honestly
significant difference procedure multiple comparison

p < 0.05), H-nS (gray; multiple comparison p < 0.05),
and H-S (red; multiple comparison p< 0.05) conditions.
Importantly, we did not see a speed–accuracy trade-off
(e.g., faster/slower responses and higher/lower percent
error), as reward rate also decreased (bottom row) with
increases in both RT and percent error. We observed
participant-specific differences in RT between response
types (interaction effect, F(6) = 4.93, p < 0.01) and
between RFT condition (interaction effect, F(18) =
3.03, p < 0.01). For example, one can see differences
between saccade and button responses for Participant
5 or for Participant 3 across each response type and
coherence level (see Figure 5). This trend suggests that
the noise added to the evidence encoding not only
changed with response type but also with rotational
condition, in agreement with the observed changes to
psychometric and chronometric functions. We next
used a reference frame approach to determine the
source of this added noise in the decision process.

Reference frame analysis

To quantify this interparticipant variability,
we interpreted the effects using predictions from
stochastic reference frame transformations from
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Figure 6. Reference frame predictions and analysis. (A) Response type–specific reference frame prediction matrices. Each cell
represents a specific reference frame and the predicted effect size for the corresponding rotation condition. For example, if motion
evidence were coded according to an eye-centered reference frame, for the condition in which only the motion stimulus were rotated
(condition nH-S), we would expect a large (black shading) reference frame transformation-induced stochastic effect on the coded
evidence signal in both saccade and button response conditions. (B) Participant R-squared coefficients for correlation analysis
between prediction matrices in panel (A) and observed changes in reaction time (top row), percent error (middle row), and reward
rate (bottom row), across coherence levels (columns). Participant color code is the same as in previous figures, and black symbols
represent across-participant means. Open circles and filled squares represent R-squared coefficients for saccade responses and for
button responses, respectively. Pure eye-centered (red), head-centered (blue), and shoulder-centered (green) reference frame
predictions are represented with large filled circles. Note that we have plotted the eye–shoulder projection of this 3D space (thus the
head R2 axis is along the origin).

Alikhanian et al. (2015). Head roll and ocular torsion
angles are represented as noisy sensorimotor estimates
in the brain. Alikhanian et al. (2015) showed that
using noisy angles to perform an angular coordinate
transformation (such as in our rotation paradigm)
is expected to add noise to the transformed retinal
inputs, leading to trial-to-trial variability in the
decision process. Here, we quantify the effects of
this added noise based on different RFT rotation
requirements for different sensorimotor coordinates
(eye, head, and shoulder centered). Briefly, for saccade
and button responses (head or shoulder centered,
respectively), we computed the expected sensory-to-
motor transformation rotation angle between different
sensory coordinate frames. We assumed that the motion
information used in the decision was impaired to an
extent that was proportional to the overall required
visuomotor rotation.

This provided predictions for the size of each effect,
relative to the head-upright, motion horizontal control,
according to the required rotation for a correct motor
effector–centered response in each condition, which
we illustrate in Figure 6A. For example, consider the
eye-centered prediction for the condition in which
both the head and the screen were rotated and a
saccadic response was required (H-S; middle cell,
top row, top grid, Figure 6A): In order to correctly
interpret the spatial motion direction using eye-centered
information, the brain must rotate the retinal vector
(which points along its horizontal axis; for visualization,
see Figure 2A) by the head roll magnitude to generate
a screen-centered horizontal saccade. This requirement
differs for the condition in which the head, but not
the stimulus, was rotated (H-nS). Because the retinal
vector was rotated solely by head roll and ocular
counter-roll, and the eyes were also rotated along
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with the head, the brain only needed to account for
ocular counter-roll when transforming the retinal
vector into a screen-horizontal saccade. Therefore, in
the eye-centered case, we predicted a large stochastic
effect for H-S (Figure 6A, black shading) due to head
roll and an intermediate effect for H-nS (Figure 6A,
gray shading) due to only ocular counter-roll. In our
correlational analysis, we assume that a large effect =
1, an intermediate effect = 0.5, and a null effect = 0. In
this way, we made predictions for each response type
and for each reference frame (eye, head, and shoulder).

Using these predictions, we computed the R-squared
coefficients for each behavioral parameter (RT, percent
error, and reward rate), each participant, each response
type, and each motion coherence. These are depicted
in Figure 6B along with the predictions for purely
eye-centered (red E), head-centered (blue H), and
shoulder-centered (green S) codings. Each R-squared
coefficient is color-coded according to participant and
represented by a symbol depending on response type
(saccades: open disk; button: filled square). Across
both RT and percent error at 20% coherence, the
R-squared coefficients suggest that evidence was being
encoded according to a continuum of reference frames
between eye and shoulder, with a strong head-centered
component in some cases (e.g., button press responses
of Participant 5).

The transformation-related effect was also dependent
on the strength of the stimulus, indicating that
the addition of variability to the encoded evidence
depended on the initial strength of visual motion.
For example, while there is a clear organization of
R-squared coefficients for the 20% and 10% motion
coherence conditions for changes in reaction time along
an eye–head–shoulder continuum (Figure 6B, upper
left and middle panels), this continuum becomes less
clear when the stimulus strength is decreased at 2%
motion coherence (Figure 6B, upper right panel).

With this analysis, we quantified the response
type–specific component that we initially observed
in the psychometric and chronometric functions

(Figure 4). This component was strongest when
considering reward rate (bottom row of Figure 6B).
Across motion coherence, group reward rate averages
(black symbols) indicated that evidence leading to
saccadic responses was more eye centered while
evidence leading to button responses was more shoulder
centered. This trend suggests that the neural circuitry
encoding decision evidence is tied to the motor plan
for the upcoming movement. Additionally, this mixture
of eye- and shoulder-centered components indicates
that there could be some concomitant evidence coding
by eye- and shoulder-related areas during integration,
regardless of eventual motor effector.

Evidence for stochastic facilitation

The idea of stochastic facilitation is that increases
in variance (noise) of the sensory decision signals in
the brain can alter the decision dynamics (Standage
et al. 2014) to potentially produce faster decisions.
These new dynamics may result in a speed–accuracy
trade-off (e.g., with no net effect on reward rate) or
accuracy may stay the same despite the faster decision
(facilitating an increased reward rate). The increase
in variance during head roll is posited to arise from
signal-dependent noise in the estimated head angle.
Therefore, we paired conditions with identical (as much
as possible) sensory and motor reference frames. Even
for between-condition comparisons in which there was
no change in the overall visuomotor rotation for the
RFT, the transformation still relies on noisier estimates
for head roll when the head is eccentric than when the
head is upright. Thus, if increases in head roll noise
lead to increases in stochasticity of RFTs, this could
produce stochastic facilitation in decision-making.

To discern any effects of head roll on the decision
process, we paired the H-nS condition with the nH-S
condition for both button press and saccadic responses
and compared the reaction time, percent error, and
reward rates. Importantly, for these conditions, the

Figure 7. Stochastic facilitation for decisions under H-nS conditions versus nH-S conditions. Delta reaction times (left), percent errors
(middle), and reward rates (right) for H-nS for saccades (filled bars) and button presses (open bars). Asterisks represent significant
differences from nH-S conditions using a paired t test.
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retino-spatial rotation is similar (with the difference
arising from head–screen axis misalignments, plus
ocular counter roll), but in one case, the head is rolled
(H-nS), while in the other, it is not (nH-S). The results
of this analysis are shown in Figure 7 for button press
(open bars) and saccadic (solid bars) responses. We
observed a significant increase in reward rate for all but
the 2% coherence-level saccadic response conditions, in
agreement with the stochastic facilitation hypothesis
(paired t tests, all p < 0.05). This increase in reward
rate was largely driven by a decrease in reaction time
(paired t tests, p < 0.05 for 20% button press and
10% both response types; no significant difference for
percent error), suggesting faster decision dynamics
under head-rolled conditions. Note that we did not
compare the control condition with the H-S condition
due to the presence of oblique retinal motion in this
condition (due to ∼30° head tilt and 45° on screen
motion tilt), which created an unfair comparison with
the horizontal control motion vector due to the oblique
effect (Appelle, 1972).

Discussion

Summary of findings

The goal of this study was to determine the influence
of stochasticity from visuomotor transformations on
perceptual decision-making in a 2AFC visual motion
discrimination task. We designed a paradigm in which
seven participants performed the task under several
rotation conditions in which the head and/or stimulus
were rotated. We behaviorally quantified RFT-based
speed and accuracy effects, including any changes
indicative of dynamic stochastic facilitation. We
found that (1) in general, stochastic reference frame
transformations impair decision-making, leading to
slower, less accurate decisions; (2) this stochasticity is
added in a manner consistent with a mixed eye–head–
shoulder representation of evidence; and (3) within this
continuum, there is an effector-specific component,
with saccadic responses more closely resembling
eye-centered predictions and button responses more
closely resembling shoulder-centered predictions.
Furthermore, we also found evidence for stochastic
facilitation when we compared conditions in which the
net retino-spatial mismatch was identical, but the head
was rolled in one condition. This observed facilitation
effect was dependent on both the signal-to-noise ratio of
the sensory evidence (i.e., coherence) and the magnitude
of visuomotor rotation. Our findings are consistent
with the hypothesis that perceptual decision-making
and visuomotor reference frame transformations occur
within the same neural circuitry (Dorris et al., 1997;
Gold & Shadlen, 2000) and as such are consistent with

the affordance competition hypothesis of embodied
decision-making, which predicts that motor planning
for perceptual decision-making occurs in parallel
between networks coding for multiple potential actions
(for reviews, see Cisek 2007; Cisek & Pastor-Bernier,
2014).

Although both evidence integration and motor
preparation are often necessary for choice behavior, it is
often difficult to distinguish between the contributions
of each using standard perceptual tasks. Previous efforts
to do so include using delays between stimulus viewing
and motor response (Shadlen & Newsome, 2001;
Sommer & Wurtz, 2001; Lemus et al., 2007), limiting
stimulus viewing time (Bergen & Julesz, 1983; Ratcliff
& Rouder, 2000; Bodelón et al., 2007; Kiani et al., 2008)
and even “compelling” the movement by informing
the perceptual system ahead of time about the target
characteristics (Salinas et al., 2014). At the neural
level, perceptual and motor processes both occur in
sensorimotor association areas (Munoz & Wurtz, 1995;
Dorris et al., 1997; Horwitz & Newsome, 1999; Shadlen
& Newsome, 2001; Hernández et al., 2010; Costello et
al., 2013; Mante et al., 2013). Not only are our findings
consistent with these neurophysiological principles, but
we have also now quantified this inseparability for the
first time within an RFT framework.

Decisions in our experiment were not always
impaired by head roll, however. We observed stochastic
facilitation of decisions during head-rolled conditions
with a large visuomotor rotation compared to those
without head roll (i.e., H-nS compared to nH-S). This
finding suggests that a more variable estimate of head
roll angle for eccentric head orientations modulates
decision dynamics without further degrading the
motion evidence for already large visuomotor rotations.
World motion direction also played a significant
role in the perceptual decision process; indeed,
world-horizontal conditions (control, H-nS) always
led to faster decisions than world-oblique conditions
(nH-S, H-S). However, oblique motion alone cannot
explain the difference in response times between nH-S,
H-S, and H-nS we observed, and this oblique effect
cannot be disentangled from the RFT due to the need
to generate a world-horizontal eye movement/button
press in all conditions. Thus, we believe both the RFT
and world-motion direction had an influence on the
decision process. Noise from RFTs appears to affect
perceptual decisions in a way that depends on the full
visuomotor context.

Open questions

We found that all the rotation conditions we applied
impaired decision-making relative to nonrotated control
conditions. The corresponding systematic changes
in LATER model fit parameters suggested that this
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effect is a direct result of a degradation of the encoded
visual motion signal. In the neural circuitry, this effect
would most likely occur in the middle temporal (MT)
or medial superior temporal (MST) areas (Albright,
1984; Britten et al., 1992, 1993, 1996; Salzman et al.,
1992; Inaba et al., 2007). MT and MST are highly
interconnected areas that serve as the interface between
retinal motion signals and the rest of the visuomotor
pathways (Ungerleider & Desimone, 1986; Komatsu
& Wurtz, 1988; Newsome et al., 1988; Ilg & Their,
2003; Inaba et al., 2011; for review, see Krauzlis,
2004) and exhibit gain modulation and receptive field
shifts (Chukoskie & Movshon, 2009; Fujiwara et al.,
2011; Inaba et al., 2011) mechanistically consistent
with carrying out 3D visuomotor transformations
(Blohm & Crawford, 2007; Blohm et al., 2009; Blohm
& Lefèvre, 2010; Blohm, 2012; Murdison et al., 2015).
If these areas indeed provide the neural substrate for
the addition of variability to visual motion signals via
RFTs, then gain modulation for RFTs itself could
be a stochastic process—a possibility that could be
investigated in future electrophysiological and modeling
work.

The finding that group-level behavioral effects
could be captured by a continuum of eye-, head-, and
shoulder-centered signals suggests that the underlying
encoded decision evidence should be at least partially
shared between motor effectors. The considerable
interparticipant variability of this effect, however,
remains unexplained. For each participant, RFT
stochasticity added to the integration of evidence could
result in a unique level of reliability for the population
“readout” of the current decision signal by downstream
neural areas, resulting in a certain amount of variability
in RT distributions (Carpenter & Williams, 1995).
Possibly due to idiosyncratic differences in adeptness
at the visuomotor task (e.g., some participants may
have had better eye–hand coordination than others),
we would expect each participant to exhibit different
levels of vulnerability to RFT stochasticity. Differences
in how population output responses are decoded by
structures closer to the motor output such as the
superior colliculus (SC) (Munoz & Wurtz, 1995; Dorris
et al., 1997; Horwitz & Newsome, 1999; Sommer &
Wurtz, 2001) or primary motor cortex (M1) (Riehle
& Requin, 1989; Crammond & Kalaska, 1996, 2000)
could potentially explain some of the interparticipant
variability we observed in RT, percent error, and reward
rate correlations.

Potential mechanism and underlying neural
circuitry

Our findings are consistent with the hypothesis
that the encoding of motion evidence is degraded by

RFTs; however, this effect is not the only possible
way that RFTs could affect decision-making. For
example, changes in background noise could have
modulated the dynamics of circuitry integrating
evidence (Furman & Wang, 2008; Roxin & Ledberg,
2008; Standage et al., 2013; Standage, Wang, et al.,
2014; for review, see Standage, Blohm, et al., 2014). If
so, a speed–accuracy trade-off would likely have been
observed.

The finding that the impairment of performance
relied partially on the response type implies the existence
of two partially distinct perceptual decision-making
networks between behavioral responses, as previously
theorized (Dean et al., 2011; Madlon-Kay et al., 2013).
In the macaque lateral intraparietal area (LIP) and
the parietal reach region (PRR), which lies along
the medial bank of the intraparietal sulcus (IPS),
population-level neural activity has been shown to
reflect an effector-nonspecific movement signal until
a monkey makes a decision regarding which motor
effector to use, at which point PRR activity is associated
with a reach (Cui & Andersen, 2007; Yttri et al., 2014;
Wong et al., 2016) or LIP activity is associated with a
saccade (Cui & Andersen, 2007; Wong et al., 2016). In
this regard, recent electrophysiological findings (Wong
et al., 2016) indicate that there are ensembles of neurons
on both the medial and lateral banks of the IPS that are
active during the decision process. Specifically, Wong
and colleagues (2016) found an ensemble of neurons
that predict the upcoming decision, independent of
effector-specific region, that coherently spike prior to
effector-specific local ensembles in each bank, consistent
with previous findings (Cui & Andersen, 2007; Yttri
et al., 2014). These partially distinct neural ensembles
could therefore give rise to the mixture of reference
frames our perceptual findings imply should be present
in the neural integration of motion evidence. Of course,
this explanation does not preclude perceptual and
motor contributions from other effector-nonspecific
areas such as the prefrontal cortex (Madlon-Kay et
al., 2013) or from other effector-specific areas whose
activities are believed to implement a decision variable
such as FEF (Hanes & Schall, 1996; Gold & Shadlen,
2000, 2003; Sommer & Wurtz, 2001) or the dorsal
premotor cortex (Crammond & Kalaska, 1996, 2000,
Cisek & Kalaska, 2002, 2005), or downstream (or
possibly via bidirectional projections) in SC (Munoz
& Wurtz, 1995; Dorris et al., 1997; Sommer & Wurtz,
2001; White et al., 2013) or M1 (Riehle & Requin, 1989;
Crammond & Kalaska, 1996, 2000). The precise role
that RFT stochasticity plays within such a distributed
perceptual decision network, especially with several
anatomically distinct sensorimotor association areas
with different physiological properties and latencies, is
unclear (Siegel et al., 2015). Furthermore, within these
areas, it is also unclear how local neural population
codes vary with body and spatial geometry during
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visuomotor decisions. These are questions that
could be further investigated psychophysically and
electrophysiologically.

Stochasticity is a hallmark of neural systems (Faisal
et al., 2008; McDonnell & Ward, 2011) and can have
benefits for neural processing; for example, noise can
improve signal detection because it brings subthreshold
membrane potentials closer to firing threshold (Aihara
et al., 2010; McDonnell & Ward, 2011). This stochastic
facilitation can have behavioral benefits (Uhlhaas
& Singer, 2006), such as from improved contrast
detection (Collins et al., 1996; Wells et al., 2005; Funke
et al., 2007; Starzynski & Engbert, 2009), improved
speech perception (Kishon-Rabin et al., 2008), or
preventing deadlock in decision-making (Deco et al.,
2009). Most previous studies have focused on how
stochastic noise affects information coding. Here we
show that it can also benefit information processing, as
predicted by Standage, Wang, et al. (2014). Based on
this theoretical study, we hypothesize that increasing
noise levels will increase the responsiveness of the
competing neural populations—in areas presumably
including FEF—accelerating the competition and
leading to faster decisions. Our findings are in line with
studies reporting cross-modal noise benefits for signal
processing (Lobel et al., 1998; Usher & Feingold, 2000;
Freedland et al., 2002; Willems et al., 2007; Smith et al.,
2010; Wilkinson et al., 2010; Kaut et al., 2011) showing
that stochastic facilitation can enhance seemingly
unrelated neural computations (e.g., induced vestibular
noise enhances memory). Thus, supposedly undesirable
noise can have very positive effects for the brain and
behavior. Indeed, from a Bayesian perspective, without
noise, it would be impossible for the brain to adapt,
learn, and integrate sensory signals (Deneve et al., 2001;
Todorov & Jordan, 2002; Beck et al., 2008; Ma et al.,
2008).

Our findings have implications for studies involving
the integration of visual evidence for movement,
whether used for perceptual decision-making or motor
preparation. First, we found that RFT stochasticity
affects the encoding of evidence for perceptual
decision-making, bringing to light the requirement for
controlling the visuomotor geometry during perceptual
tasks. Second, the finding that this phenomenon added
variability was partially effector specific could explain
some variability between psychophysical performance
when the perceptual task is identical, except for the
motor response (Palmer et al., 2005).

The influence of RFT stochasticity on perceptual
decision-making is consistent with previous findings in
visuomotor tasks (Sober & Sabes, 2003, 2005; Schlicht
& Schrater, 2007; McGuire & Sabes, 2009; Burns &
Blohm, 2010; Burns et al., 2011), suggesting that it
represents a generalized phenomenon wherever RFTs
can be found throughout the perceptual and motor
systems. Whether this phenomenon can be further

extended to processes requiring a higher degree of
cognitive involvement such as strategic decision-making
or memory storage and retrieval remains an open
question.

We noted in the introduction section that animals
typically keep their head upright, even if this was not
energetically beneficial. Here we showed that tilting the
head can have a beneficial effect regarding the speed and
accuracy of perceptual decision-making. While keeping
the head upright with respect to gravity might thus be
suboptimal, there are many other considerations for
why this might be the best strategy. First, as mentioned
in the introduction section, an upright head is believed
to minimize vertical disparity. Furthermore, in the
wild, a tilted body with an upright head means that
the head-on body orientation is actually rolled and the
head typically experiences centrifugal forces leading
to increased neck muscle contractions. Past research
(Abedi Khoozani & Blohm, 2018) has shown that
neck muscle contraction adds noise to RFTs in a
multisensory reaching task. If this were also applicable
here, then this added noise could actually lead to
stochastic facilitation, while a spatially upright head
would also minimize vertical disparity. Thus, our
findings might be perfectly in line with optimal behavior
in the wild.

Keywords: decision-making, reference frames,
visuomotor, head roll, motion perception
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