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Abstract: Epithelial-to-mesenchymal transition (EMT) and its reverse process MET naturally occur
during development and in tissue repair in vertebrates. EMT is also recognized as the crucial event
by which cancer cells acquire an invasive phenotype through the activation of specific transcription
factors and signalling pathways. Even though glial cells have a mesenchymal phenotype, an EMT-like
process tends to exacerbate it during gliomagenesis and progression to more aggressive stages of
the disease. Autophagy is an evolutionary conserved degradative process that cells use in order to
maintain a proper homeostasis, and defects in autophagy have been associated to several pathologies
including cancer. Besides modulating cell resistance or sensitivity to therapy, autophagy also affects
the migration and invasion capabilities of tumor cells. Despite this evidence, few papers are present
in literature about the involvement of autophagy in EMT-like processes in glioblastoma (GBM) so
far. This review summarizes the current understanding of the interplay between autophagy and
EMT in cancer, with special regard to GBM model. As the invasive behaviour is a hallmark of GBM
aggressiveness, defining a new link between autophagy and EMT can open a novel scenario for
targeting these processes in future therapeutical approaches.

Keywords: autophagy; epithelial-to-mesenchymal transition (EMT); glioblastoma (GBM); cadherins;
Wnt/β-catenin signalling

1. Introduction

Glioblastoma (GBM) is the most malignant and frequent form of glioma. This brain tumor is
derived from glial cells and is characterized by high proliferation rate and local dissemination. Despite
the improvement of chemo- and radio-therapies obtained in last decades, GBM prognosis is very poor
with a median survival time that rarely exceed 18 months. Notably, GBM is characterized by resistance
to apoptosis and high invasiveness, driving the search for novel targets useful to design effective
therapeutical strategies.

The Epithelial-to-Mesenchymal Transition (EMT) programme is considered to be crucial for the
acquisition of an invasive phenotype in epithelial cancer cells. Although some differences have been
outlined, glioma cells also undergo an EMT-like process, through the activation of specific transcription
factors and signalling pathways. Considering the critical role played by EMT on GBM dissemination,
resistance to apoptosis and maintenance of cancer stem cells staminality, a number of preclinical
studies have been launched to target the process as therapeutic approach.

In addition, the role of autophagy in tumor onset, progression is acquiring increasing clinical
inerest. For instance, it has been recently shown that, besides modulating cell resistance or sensitivity
to therapy, autophagy can also modulate GBM invasion.
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In this review, we examined the current understanding of the role of autophagy in regulating
the EMT and EMT-like programmes and in directing GBM cells to a more or less invasive phenotype.
Moreover, we provided some clues to argue that blocking autophagy for therapeutic purposes requires
careful consideration.

2. Epithelial-to-Mesenchymal Transition

EMT is a biological process by which epithelial polarized cells undergo various biochemical
modifications that convert them in mesenchymal, isolated, and not-polarized cells. A lot of evidence
suggests that EMT and its reverse process (mesenchymal-to-epithelial transition, MET) are crucial for
tissue remodeling during development, wound repair and the initiation of cancer metastasis. In the
early 1980s, Elizabeth Hay described epithelial-to-mesenchymal phenotype changes in the primitive
streak of chick embryos [1]. Initially named as “epithelial to mesenchymal transformation”, this
process is now known as “epithelial-to-mesenchymal transition” to emphasize its transient nature and
to distinguish it from the neoplastic transformation. To acquire a mesenchymal phenotype, epithelial
cells undergo morphological and biochemical changes, reorganize their cytoskeleton, and activate
a specific transcriptional programme. Indeed, epithelial cells are characterized by an apical-basal
polarity, a polygonal shape and various kind of junctions. The latter tightly holds epithelial cells
against each other and anchors them to the basement membrane, thus ensuring the structural integrity
of epithelial sheets within the body tissues [2]. Conversely, mesenchymal cells exhibit a spindle-like
morphology, do not have any polarity or connection with other and they are loosely anchored to the
extracellular matrix (ECM) by focal adhesions.

Transcription factors (TFs) belonging to the SNAI family, named Snail and Slug, the zinc-finger
E-box-binding homeobox (ZEB)1/2, and Twist1/2 are recognized to be the master regulators of EMT
execution, since they promote the transcription of genes normally expressed in mesenchymal cells, such
as N-cadherin, vimentin, and fibronectin. On the contrary, they suppress the expression of the epithelial
markers E-cadherin, claudins, occludins, and cytokeratins. Loss of E-cadherin, in turn, promotes
Wnt signaling and β-catenin accumulation in the nucleus, where it activates Tcf/LEF-dependent
transcription of genes promoting proliferation and migration [3].

Cells undergoing EMT lose their apical–basolateral polarization and acquire a fibroblast-like
morphology that allow them to degrade the underlying basement membrane and to migrate from the
epithelial layer in which they originated [4]. Metalloproteases are also activated during EMT, and favor
cell migration by degrading the membrane basement and the extracellular matrix components [2].

Furthermore, it has been shown that noncoding microRNAs play a role in EMT, by regulating the
translation of EMT players, as extensively addressed in Abba et al. [5].

EMT can be classified in three different subtypes according to EMT meetings discussion: the
so-called “type 1” EMT occurs during implantation, embryogenesis and organogenesis, the “type 2”
EMT is associated to wound healing, tissue regeneration and organ fibrosis, and the “type 3” EMT
characterizes neoplastic cells during metastatization. For a comprehensive overview of type 1 and
type 2, refer to Kalluri et al., 2009 [4]. The activation of a “type 3” EMT programme (hereafter referred
to as EMT) has been proposed to be pivotal for the acquisition of a malignant phenotype by cancer
cells [6], as discussed below in detail.

2.1. Signals Stimulating Epithelial-to-Mesenchymal Transition in Cancer

Epithelial carcinoma cells, and typically those present at the external part of the tumoral mass,
can acquire a mesenchymal phenotype upon specific stimuli. The microenvironment surrounding the
primary tumor (TME) is characterized by inflammation, hypoxia, ECM components and tissue-specific
soluble factors [7]. Notably, tumor cells recruit activated fibroblasts and immune cells that secrete
cytokines, that, in turn, can activate the EMT programme. TGF-β is secreted by stromal fibroblasts,
platelets and tumor cells themselves, and is considered the main EMT activator as it induces the
expression of specific TFs in different cancer models [8–10].
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Among cytokines, Tumor Necrosis Factor-α (TNFα) is crucial for EMT induction, and its effects
are mediated through NFκB signaling pathway activation [11–13]. It has been also described
that interleukins, particularly IL6, released by TME cells, can contribute to EMT stimulation.
Other EMT-inducing signals originated from the tumor stroma are represented by growth factors such
as HGF, EGF, PDGF that are able to activate EMT-specific TFs [14–17].

Furthermore, tumor microenvironment is characterized by hypoxia that promotes EMT via
hypoxia-inducible-factor-1α (HIF1α) activation [18,19]. HIF1α stimulates inflammatory cytokines [20]
and cooperates with Wnt/β-catenin signaling to enforce the EMT induction [21]. Moreover, during
hypoxia, mitochondria increase the production of reactive oxygen species (ROS) that further contribute
to EMT activation via both stimulating NFκB signaling [22], ECM regulation and cytoskeleton
remodeling [23].

Once they have acquired a mesenchymal phenotype, cancer cells can dissociate from the primary
mass, migrate and eventually enter the blood vessels by intravasation to initiate the metastatic process.
Following extravasation and micrometastases formation, invading cells activate a MET programme
and form macroscopic metastases resembling the epithelial features of the originating primary tumor,
although the molecular mechanisms of MET have been less investigated if compared to those regulating
EMT. However, both EMT and MET activation seem to be highly tissue-specific and strictly dependent
on the local microenvironment encountered [2,6,24,25].

2.2. Epithelial-to-Mesenchymal Transition in Glioblastoma Dissemination

EMT has been mainly characterized in carcinoma models, and the role of EMT in glioma has
only recently been investigated [26–28]. Candidate cells for originating gliomas (cells of origin)
are mostly neural stem cells (NSCs), normally present in the adult brain, and oligodendrocyte
precursor cells (OPCs) [29–32]. However, the involvement of more differentiated cells cannot be
completely excluded [33]. As a consequence of the neurodevelopmental process, neural cells assume a
mesenchymal phenotype, different from the epithelial one typical of the ectodermal cells they derive
from. Therefore, gliomas do not undergo the classical EMT programme during tumorigenesis, and
the terms “EMT-like” or “glial-to-mesenchymal transition (GMT)” have been proposed to indicate
this peculiar process [34]. Although it is not clear whether cells of origin undergo or not significant
modifications toward more mesenchymal features, glioma cells show a high plasticity in terms of
EMT-like/MET-like conversion, likely mediated by epigenetic alterations induced by the tumor
microenvironment [35,36]. Based on The Cancer Genome Atlas (TCGA) classification, GBMs can
be differentiated into four genetic subtypes: Mesenchymal, Classical, Neural and Proneural [37].
Verhaak results suggest that Proneural GBM patients do not have a survival advantage from aggressive
therapeutical treatments, unlike Classical and Mesenchymal GBM patients [37]. Role of EMT in each
GBM genetic subtype has been investigated by Zarkoob et al. in 2013 [38]. A significant overlap
between the genes that are up-regulated in the EMT signature and those that are up-regulated in
each of the GBM subtypes exists, although, among all, the mesenchymal subtype has the highest
number and expression levels of up-regulated genes [38]. Indeed, GBMs belonging to the mesenchymal
subtype are characterized by an elevated invasive potential, poor clinical prognosis, and significantly
shortened time to recurrence following initial treatment, compared to the other subtypes. The most
commonly used glioma cell lines also present a predominant mesenchymal signature.

GBM cells in the invasive front, differently from those of the inner mass, commonly execute an
invasion programme characterized by detachment from the mass, direct adhesion and degradation
of ECM (lack of basement membrane) and widespread dissemination in the surrounding brain
tissue. Remarkably, unlike other tumors, GBMs only rarely form metastases outside CNS,
even though a hallmark of their aggressiveness is the infiltration and the diffuse growth in the
surrounding parenchyma.

Large-scale genetic analyses have suggested that signaling networks activated during the
physiological neural development are also employed by GBM cells to promote tumor growth and
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invasion [39–41]. In detail, pathways mediated by Wnt/β-catenin, TGF-/β, Tyrosine kinase receptors
and SDF/CXCR4 have been involved in the activation of EMT-like related genes to promote GBM
dissemination [26,27]. Kahlert et al. found that the Wnt/β-catenin pathway is predominantly
activated within cells located at the invasive peritumoral front of patient specimens belonging to
the mesenchymal subtype. Chiefly, it induces the expression of Zeb1, Twist1 and Slug, thus promoting
the migratory capability of GBM cells in vitro [42].

Regarding TGF-β pathway, a number of evidence demonstrated its critical role for the promotion
of invasive properties of glioma cells [43–45], although the molecular mechanisms involved need to
be further investigated. Interestingly, TGF-β signaling is known to be crucial in the maintenance of
the mesenchymal stem-like population in GBM [45,46]. ZEB1 seems to be the pivotal mesenchymal
transcription factor activated by TGF-β signaling since, differently from Snail, Slug and Twist, it
accumulates in the nucleus of GBM cells [47].

The Hepatocyte growth factor (HGF) binding to the tyrosine kinase receptor c-MET is another
crucial event highly activated. c-MET is overexpressed within GSC populations [48] and in
patient-derived GSCs belonging to the mesenchymal subtype [49]. Accordingly, elevated c-MET
signaling enhances GSC migration by activating EMT TFs [49,50] and is associated with poor survival
and increased tumor invasiveness in patients [51–53].

The majority of molecules involved in the classical EMT have also been shown to play also a role
in the EMT-like process. An increased activity of the TFs that mainly orchestrate the typical EMT, such
as SNAI proteins, ZEB1/2, and Twist, promotes the invasion of GBM cells [54–57]. For instance, SNAIL
silencing reduces invasion, migration and proliferation in GBM cell lines [58,59] and overexpression
of Slug correlates with GBM grade [56]. ZEB1 and ZEB2 expression is also correlated with invasive
features and with survival of GBM patients; ZEB1 knock-down cells formed less invasive and more
drug-sensitive masses than wild type cells when inoculated in mouse brain [54,60]. Moreover,
Twist1 and Twist 2 expression, besides affecting stemness properties, has been associated to the
invasive properties of GBM cells as it mediates the expression of crucial EMT-related genes such as
metalloproteinase 2 (MMP2), Slug and HGF among others [57].

It is worth mentioning that the classical cadherin switch, which is widely accepted as an EMT
hallmark in carcinomas, is a controversial matter in GBM. Differently from carcinomas, E-cadherin
expression is almost absent in neural tissues, where its expression appears limited to GCSs cells and to
a subset of highly aggressive GBM cells. Otherwise, N-cadherin is absent in epithelial tumors before
the EMT execution, whereas is highly expressed in astrocytes, where it contributes to regulate cell
polarity and migration and in GBM cells, that show a faster and less-directed movement to respect to
astrocytes [54,61]. It was found that N-cadherin expression is inversely correlated with the invasive
behaviour of GBM, and its ectopical expression reduces cell migration and restores polarity in GBM
cells [62,63]. Notably, it has also been shown that differences in N-cadherin distribution rather than in
its expression levels are responsible for different motility behaviours [64,65].

In addition, several studies showed that the treatment of primary GBMs with radiation therapy or
with the anti-angiogenic agents Bevacizumab promotes the acquisition of a mesenchymal phenotype
in recurrent tumors [34,66–68]. Indeed, glioma cells that have acquired radioresistant properties
following treatment exhibit a gene expression profile enriched for genes involved in EMT-related
processes [34,69,70], and the pathways promoting EMT result strongly upregulated in these cells,
thereby resulting in an increased invasion capability [71,72]. An in vivo study by Halliday et al.
demonstrated that proneural GBM cells rapidly shifted their gene expression pattern towards a
mesenchymal phenotype in response to radiation therapy in a tumor-bearing mouse model [66].
As radiation is a universal component in the treatment of GBMs, this subtype shift poses an important
clinical challenge, especially considering that cells shifted to a mesenchymal subtype display an
increased radioresistance [73]. If this shift is due to changes in the microenvironment or to clonal
selection of mutant therapy-resistant cells is controversial, but both the hypotheses seem to be possible.
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3. Autophagy

The term “autophagy” was coined by the discoverer of lysosomes Christian de Duve and it means,
in Greek language, “self-eating” [74–76]. From the first description of the process in 1960s, many
studies described the process of self-degradation by a morphological point of view, until in 1993 a
genetic screen led to isolation of some yeast autophagy-defective mutants and to identification of the
so-called AuTophaGy-related (ATG) genes [77]. This seminal work allowed Yoshinori Oshumi to be
awarded the Nobel Prize in Physiology and Medicine in 2016. Oshumi’s screen identified 15 genes
involved in autophagy regulation in yeast undergoing nutrient deprivation, but today, more than 40
genes have been described in yeast, many of them having orthologues in vertebrates [76]. Three main
types of autophagy have been described: macroautophagy, microautophagy and Chaperone-Mediated
Autophagy (CMA).

3.1. Mechanisms and Molecules

During macroautophagy (hereafter referred to as autophagy), double-membrane vesicles named
autophagosomes form and engulf cytoplasmic material, including long-lived proteins and old or
damaged organelles which are then delivered to lysosomes for degradation and recycling [78].
Always activated at basal level within the cell, autophagy can be modulated by several signals,
mainly by nutrient signaling, growth factors, energy status, oxidative or ER stress and pathogen
infection. The input from these upstream signals is integrated by the serine/threonine protein
kinase mTOR (mechanistic or mammalian target of Rapamycin), which acts upstream of the ATG
genes, thus controlling autophagy activation [79]. mTOR belongs to the phosphoinositide 3-kinase
(PI3K)-related kinase family, and, in mammalian cells, works as the catalytic subunit of two
multi-protein complexes known as mTORC1 and mTORC2 [80]. Under nutrient deprivation, mTOR is
inhibited and Ulk1/Atg13-FIP200 complex initates and drives a massive autophagy activation [81].
Autophagosome formation requires the formation of a multi-protein complex, composed by class
III PI3K, Beclin1 and p150, although other proteins such as UVRAG, Ambra1 and Atg14L are able
to bind and regulate the complex [82–86]. Elongation and maturation of autophagosomes involve
two ubiquitin-like conjugation systems, both requiring Atg7, which catalyze the covalent linkage of
ATG5 to ATG12 and ATG16-like 1, and the attachment of phosphatidylethanolamine to proteins of the
microtubule-associated protein 1 light chain 3 (MAP1LC3 or LC3) family [87].

Lipidated LC3 protein is then recruited to the autophagosome membrane that docks and fuse
with lysosome, resulting in the formation of a single membrane vesicle named autophagolysosome or
autolysosome. Lysosomal hydrolases, ultimately, degrade and recycle the content of autolysosomes.

Although originally suggested to be just a nonspecific and bulk degradation mechanism,
autophagy is now recognized as a highly regulated process, enabling cells to sense and promptly
respond to a plethora of stimuli, thereby conferring adaptation to the ever-changing environment.
Nevertheless, even though a basal level of autophagy contributes to maintain the proper cell
homeostasis both during embryogenesis and adulthood in physiological conditions, it is now
ascertained that autophagy is deregulated in various human pathologies, including cancer [88–90].

3.2. Autophagy Role in Tumorigenesis

The observation in 1999 that the gene encoding Beclin1 is monoallelically deleted in a high
percentage of human breast, ovarian and prostate cancers provided the first evidence of the
involvement of the autophagic process in tumorigenesis [91]. Disruption of Beclin1 in mice results in
an increased proliferation and in the spontaneous development of various malignancies, confirming
Beclin1 as an haploinsufficient tumor suppressor gene [92,93]. In a similar way, mice lacking one copy
of the Beclin1 interactor Ambra1 exhibit a higher incidence of spontaneous tumors than their wild type
littermates, and cells depleted of the gene are characterized by a hyperproliferative phenotype [94].
Notably, Ambra1 homozygous disruption in mouse leads to a strong hyperproliferation and lethal
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defects in the developing nervous system during embryogenesis [82]. Mice bearing systemic or
tissue-specific deletion of Atg5 and Atg7 also develop tumoral masses a higher frequency than the wild
type counterparts [95] and are more prone to develop cancers upon carcinogen-induced stimuli [96–98].

Several mechanisms have been proposed to explain the oncosuppressive functions of
autophagy [90]. First of all, the autophagy-mediated clearance of proteins and organelles ensures
the proper cellular homeostasis, avoiding the accumulation of genotoxic molecules, such as reactive
oxygen species (ROS) produced by dysfunctional mitochondria, as well as aggregates of ubiquitinated
proteins [99,100]. An intact autophagic machinery is also required to deal with cytotoxic stress
and to maintain genome stabilization, although further investigation is required to underlie the
mechanisms involved [101,102]. Moreover, autophagy counteracts the metabolic switch accompanying
malignant transformation by eliminating old and damaged mitochondria, thus preserving the optimal
bioenergetic needs and maintaining the physiological metabolic homeostasis [103,104].

Other potential mechanisms through which autophagy acts as an oncosuppressive process are
linked to its role in the regulation of immune response [105], maintenance of the staminal niches [106],
defens of the organism against pathogen infections and degradation of oncogenic proteins, like mutant
(but not wild-type) TP53 [107].

On the other hand, it is well accepted that, in an established tumor, cancer cells use autophagy
as a strategy to overcome microenvironmental stresses, including nutrient deprivation, hypoxia and
drugs. Advanced tumors sometimes exhibit an increased autophagic flux and ex-vivo cell lines in
which BECN1 or ATG5 have been down-regulated are virtually unable to survive within the metastatic
niche [108]. Analogously, autophagy-defective tumoral cells appear more sensitive to pro-apoptotic
stimuli than autophagy-proficient cells [109–112].

Due to this dual function, autophagy has been defined a ‘Janus-faced’ player in cancer
progression [113]: in the early stages of tumorigenesis it plays onco-suppressive functions by
limiting cell proliferation, DNA damage and tumor progression; on the contrary, when the
tumor mass is established, it helps cells to counteract the stressful conditions characterizing the
tumor microenvironment.

3.3. Autophagy and Glioblastoma: Friends or Foes?

It was demonstrated that high-grade gliomas exhibit lower expression of some autophagy related
proteins with respect to low-grade ones, and that the progression of astrocytomas toward higher
grades is accompanied by a decrease in autophagic proficiency. Pirtoli et al. observed that both
BECN1 mRNA (encoding for Beclin1) and protein levels are lower in GBM tissue than in low-grade
and healthy brain tissue [114]. Accordingly, following Karnofski classification, high Beclin1 levels
have been positively correlated with patient survival and performance status, whereas low Beclin1
expression correlates with an increase of proliferation [114]. Similarly to Beclin1 expression, also LC3B
II expression (index of autophagy activation) is low in high-grade astrocytomas, thus suggesting an
impairment of the autophagic process in these tumors [115]. On the other hand, in 2012, through a
proteomic screening, Galavotti et al. found that some genes involved in autophagy regulation are
highly expressed in the GBM mesenchymal subtype [116]. Among these, the autophagy associated
genes DRAM1 and SQSTM1 encoding for the key regulator p62 are highly expressed in Glioma stem
cells (GSCs), and modulate their migration and invasion capabilities [116]. Although these studies
suggest that autophagy may regulate gliomagenesis, a systematic and comprehensive investigation of
autophagy role among the GBM subtypes is missing, but needed. Indeed, a different expression of
autophagy regulators across GBM genetic groups could be responsible for a different susceptibility to
autophagy modulation.

In addition to the growing evidences showing a direct involvement of autophagy-regulating
genes in GBM progression, several autophagy-associated molecules are frequently altered in brain
tumors. As an example, the tyrosine kinase EGF receptor is often amplified in gliomas, and suppresses
autophagy through both kinase-dependent and -independent mechanisms [117]. PTEN, is commonly
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mutated in gliomas, and positively regulates autophagy by inhibiting the PI3K/Akt pathway, although
PTEN and NF1 co-mutation determines an autophagy suppression through the hyperactivation of the
PI3K/Akt signalling [118].Furthermore, the oncosuppressor p53, frequently mutated in gliomas, may
have a dual role in autophagy regulation, as the nuclear protein is able to promote autophagy through
the transcriptionally regulation of autophagy-related genes, whereas cytoplasmic p53 suppresses
autophagy [119]. Further investigation are needed to define whether autophagy machinery may be
considered as a novel useful prognostic and/or therapeutic marker of glial tumors.

4. Autophagy and Epithelial-to-Mesenchymal Transition

Autophagy was only recently connected to EMT. In the last years, some observations indicated that
an intricate relationship exists between these two important processes in cancer [120]. According to
its dual role in tumorigenesis, the effect of autophagy on EMT appears controversial and strictly
dependent on the cellular type and on the stimulus employed for activating or inhibiting autophagy,
as summarized in Table 2 and in Figure 1.

Literature data highlights that an autophagy stimulation of metastatization could be merely
the consequence of its pro-survival activity against the apoptotic signals coming from changes in
adhesion and cytoskeleton reorganization [108]. A number of compounds or microenvironmental
conditions that are able to activate the EMT programme, can also induce an autophagic response
in different types of cultured cancer and non-cancerous cells; autophagy inhibition in these models
impairs EMT (Table 2).

However, emerging evidence also indicates that autophagy activation can induce a reversion of
the EMT phenotype in different healthy and cancer models and that several anticancer compounds that
induce autophagy also inhibit EMT [121–123] (Table 2). Selective degradation of EMT players seems
to be a general mechanism by which autophagy can modulate EMT process [124]. Notably, in ATG3,
ATG5, ATG9 and ATG12 KO mice, p62 accumulation accumulation determines stabilization of Twist1,
which is normally degraded by both proteasome and autophagosomes [125]. This regulation can be
crucial in those tumors characterized by p62 up-regulation, as observed so far in human squamous
cell carcinoma and in melanoma (Table 2). Autophagy deficiency reduces the expression of epithelial
markers and increases that of mesenchymal ones also in ATG7 KO hepatocytes [126] (Table 2).

Table 1. Autophagy and EMT.

Cell/Tissue Autophagy Modulation Effect on EMT on EMT Mechanism References

HCC cells

Induction by starvation

Inhibition by ATG KD or
CQ

Induction

Inhibition

activation of
TGFβ/Smad3-dependent and
cAMP/PKA/CREB signalling

[108,127–129]

Colorectal cancer cells

Induction by mTOR
inhibition or by ALS

treatment

Inhibition by BECN1
knockdown

Inhibition

Inhibition

decreased activation of RhoA
and Rac1

unknown

[122,130,131]

Ovarian cancer cells Induction by Danu
treatment Inhibition unknown [123]

Non tumorigenic
hepatocytes

Induction by starvation +
TGF β1

Inhibition by BECN1 or
ATG7 KD

Inhibition

Induction

Snail degradation

unknown

[126]

NPC cells Induction by Cisplatin Induction unknown [132]

NSCL cells Induction by TGFβ1
treatment Induction unknown [133]
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Table 2. Autophagy and EMT.

Cell/Tissue Autophagy Modulation Effect on EMT on EMT Mechanism References

Lung adenocarcinoma
cells

Induction by MSCs
co-colture Induction Snail up-regulation [134]

Endometrial cells Induction by Hypoxia Induction unknown [135]

Uroepithelial cells Induction by DBP
exposure or starvation Induction

E-cadherin degradation or
TGFβ1/Smad3 pathway

activation
[136,137]

Kidney podocytes Inhibition by V-ATPase Inhibition Reduction of p62
phosphorylation [138]

MEFs, keratinocytes,
melanoma cells Inhibition by ATG KD Induction p62-mediated Twist

stabilization [139]

Breast Activation by DEDD
overexpression Inhibition Snail and Twist degradation [140]

Gastric cancer cells
and tissue Inhibition by BECN1 KD Inhibition ROS-NFκB-HIF-1α pathway

activation [141]

3-MA, 3-methyladenine; ALS, Alisertib (Aurora kinase A inhibitor); ATG, autophagy related gene; Baf, bafilomycin;
BECN1, Beclin1; cAMP, cyclic adenosine monophosphate; CQ, chloroquine; CREB, cAMP responsive element
binding; Danu, Danusertib; DBP, n-butyl phthalate; DEDD, death effector domain containing; DRAM1, DNA
damage-regulated autophagy modulator 1; EMT, epithelial to mesenchymal transition; HCC, hepatocarcinoma
cells; HIF-1α, hypoxia-inducible factor 1; KD, knockdown; MEFs, mouse embryonic fibroblasts; MSC, mesenchymal
stem cell; NF- κB, nuclear factor kappa beta; NPC, nasopharyngeal carcinoma; NSCL, Non-small cell lung;
PI3KC3, phosphatidylinositol 3-kinase; PKA, protein kinase A; Rac1, Ras-related C3 botulinum toxin substrate
1; RhoA, Ras homolog gene family, member A; ROS, reactive oxygen species; Smad3, small mother against
decapentaplegic3; SQSTM1, sequestosome 1; TGFβ, Transforming growth factor beta; V-H-ATPase, vacuolar-type
H+-adenosine triphosphatase.

Taken together, these observations show a complex crosstalk between autophagy and EMT processes.
It is conceivable that, at the early stages of metastatization, autophagy acts as oncosuppressive signal,
tending to inhibit the EMT programme mainly by destabilizing EMT crucial players. Later on, metastatic
cells could require a sustained autophagy to survive to environmental and metabolic stressful
conditions encountered [113].

4.1. Autophagy Role on Glioblastoma Dissemination

To date, only a few studies correlate autophagy to GBM cells capability to migrate and spread
toward surrounding tissues, and, similarly to what observed in other tumor models, they highlight
two opposite point of views, as detailed below, in Section 4.1.1, and as illustrated in Figure 1.

4.1.1. Autophagy Promotes Glioblastoma Dissemination

In 2012, Galavotti et al. showed that some autophagy players are up-regulated in GBM
mesenchymal subtype, and that their modulation modifies the migration properties of GBM cells.
They observed that GSCs require autophagy activation to migrate, and down-regulation of the
autophagy-associated factors DRAM1, p62 and ATG7 limit their invasion capabilities potentially
through the regulation of energy metabolism [116] (Figure 1A). In line with these observations, a study
conducted by using an 3D organotypic model of GBM showed that ATG12 RNA silencing reduced
cellular invasion, although no modifications of cellular migration capabilities was observed [142]
(Figure 1A). More recently, another couple of studies have correlated autophagy activation induced by
a combination of different stimuli with an enhanced mesenchymal phenotype in GBM cells through
various mechanisms [143,144]. Lastly, inhibiting the late stages of autophagy by using Chloroquine,
Liu et al. showed a potentiation of the effect of the multi kinase inhibitor Sorafenib in reducing cell
proliferation and migration, through a further stimulation of apoptosis [145] (Figure 1A).

4.1.2. Autophagy Impairs Glioblastoma Dissemination

In spite of the previous mentioned evidence, we and other groups have recently demonstrated a
direct effect of autophagy modulation on migration and invasion capabilities of GBM cells, as illustrated
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in Figure 1B. Autophagy induction by nutrient deprivation or by mTOR inhibition determines a
reversion of EMT phenotype in immortalized and primary GBM cells [146–149]. In 2014, Palumbo
et al. observed that ATG7 RNA silencing restored clonogenic ability of irradiated GBM cells with
inactive EGFR and, conversely, that rapamycin-mediated autophagy further impaired their clonogenic
and migration capabilities [148]. Later on, we demonstrated that autophagy induction in GBM
immortalized and primary cells, obtained by nutrient starvation or by mTOR pharmacological
inhibition, induced a drastic impairment of both migration and invasiveness. On the contrary,
autophagy deficiency, obtained by silencing the autophagy master genes ATG5, ATG7 or BECN1,
stimulated cell motility [146], similarly to what observed in highly metastatic breast, colon and
hepatocellular cancer models [122,124,130]. We correlated the migration properties of the cells
analyzed with a molecular shift from a mesenchymal to an epithelial-like phenotype (Figure 1B).
Upon autophagy induction, in fact, we found a down-regulation of the EMT players Snail and
Slug, likely due to a general impairment of protein synthesis mediated by mTOR inhibition, rather
than to the autophagosome-mediated degradation [146]. As an outcome of SNAI down-regulation,
the up-regulation of N- and R-cadherin mRNA and protein expression was observed, whereas no
significant differences in other cadherin family members were found (Figure 1B). Remarkably, as
above discussed, although a “cadherin shift” from the E- to the N- isoform is actually believed a
hallmark of carcinoma cells undergoing EMT, the role of cadherins in non-epithelial tumors is much
less documented and elucidated. N-cadherin overexpression or re-distribution has been associated
with the recovery of the cell polarity and the inhibition of migration of GBM cells [62–65]. Notably, we
have recently found that, upon autophagy induction, the Wnt signaling effector β-catenin relocalises
within the cell and associates to N-cadherin in sub-membrane compartments to form epithelial-like
cell-cell adhesion structures [147], thus contributing to a mesenchymal-to-epithelial-like transition of
GBM cells (Figure 1B). Similarly to other tumors, Wnt pathway is constitutively active in GBM and its
deregulation is likely responsible for initiation and/or progression of the disease [150–153]. β-catenin
translocation to the nucleus characterizes the mesenchymal and invasive phenotype of tumoral cells as
it promotes SNAIL and ZEB1 transcription and mediates EGFR pathway-induced EMT [154–156].

In summary, a complicated interplay between autophagy process and EMT/MET activation in
GBM is recently emerging. Contradictory results could be explained by the different stimuli and
different models employed. Notably, autophagy induction obtained through mTOR inhibition or
nutrient deprivation always results in migration/invasion reduction in independent experiments and
different GBM cell lines. Conversely, autophagy activation resulting by the employment of drugs like
TMZ plus low glucose, or by TGF-β, or by AEG overexpression is associated to promotion of migration
capabilities of GBM cells, maybe suggesting that different and complex mechanisms contribute to the
migratory phenotype in those contexes.
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Figure 1. Effects of autophagy modulation on GBM migration/invasion capabilities from opposite point
of views. (A) Autophagy induction promotes GBM cells invasiveness and viceversa. Upon different
stimuli, autophagy is activated and a more invasive phenotype is observed in some models of GBM cells
(right). Conversely, when autophagy is impaired by genetic knockdown of some autophagy-related
genes, a less invasive phenotype is obtained (left). TGFβ, Tumor necrosis factor β; TMZ, Temozolomide.
(B) Autophagy modulation promotes EMT/MET-like shifts in GBM cells. In nutrient-rich conditions,
hyperactivation of the mTORC1/2 complexes impairs autophagy and Wnt pathway is active thus
allowing β-catenin translocation to the nucleus where it promotes the transcription of pro-invasive
molecules. In this condition, EMT players of the SNAI family express and repress cadherins expression.
The genetic knockdown of autophagy related genes exacerbates the mesenchymal phenotype and
enhances the cell migration capability. Upon autophagy induction, shown on the right, Dishvelled
(DVL) is degraded and Wnt pathway inactivated leading to β-catenin accumulation into the cytosol.
In autophagic cells, SNAI factors are down-regulated and, consequently, N-cadherin accumulates and
binds β-catenin, thus promoting cell-cell adhesion.

Effects observed following autophagy inhibition also require attention, although Chloroquine
effects on cells often depend on autophagy-independent mechanisms, as better illustrated in the
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next section. More controversial, although conducted in different model systems, are the results on
GBM invasiveness obtained by inactivating ATG genes. In light of such contradictory results, further
in-depth investigation is, for sure, required to better unravel the question.

4.2. Targeting Autophagy in Glioblastoma Therapy

In the last decade, the standard therapeutic regimen for GBM has been surgical resection, if
feasible, followed by radiation therapy (IR) and temozolomide (TMZ)-based chemotherapy. Both
TMZ and IR are able to induce an autophagic response in GBM cell lines, likely through DNA
damage induction, but the outcome of the autophagic response is so far inconclusive (Figure 2).
In 2004, Kanzawa et al. reported that TMZ treatment induced autophagy instead of apoptosis in
GBM cells and that the co-treatment with a pharmacological inhibitor of the late stages of autophagy
restored TMZ-induced cytotoxicity, although the opposite effect was obtained by blocking autophagy
initiation [157]. In line with this observation, the combination between standard therapies and
autophagy flux inhibitors Chloroquine (CQ) or its analog hydroxychloroquine (HCQ) is a promising
therapeutic approach in GBM treatment, and combined therapies including these molecules are
currently employed in ongoing phase III clinical trials (Figure 2). Indeed, CQ and its derivatives are, in
fact, the only autophagy inhibitors already approved by the USA Food and Drug Administration due
to their anti-inflammatory and anti-malarial properties. Similar to other tumoral settings, CQ-treated
GBM patients exhibit a better median survival if compared to placebo-treated individuals [158].
However, despite the potential promising beneficial effect, a trial combining HCQ with TMZ and IR
showed that the maximum tolerated HCQ dose was ineffective in inhibiting autophagy, suggesting
that CQ effect could be due to autophagy-independent mechanisms [159]. Notably, it has been recently
shown that, in addition to DNA intercalation properties and ROS production, CQ also induces a strong
autophagy-independent disorganization of the Golgi apparatus and of the endo-lysosomal system in
mice tissues, thus suggesting caution in interpreting results obtained with this drug [160,161].

In an apparently contradictory way, other therapeutic approaches and clinical trials aimed
at inhibiting mTOR pathway, inducing in turn an autophagic response, have been launched.
PI3K/Akt/mTOR pathway is often deregulated in human cancers including GBM, and is involved in
cancer stem cell maintenance, thus inducing an uncontrolled proliferation [162,163]. It was observed
that the co-treatment of TMZ and the mTOR inhibitor RAD001 (also known as everolimus) induced cell
death [164] (Figure 2). RAD001 was shown to enhance the cytotoxic effect of an oncolytic adenovirus
in a viral-mediated therapy by inducing an autophagy-dependent cell death [165,166].

mTOR inhibition also promotes TMZ-induced senescence in in vitro and in vivo models [167,168].
However, the link between autophagy and senescence needs to be further clarified in order to be
exploited a potential therapeutic tool.

Very recently, it has been suggested that the failure of some clinical trials targeting PI3K and mTOR,
could be due to the employment of Rapalogs (rapamycin and its analogs) which are known to inhibit
mTORC1, but not mTORC2 [149]. In fact, a feedback mechanism activated by mTORC1 inhibition
stimulates mitogenic pathways, thus compromising the rapalog efficacy on cell proliferation [169].
In order to overcome the emerged limitations, a second generation of mTOR inhibitors, (named
ATP-competitive mTOR kinase inhibitors or TORKIs) have been developed and are revealing more
efficacious than rapalogs in GBM treatment [170–172]. As an example, the novel TORKI PP242, able to
target both mTORC1 and mTORC2, impairs cell proliferation and reduces stemness and invasiveness
properties in a group of GBM cell lines carrying different genetic alterations [149] (Figure 2). In this
respect, a putative difference in the “autophagy signature” among GBM subtypes, if found, could
affect the response to the treatments.

Notably, in our model, we have obtained β-catenin relocalisation and migration impairment by
both nutrient deprivation and by inhibiting mTOR complexes by means of Torin 1, an ATP-competitive
mTOR inhibitor able to target both the mTOR complexes [147].
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Finally, a number of compounds, such as arsenic trioxide, sodium selenite and cannabinoids
(THC), used in combination with traditional therapy showed beneficial effects through the induction
of an autophagic response, in some cases potentiating drug-induced cell death, some other inducing
mitochondrial damage or ER stress [173–176] (Figure 2). In addition, autophagy-induced cell death
seems also to be the mechanism by which some compounds overcome the apoptosis-resistance
typical of the anoxic cells inside tumors. For instance, the class of small molecules able to bind the
BH3 domain of the anti-apoptotic protein Bcl-2, known as BH3 mimetics, were found to induce an
autophagy-dependent cell death in GBM [177,178]. If these compounds are also able to trigger a
beneficial or detrimental effect on GBM invasiveness remains to be investigated.
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Figure 2. Targeting autophagy in GBM therapy. The effects of different therapeutic combinations
on autophagy and the outcome on GBM progression in patients are shown. Chloroquine or
hydroxy-chloroquine (CQ/HCQ) addition to standard protocols (TMZ/IR, temozolomide/radiation
therapy) impairs the autophagy flux and sensitizes GBM to the treatment (pink box). Otherwise,
several chemical compounds and mTOR inhibitors, that are able to stimulate autophagy, also increase
the efficacy of the standard treatments (green boxes). THC, tetrahydrocannabinol.

5. Concluding Remarks

GBM is the most common and aggressive brain malignancy, and is characterized by a highly
invasive behaviour, although the role of EMT in GBM dissemination has only been recently investigated.
Although several molecules and signalling pathways mediating EMT in carcinomas play a role also in
glioma invasion, further investigation will be necessary to better characterize EMT-like and its reverse
MET-like processes occurring in GBM.

Targeting autophagy in GBM therapy is still a matter of debate; autophagy induction has been
observed in GBM in response to radio- and temozolomide-based therapy and even though a number
of clinical trials aimed at inhibiting autophagy execution, mainly by CQ, have been launched, others
directed to inhibiting mTOR pathway, and thus activating autophagy, are ongoing.

Intriguingly, we observed that autophagy induction by nutrient starvation or by mTOR inhibition
impairs migration and invasion of GBM cells, in line with other studies conducted on other cancer
models. Further in-depth studies will be crucial to clearly dissect the autophagy role in GBM biology
and to carefully evaluate autophagy modulation as therapeutic strategy to contrast GBM progression.
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