
1 3

Med Biol Eng Comput (2017) 55:1109–1122
DOI 10.1007/s11517-016-1589-3

SPECIAL ISSUE - ORIGINAL ARTICLE

Multi‑parametric study of temperature and thermal damage 
of tumor exposed to high‑frequency nanosecond‑pulsed electric 
fields based on finite element simulation

Yan Mi1 · Shaoqin Rui1,2 · Chengxiang Li1 · Chenguo Yao1 · Jin Xu1 · 
Changhao Bian1 · Xuefeng Tang1 

Received: 30 November 2015 / Accepted: 26 October 2016 / Published online: 16 November 2016 
© The Author(s) 2016. This article is published with open access at Springerlink.com

Keywords  Multi-parameters · Temperature · Thermal 
damage · Tumor · High-frequency nanosecond-pulsed 
electric fields · Finite element method

1  Introduction

Electroporation, as an intrinsically nonthermal phenom-
enon, is reversible when electric fields are used up to a spe-
cific level, but becomes irreversible at higher field levels. 
An irreversible electroporation (IRE) treatment includes 
electrode placement within the target region and delivery of 
a series of electric pulses of microsecond-scale single pulse 
duration with a low frequency. These microsecond-long 
high-voltage pulses can not only cause IRE on a cell mem-
brane and then changes in the cell function, but can also 
induce biomedical effects such as apoptotic effects, anti-
angiogenic effects and immune responses [35, 38]. Ulti-
mately, IRE can achieve the goal of tumor ablation. IRE 
has recently also been considered as a nonthermal treat-
ment modality to destroy tumors [14, 47, 55]. The most 
significant advantage of IRE is that it only affects the cell 
membrane while keeping the extracellular matrix (ECM) 
around the targeted cells intact by reducing Joule heat-
ing [47]. However, statistics from clinical trials show that 
muscle contraction appears during the pulsed electric field 
process and the patients suffer from muscle contraction dis-
comfort during the treatment [7, 24]. When the width of the 
applied electric field pulse is reduced to the ns level, the 
electric field strength increases to the MV/m level, and the 
biological effects induced by nanosecond-pulsed electric 
fields (nsPEFs) are different from those of the aforemen-
tioned IRE. While no apparent irreversible electroporation 
phenomenon occurs on the cell membrane, a series of func-
tional changes occur inside the cell, and then, apoptosis is 
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induced [50, 51]. However, because of the high intensity of 
the pulsed electric fields that are applied to the electrodes, 
the treatment may cause surface discharges on the targeted 
tissue and skin burns.

To combine the advantages of both microsecond pulsed 
electric field (μsPEF) and nsPEF treatments, we introduced 
a high-frequency nsPEF protocol for treatment of tumors. 
Studies have shown that when a high-repetition-rate nsPEF 
is applied, the number of pulses makes a greater contri-
bution to the killing effects than the field strength and the 
pulse width. In fact, an increase in the electric field pulse 
repetition frequency can inhibit patient muscle contrac-
tion [1, 10, 37, 39, 46, 57]. Therefore, we forecast that a 
high-repetition-frequency nsPEF increased to the 100 kHz 
level will effectively restrain patient muscle contraction. 
In addition, when the field strength is reduced to less than 
the breakdown field strength of air (10 kV/cm level), it will 
also effectively solve the problem of skin burns caused by 
the electrode discharge during nsPEF treatment. Conse-
quently, the protocols that are proposed in this study can 
solve the problems of μsPEF and nsPEF treatments in can-
cer therapy, but also, through a synergistic effect, simul-
taneously perform the tasks and enhance the effects of 
inducing tumor cell necrosis and apoptosis. In addition, the 
high-frequency pulses can produce a more uniform electric 
field distribution to prevent tumor recurrence [2, 5]. Thus, 
this protocol is expected to provide a better outcome from 
cancer treatments.

Finally, it should be noted that high intensity pulsed 
electric fields will cause Joule heating, which should be 
avoided in electroporation applications, because tempera-
ture control is important even in IRE treatments. Lackovic 
et al. simulated the temperature distribution of a liver with 
needle electrodes during and after eight 100 μs, 1500 V/cm 
pulses and eight 50 ms, 250 V/cm pulses, with a repetition 
frequency of 1  Hz. The simulation results show that the 
Joule heating depends on the conductance of the tissue and 
the pulse parameters [32]. They also found that when the 
repetition rate increased from 1 Hz to 1 kHz, it could cause 

the tissue temperature to increase, but still by less than 3 °C 
[34]. Davalos et al. [15] elaborated on the determination of 
the temperature distribution and how to assess the thermal 
effects. They also investigated the temperature distribution 
and the thermal damage in the brain based on numerical 
models. The temperature was measured at the same time 
[21]. Thus, it is essential to pay greater attention to the 
thermal effects when tissue is exposed to high-frequency 
nsPEF treatment with a field strength that is greater than 
1 kV/cm but less than 10 kV/cm. However, recent studies 
with regard to the temperature increase aspects of thermal 
damage are mainly concerned with the thermal effect under 
a given pulse parameter, or are simply research on the 
influence of a single parameter on tissue heating [12, 15, 
21, 31, 32, 34, 41]. Therefore, in this study, we provide a 
multi-parameter analysis method to determine the relation-
ship between the thermal effects and the pulse parameters 
(e.g., pulse width, pulse amplitude, repetition rate) and then 
to predict the temperature increase and the thermal damage. 
The results of this work can provide theoretical guidance 
for parameter selection in future tumor treatments using 
high-frequency nsPEFs.

2 � Methods

2.1 � Finite element model

This study was based on use of a finite element model by 
using finite simulation element analysis software of COM-
SOL Multiphysics to calculate the electrothermal coupling. 
The tumor model adopted a spherical geometry and the 
normal tissue around the tumor was represented by a cyl-
inder, with its size as shown in Fig. 1. The liver diameter is 
10 cm, and height is 10 cm. A pair of needle electrodes was 
used for hepatic tumor ablation. To maximize tumor abla-
tion while reducing the damage to normal tissue around the 
tumor, the electrode needles were inserted directly into the 
tumor. The distance between the electrodes and the depth 

Fig. 1   Geometrical model of 
tissue and electrodes. Liver 
diameter: 10 cm; liver height: 
10 cm; tumor diameter: 1 cm; 
needle diameter: 1 mm; intere-
lectrode distance: 5.4 mm; 
electrode insertion depth: 6 mm. 
a Geometrical model; b mesh-
ing model
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of penetration were all based on our previous optimization 
of a simulation for a tumor with a diameter of 1 cm [56]. 
The needle diameter is 1 mm, while the distance between 
electrodes is 5.4 mm and the insertion depth of electrodes 
is 6 mm. The purpose of the optimization was to make the 
best use of the electric fields and maximize the ratio of 
the tumor melted by the electric fields to the normal tis-
sue ablation volume. According to Fig. 1b, the structure of 
free split tetrahedral was used. The smallest element size of 
electrodes and tumor is 0.4 mm, while the smallest element 
size of liver is 1.8 mm. The number of degrees of freedom 
is 405,643.

2.2 � Parameter model

We introduced a type of high-frequency nanosecond pulses 
illustrated in Fig.  2. The electric field strength is from 1 
to 10 kV/cm, the pulse width is range from 50 to 500 ns, 
while the repetition rate is from 100 kHz to 1 MHz. One 
of the characteristics of this pulse protocol is that the total 
pulse time is 100 µs no matter what the pulse width or rep-
etition rate is. For example, when pulse width is 50 ns and 
pulse repetition rate is 1 MHz, the total high level duration 
is 5 µs. For pulse bursts with 1 Hz repetition frequencies, 
we run simulations for 1 s, which means one pulse burst.

The electrical properties and thermal properties of the 
tissue (rat liver) and the electrodes (stainless steel) were 
taken from the literature [3, 40, 52] and are listed in Table 1. 
The initial electrical conductivity of the rat liver that we 
used in this study was 0.067  S/m, and the conductivity 
of the tumor was 0.135  S/m [48]. It had previously been 
proved that tissue electrical conductivity increases because 
of electroporation during application of high-voltage pulses 
[52]. To analyze the temperature rise in the tissue, we ran 
simulations using the simplified model of the electrical 
conductivity. It was shown that when the tissue was elec-
troporated, the electrical conductivity of the liver increased 
to 0.241 S/m and that of the tumor was 0.426 S/m [48]. The 
multiple of the increase in conductivity was in accord with 
the results of measurements by other researchers [40]. The 
reason for this simplification was that the parameters stud-
ied in this paper were already more enough. The purpose of 
the analysis was to study the relationship between the pulse 
parameters and the thermal effects. Therefore, it was most 
effective to simplify the calculation in this way. The thresh-
old value of the field strength required to decide whether 
or not the tissues were electroporated was 800  V/cm [4, 
14], which is considered to be the threshold for irreversible 
electroporation. The IRE pulse protocols are described as 
several 100 µs pulses with a frequency of 1 Hz. Because the 

Fig. 2   Schematic representa-
tion of pulse trains used in the 
simulations; pulse voltage: 1, 2, 
3, 4 kV; pulse width: 50, 100, 
250, 500 ns; pulse frequency: 
100, 250, 500 kHz, 1 MHz; and 
repetition frequency of pulse 
bursts: 1 Hz

100 s

50-500ns

1-10kV/cm

1s

Table 1   Material properties

Mass density  
[ρ (kg/m3)]

Heat capacity  
[Cp (J kg−1 K−1)]

Thermal conductivity 
[k (W m−1 K−1)]

Electrical conduc-
tivity [σ (S/m)]

Blood perfusion  
[ωb (1/s)]

Metabolic heat 
[Qm (W/m3)]

Electrodes 70 1045 0.026 1e–5 – –

Insulation 6450 840 18 1e8 – –

Liver 1080 3540 0.52 0.067 (initial) 0.0005 4200

Tumor 1220 4180 0.6 0.135 (initial) 0.002 42,000
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total pulse time in this manuscript is 100 µs, it is reasonable 
to use 800 V/cm as the threshold.

With regard to the blood perfusion and metabolic heat 
generation in biological heat transfer, the blood density and 
the heat capacity were ρb = 1000 kg/m3 and cb = 4200 J/
(kg  K), respectively [28, 36]. Different values for blood 
perfusion and the metabolic heat of both the liver and the 
tumor are also listed in Table  1. The value of the blood 
perfusion and the metabolic heat of the tumor were both 
larger than that of the liver because of the specific charac-
teristics of the tumor [16, 28, 36]. The temperature coeffi-
cient of electrical conductivity was 1.5%. Finally, the initial 
temperature and the arterial blood temperature were both 
37 °C.

2.3 � Computing method

The electric potential distribution within the tissue was 
obtained by transient solution of the following:

where ϕ is the electric potential and σ is the tissue conduc-
tivity. Heat transfer in the tissue can be modeled using the 
bioheat equation that was proposed by Pennes [43]:

Here, T is the temperature, t is the time, ρ, c and k are 
the density, the heat capacity and the thermal conductivity 
of the tissue, ωb is the blood perfusion, ρb and cb are the 
density and the heat capacity of blood, Tb is the tempera-
ture of the arterial blood, Qm is the metabolic heat, and Q is 
the Joule heating caused by the electric field.

E is the electric field and J is the current density. The 
Pennes equation is a thermal–electric coupled field calcula-
tion, from which we can obtain the temperature of the bio-
logical tissue.

The electrical boundary condition at one electrode–tis-
sue interface was set to be ϕ = ϕ(t), and ϕ(t) was the time-
varying voltage. The other electrode–tissue interface was 
set at ϕ  =  0. The remaining boundaries were treated as 
electrical insulation and are described by dϕ

dn
= 0. The outer 

surface of the liver tissue was set to be thermal insulation.
Thermal damage is a process that depends on both the 

temperature and the time, and occurs when the tissue tem-
perature is elevated over an extended period of time. Some 
entries in the literature explain that damage can occur 

(1)−∇ · (σ∇ϕ) = 0,

(2)ρc
∂T

∂t
= ∇ · (k∇T)+ ρbwbcb(T − Tb)+ Qm + Q

(3a)E = −∇ϕ

(3b)J = σE

(3c)Q = JE = σ |∇ϕ|2

at temperatures as low as 42  °C if the exposure is long 
enough, while 73.4  °C is regarded as the target tempera-
ture for instantaneous thermal damage in liver tissue [8, 
34, 42, 53, 54]. Also, some researchers believe that tem-
peratures higher than 43–45 °C will lead to protein dena-
turation and destruction of the cell structure, which will 
eventually lead to cell necrosis. If the tissue temperature 
increases in a transient manner but to less than 45–50 °C, 
the effects may be negligible in terms of thermal injury 
[20, 33]. This is largely in line with the accepted viewpoint 
that if the temperature increase exceeds 8 °C, proteins will 
tend to denature [2]. Consequently, in this study we inves-
tigated the parameters that maintained temperature at a 
level below 44 °C. Simultaneously, the well-known Arrhe-
nius first-order kinetic model was also used to evaluate the 
thermal damage to the tissue. The thermal damage Ω accu-
mulated for time t is represented by the following equation 
[17]:

where A (1/s) is the pre-exponential factor, E (J/mol) is the 
activation energy, R (=  8.314  J/(mol K)) is the universal 
gas constant and T (K) is the absolute temperature. The 
damage process and the parameters are listed in Table 2. 
The parameters used in this computation are the pre-expo-
nential factor A of 7.39e39 (1/s) and the activation energy 
E of 2.577e5 (J/mol), which represent protein coagulation 
[23].

In terms of finite element modeling of the thermal dam-
age, the value of Ω = 1 corresponds to a 63% probability 
of cell death, while the value of Ω = 4.6 represents a 99% 
probability of cell death due to the thermal effects. And the 
value of 0.53 is used as the threshold needed for thermal 
damage [21].

The computations use parameter scanning and transient 
solutions. Because the elapsed pulse time is very short (the 
total pulse length is 100 μs), particular attention was paid 
to the control of the time steps in the variable-step solver. 
We introduced time steps of 10 ns during the first 100 μs, 
and then extended the time step to 1 ms up to a total time 
of 1 s.

(4)Ω(t) = A

t∫

0

exp(−E/RT)dt,

(5)P (%) = 100(1− exp(−Ω))

Table 2   Parameters of damage process

Damage process E(J/mol) A(1/s)

Microvascular blood flow stasis 6.67e5 1.98e106

Cell death 5.064e5 2.984e80

Protein coagulation 2.577e5 7.39e39
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3 � Results

3.1 � Simulation results for temperature and thermal 
damage

When different pulsed voltages were applied, different 
temperature rises occurred in the tumor. The pulse volt-
age used in this analysis ranged from 1 to 4 kV, the pulse 
width ranged from 50 to 500 ns and the frequency ranged 
between 100 kHz and 1 MHz. The total pulse length was 
100 μs, while the total simulation ran for 1  s. According 
to the simulation results, tumor electric field distribution 
when applying voltage of 4000 V is shown in Fig. 3a. Since 
the field of needle electrode is uneven, the electric field 
strength is higher on the interface of electrodes and tissue. 
And when applying pulse voltage of 4000 V, the coverage 
of 800 V/cm is illustrated in Fig. 3b. According to Fig. 3b, 
we can see that in that situation, the whole tumor was elec-
troporated. In this way, we can not only obtain the tempera-
ture increase due to the pulsed electric fields, but we can 

also determine the maximum instantaneous temperature 
at 1 s related to the heat dissipation process of the tissue. 
The distributions of the maximum instantaneous tempera-
ture and the thermal damage at 1 s in the tumor are shown 
in Fig. 3c, d. The temperature indicates that the maximum 
instantaneous temperature at 1  s reaches 40.4  °C in the 
tumor near the electrodes. Additionally, the main area of 
temperature increase is focused around the tissue regions 
near and between the electrodes. The tissue in this region 
electroporated and the electrical conductivity consequently 
increased, as did the temperature. Figure 3d indicates that 
the thermal damage distribution is similar to that of the 
temperature, and the maximum thermal damage is only 
0.0016 at the end of the 1 s simulation. At the same time, 
the shapes of the temperature and thermal damage distribu-
tions are the same as the results reported by other research-
ers [21]. 

Figure  4 demonstrates that the maximum instantane-
ous temperature at 100  µs increases approximately lin-
early with time during the pulses, and when the pulse is 

Fig. 3   Spatial distribution (xy cross section, z = 50 mm) of electric field intensity (a), coverage of 800 V/cm (b), temperature (c) and thermal 
damage (d) in the tumor at the time point of 1 s when the applied voltage is 4000 V, the pulse width is 500 ns and the repetition rate is 1 MHz
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removed, the temperature decreases exponentially. From 
Fig.  4b, which shows a detailed view of Fig.  4a, we can 
see that the temperature actually increases stepwise over 
time. Figure 4c and d also shows that the maximum ther-
mal damage changes nonlinearly with time within the 
first 100 μs, and then increases linearly. Figure 4e shows 
the change in percentage of cell kill due to thermal dam-
age (P) with time, and Fig.  4f shows the enlargement of 
Fig. 4e. They were so much like the figure of thermal dam-
age; just the value of P (%) is 100 times larger than ther-
mal damage.

The maximum instantaneous temperature at 100 µs and 
maximum instantaneous thermal damage at 1 s that can be 
acquired are 49.26 °C and 0.0016, respectively.

3.2 � Relationship between thermal effects and pulse 
parameters

The graphs are all drawn from the results of simulations by 
interpolation. Figure 5 displays the relationship between the 
temperature and the pulse parameters. More specifically, 
Fig. 5a, b shows diagrams of the maximum instantaneous 

Fig. 4   Changes in temperature, 
thermal damage and percent-
age of cell kill due to thermal 
damage with time: a, c and e 
show the temperature, thermal 
damage and percentage of cell 
kill due to thermal damage 
curves, respectively, when the 
pulse width is 500 ns and the 
repetition rate is 1 MHz; b, d 
and f show enlarged versions 
of (a), (c) and (e), respectively, 
focusing on the rise time. Dif-
ferent curves are the change 
under different pulse voltage: 
1000, 2000, 3000 and 4000 V
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temperature at 100 µs and the maximum instantaneous tem-
perature at 1 s, respectively, when the pulse width is 500 ns. 
Figure  5c and d corresponds to a frequency of 1  MHz. 
From these figures, we can conclude that the relationship 
among the temperature, pulse width and frequency is lin-
ear, and the relationship between the temperature and the 
voltage follows a square law. Similarly, Fig. 6a illustrates 
the relationship among the maximum thermal damage in 
the tumor, the pulse voltage and the repetition frequency 
when the pulse width is 500 ns. The relationship among the 
thermal damage, the applied voltage and the pulse width is 
shown in Fig. 6b when the repetition frequency is 1 MHz.

3.3 � Determination of pulse parameters without causing 
thermal damage

Data were also processed to determine the upper specifica-
tion limit to ensure that the temperature increase remains 

below 44  °C. The results are displayed in Figs.  7 and 8. 
Because our simulations only run for 1 s, the temperature 
does not get very high and the maximum instantaneous 
temperature at 100 µs can only reach 44 °C. Therefore, the 
following analyses were based entirely around this time 
point. In Fig.  7, via a two-dimensional parameter analy-
sis, we can obtain the range of parameters that ensure that 
the temperature does not exceed 44 °C. When the value of 
the pulse width is a constant or when the frequency is con-
stant, the parameters on the bottom left of the curve rep-
resent the desired parameter range. It is obvious that the 
temperature can only increase over 44  °C when the pulse 
width is 500 ns and the frequency is 1 MHz. For example, 
from Fig. 7a we can know that when pulse width is 500 ns 
and voltage is 4000  V, to make the temperature below 
44  °C, repetition rate cannot be greater than 600  kHz. In 
the same way, when repetition rate is 1 MHz and voltage is 
4000 V, pulse width cannot be greater than 300 ns. Also, we 

Fig. 5   Relationship among tumor temperature, pulse voltage and 
frequency when the pulse width is 500  ns: a maximum instantane-
ous temperature at 100  µs and b maximum instantaneous tempera-

ture at 1 s; when the repetition frequency is 1 MHz, (c) and (d) show 
the relationships among tumor temperature, pulse voltage and pulse 
width
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adopted a multiple parameter analysis method to evaluate 
the ranges of the three parameters for more specific results. 
Figure 8a, b shows the different angles of the three-dimen-
sional curved surface, while the three axes represent the 
three pulse parameters: voltage, pulse width and frequency. 
From Fig.  8a, it is obviously a three-dimensional surface 
like a small piece of paper, and Fig. 8b is from the perspec-
tive of looking over the top right of Fig.  8a. The regions 
below the curved surface and close to the point of origin 
refer to temperatures of less than 44 °C, and the ranges of 

the three axes indicate which of the pulse parameters can be 
used at the same time. The results of our investigation, as 
shown in Figs. 7 and 8, can be used to provide theoretical 
guidance for parameter selection in practical experiments.

By calculating the electric field coupling with the ther-
mal fields based on finite element simulations, the tem-
perature and thermal damage profiles were obtained. On 
this basis, the data were analyzed to draw these figures and 
to pave the way for subsequent data fitting and estimation 
processes.

Fig. 6   Relationship among thermal damage, pulse voltage, pulse width and frequency: a when the pulse width is 500 ns; b when the frequency 
is 1 MHz

Fig. 7   Temperature contours for 44 °C under different voltages, pulse widths and repetition frequencies: a when the pulse width is 500 ns; b 
when the frequency is 1 MHz
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4 � Discussion

4.1 � Prediction of temperature and thermal damage 
under high‑frequency nanosecond pulse bursts

This study provides an insight into the behavior of tissue 
thermal effects when short, square wave electric pulses of 
electroporation protocols are applied to the tissue. These 
protocols are different from the traditional IRE pulses and 
also from the pulse bursts of conventional nsPEF treatment. 
They are introduced as high-frequency nanosecond pulses, 
but the total pulse length is 100 μs. This kind of pulse can 
be considered as the use of microsecond pulses to modulate 
the nanosecond pulses to overcome the shortcomings of the 
two pulse protocols. However, it is noteworthy that these 
pulses may cause thermal damage to the tissue because 
of their high field strengths. This effect is important for 
planning of treatment protocols in the vicinity of sensitive 
structures such as blood vessels and nerves. Therefore, it 
is necessary to study the thermal effects under these high-
frequency nanosecond-pulsed conditions. Based on the 
results from the simulations, we can obtain the maximum 
instantaneous temperature at 100 µs and maximum thermal 
damage at 1 s in the tumor under different voltages, pulse 
widths and repetition frequencies. The maximum instanta-
neous temperature at 100 µs and maximum thermal dam-
age at 1  s that can be achieved are 49.26  °C and 0.0016, 
respectively, when the energy injection is a maximum. This 
suggests that thermal damage will not be caused within a 
single pulse burst. Because the relationships between the 
temperature and the pulse parameters were analyzed above, 
the maximum instantaneous temperature at 100 µs and the 
maximum instantaneous temperature at 1  s for the tumor 
can be fitted to the following formulas:

(6)Tm ≈ T0 + (1.5× 10−12pwfV
2)N , (N is not too large)

where Tm (°C) and Tf (°C) are the maximum instantaneous 
temperature at 100 µs and the maximum instantaneous tem-
perature at 1 s in the tumor, respectively, T0 (= 37 °C) is 
the initial temperature, pw (ns) is the pulse width, f (kHz) 
is the repetition frequency, V is the voltage applied to the 
electrodes and N is the number of pulse bursts. In this sim-
ulation, we run for only one pulse burst. However, it can be 
roughly estimated that the temperature will increase after 
multiple pulse bursts by a factor of N.

The temperature prediction curve is illustrated in Fig. 9, 
where the x-axis represents the number of pulse bursts 
and the y-axis represents the temperature increase in the 
tumor. The curve is when pulse voltage is 4000 V, pulse 
width is 500 ns, and pulse repetition is 1 MHz. From Fig. 9, 
we can see when increase the number of pulse burst to 8, 

(7)Tf ≈ T0 + (4.8× 10−13pwfV
2)N , (N is not too large)

Fig. 8   Curved surface for 44 °C under different voltages, pulse widths and repetition frequencies
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Fig. 9   Temperature prediction curve
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temperature will reach to 75 °C, which may cause instanta-
neous thermal damage in tumor. According to this method, 
we can get the temperature rise under multiple pulse bursts. 
However, in fact, the temperature rise after each pulse burst 
is not the same as the number of pulses increases. When the 
temperature of biological tissue continues to rise, the cool-
ing process is also become more obvious. If we assume that 
the temperature rise is same after each pulse burst, we can 
get an upper bound on the maximum temperature. Because 
the thermal damage is associated with the time integral 
of the temperature, it will reach such heights to cause the 
thermal damage when subjected to several bursts of pulses. 
This demonstrates the cumulative effect of the temperature 
and is related to the enclosed area below the curve. Conse-
quently, we can roughly estimate the temperature increase 
in the tumor for a parameter choice that does not cause 
thermal damage. It should also be noted that when the 
treatment outcome is taken into consideration, we should 
impose more bursts of pulses. We should then wipe out a 
portion of the area near the electrodes because of the hot 
spots that always exist when performing an analysis of the 
thermal effects for parameter selection. However, it has still 
to be determined whether the removed segment is sufficient 
to meet the clinical requirements.

4.2 � Limitations of the simulations

Because this simulation aims to study the relationship 
between the thermal effects and the pulse parameters, we 
have drawn a number of conclusions from the results. How-
ever, there are also some limitations to our simulations:

1	 First, this paper studies the influence of multiple 
parameters (voltage, pulse width and frequency) of 
high-frequency nanosecond pulses on the thermal 
effects. The number of values for each parameter that 
we discussed is only four. Even so, 64 parameter com-
binations are sufficient for a study of the rules, and 
more parameters could greatly increase the difficulty of 
the calculations. Unlike other studies in the literature, 
in which only a few parameters are studied [6, 19–24 
31], this analysis was designed to be based on a multi-
parameter perspective to determine the rules for fitting 
and estimating these parameters.

2	 Second, some measurements have been performed to 
study the nonlinear increase in the tissue conductiv-
ity during IRE and nsPEF therapies when the tissues 
are exposed to sufficiently high electric fields [22, 
26, 40, 45, 52]. However, few studies have been per-
formed on the changing conductivity characteristics 
of tissue when subjected to high-frequency composite 
pulses. Bhonsle et  al. [6] measured the conductivity 
before and after application of high-frequency bipo-

lar pulses. The protocols in this simulation used high-
frequency unipolar pulses and the changes in conduc-
tivity remain unclear. To simplify the calculations, we 
used a simple model of conductivity changes instead. 
The initial electrical conductivity of the rat liver that 
we used in this study was 0.067 S/m and the conductiv-
ity of the tumor was 0.135 S/m. When the tissue was 
electroporated, the electrical conductivity of the liver 
increased to 0.241 S/m and that of tumor increased to 
0.426 S/m. Neal et  al. used an equivalent circuit of a 
cell to analyze the bioimpedance behavior. A variable 
resistance was introduced to represent the macroscopic 
behavior of tissue under the influence of pulsed elec-
tric fields. When effective electric fields are applied, 
the resistance is a function of only the intra- and extra-
cellular resistances because the variable resistance is 
short-circuited. The same effect is produced when the 
frequency of the pulses is high enough to make the 
capacitive component of the cell membrane short cir-
cuit [52]. The behavior of a single cell can be scaled to 
represent that of a larger tissue sample [18, 19]. In this 
way, we can obtain a method to estimate the increase 
in electrical conductivity that occurs when electropora-
tion and the high-frequency components of the pulses 
produce a synergistic effect for further study.

3	 Third, the threshold field for electroporation that was 
used in this study was 800 V/cm [4, 14]. However, as 
the pulse frequency increases, the permeabilization 
thresholds also increase [25, 49]. Different protocols 
may cause different increases in the threshold value. 
We can hardly set an increased electric field threshold 
for high-frequency nsPEF treatment casually without 
performing a great deal of preparatory experimental 
research. This article is intended to provide a simula-
tion method to study the thermal effects, and therefore, 
it is acceptable to use the threshold field for irreversible 
electroporation.

4	 Finally, this study of temperature and thermal damage 
has been performed on the basis of numerical simula-
tions and thus lacks experimental verification. Despite 
this, the study is useful from the perspective of using 
multiple parameters to investigate the relationship 
between the thermal effect and the pulse parameters 
(voltage, pulse width and repetition frequency) under 
application of high-frequency nanosecond composite 
pulses.

4.3 � Future work

It is important to obtain accurate values of the changes 
in conductivity to calculate the electric field distribution 
and predict the outcomes of use of high-frequency pulses 
and the thermal effects. There are many studies that have 
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measured the increases in tissue conductivity during elec-
troporation-based protocols [9, 11, 26, 27, 29, 45]. The fea-
sibility of using electrical impedance tomography [11, 13] 
and magnetic resonance electrical impedance tomography 
[29, 30] to monitor the electric field distributions has also 
been suggested. Our next work is to measure the conductiv-
ity of tissue when subjected to high-frequency nanosecond 
pulses, and to verify the effects of the high-frequency com-
ponents on the electrical conductivity.

Temperature measurement is also vital to verify the 
accuracy of the models by comparing the experiment 
results with those of the theoretical calculations. Garcia 
et al. used a fiber optic temperature sensor to measure the 
temperature inside the tissue [12, 22]. A thermocouple was 
used by Pliquett et al [44]. for bulk temperature measure-
ments, while temperature-sensitive liquid crystal was also 
used to measure the surface temperature. A thermal camera 
can also be used to capture the surface temperatures [6].

From a local viewpoint, the protocol proposed in this 
study can be viewed as use of high-frequency nanosec-
ond pulses, but it also has the characteristics of microsec-
ond pulses overall. Further research is necessary to assess 
the treatment outcomes, including the mechanism when a 
tumor is exposed to such pulses. In general, when applying 
IER pulses, it will appear on the cell membrane of several 
nanometers to several tens of nanometers pores. The poles 
with several nanometers size will recover while pores with 
tens of nanometers size will continue to expand to several 
hundred nanometers or micrometers, which are irreversible. 
But when applying low-frequency nsPEF, it will also appear 
on pores of several nanometers size, which are reversible. 
So when apply high-frequency nsPEF, it will produce some 
small nanopores at the beginning, and then, because the 
total pulse time is 100 μs, the nanopores may be expanded 
like IRE. We assume that nsPEFs can produce nanopo-
res on the cell membrane, which will promote irreversible 
electroporation on the cell membrane by μsPEF. When the 
outer membranes have been corrupted, this will have ben-
eficial effects for electroporation of the organelle membrane 
to induce apoptosis. There is a hypothesis that nsPEFs com-
bined with μsPEFs are applied on both the inner and outer 
membrane, inducing tumor cell necrosis and apoptosis by a 
direct killing effect and slow indirect regulation, but numer-
ous experiments are still required to verify this hypothesis.

5 � Conclusions

In this study, we have presented a type of pulse protocol 
for electroporation-based therapies. The pulse voltage used 
is in the range from 1 to 4 kV, and the pulse width ranges 
from 50 ns to 500 ns, while the repetition frequency is in the 

range between 100 kHz and 1 MHz. The total pulse length 
is 100 μs, and the repetition rate of the pulse bursts is 1 Hz. 
To analyze the thermal effect on the tumor, simulation mod-
els were developed based on finite element methods. Results 
from the simulations indicate that the maximum instantane-
ous temperature at 100 µs is up to 49.26 °C, and the maxi-
mum instantaneous temperature at 1 s and maximum instan-
taneous thermal damage at 1 s reach values of 40.4 °C and 
0.0016, respectively, during a single pulse burst. Through 
multi-parameter analysis, we can obtain rules on how the 
pulse parameters affect the temperature and the thermal 
damage. By parameter fitting, maximum instantaneous tem-
perature at 100 µs and 1 s for any parameter value after a 
single pulse burst or multiple pulse bursts can be calculated. 
In addition, higher temperatures are likely to be achieved 
and may cause thermal damage, based on parameter estima-
tion when several bursts of pulses are applied. The results 
of temperature and thermal damage calculations performed 
using different high-frequency nsPEF parameters can pro-
vide a theoretical basis for selection of parameter options 
for experimental research.
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	46.	 Pucihar G, Mir LM, Miklavčič D (2002) The effect of pulse rep-
etition frequency on the uptake into electropermeabilized cells 
in vitro with possible applications in electrochemotherapy. Bio-
electrochemistry 57:167–172

	47.	 Rubinsky B (2007) Irreversible electroporation in medicine. 
Technol Cancer Res Treat 6(4):255–260

	48.	 Sahakian Alan V, Al-Angari Haitham M, Adeyanju Oyinlolu O 
(2012) Electrode activation sequencing employing conductiv-
ity changes in irreversible electroporation tissue ablation. IEEE 
Trans Biomed Eng 59(3):604–607

	49.	 Sano MB, Arena CB, DeWitt MR, Saur D, Davalos RV (2014) 
In  vitro bipolar nano-and microsecond electro-pulse bursts 
for irreversible electroporation therapies. Bioelectrochemistry 
100:69–79

	50.	 Schoenbach KH, Beebe SJ, Buescher ES (2001) Intracellu-
lar effect of ultrashort electrical pulses. Bioelectromagnetics 
22(6):440–448

	51.	 Schoenbach KH, Hargrave B, Joshi RP, Kolb JF, Nuccitelli R, 
Osgood C, Pakhomov A, Stacey M, Swanson RJ, White JA, Xiao 
S, Zhang J, Beebe SJ, Blackmore PF, Buescher ES (2007) Bioel-
ectric effects of intense nanosecond pulses. IEEE Trans Dielectr 
Electr Insul 14(5):1088–1109

	52.	 Sel D, Cukjati D, Batiuskaite D, Slivnik T, Mir LM et al (2005) 
Sequential finite element model of tissue electropermeabiliza-
tion. IEEE Trans Biomed Eng 52:816–827

	53.	 Shafiee H, Garcia PA, Davalos RV (2009) A preliminary study to 
delineate irreversible electroporation from thermal damage using 
the arrhenius equation. J Biomech Eng 131:074509

	54.	 Thomsen S, Pearce JA (2011) Thermal damage and rate pro-
cesses in biologic tissues. In: Welch AJ, van Gemert MJC (eds) 
Optical-thermal response of laser irradiated tissue, 2nd edn. 
Springer Science + Business Media B.V, Berlin, pp 487–549

	55.	 Thomson KR, Cheung W, Ellis SJ, Park D, Kavnoudias H, 
Loader-Oliver D, Roberts S, Evans P, Ball C, Haydon A (2011) 
Investigation of the safety of irreversible electroporation in 
humans. J Vasc Interv Radiol 22(5):611–621

	56.	 Yao CG, Zhao YJ, Dong SL, Chen R, Liao RJ (2015) Optimiza-
tion of the treatment planning for the tumor ablation of irrevers-
ible electroporation based on genetic algorithm. High voltage 
engineering (in press)

	57.	 Zupanic A, Ribaric S, Miklavcic D (2007) Increasing the rep-
etition frequency of electric pulse delivery reduces unpleas-
ant sensations that occur in electrochemotherapy. Neoplasma 
54(3):246–250

Yan Mi  had received the B.S., 
M.S. and Ph.D. degrees in elec-
trical engineering from Chong-
qing University. Currently, he is 
an Associate Professor research-
ing pulse power technology and 
its application in biomedical 
engineering.

Shaoqin Rui  had received the 
B.S. degree in electrical engi-
neering from Anhui University. 
She has pursued the M.S. degree 
and researched pulse power 
technology and its application 
in biomedical engineering. Cur-
rently, she is employed by the 
State Grid Tianjin Power Main-
tenance Company.

Chengxiang Li  had received 
the B.S., M.S. and Ph.D. 
degrees in electrical engineering 
from Chongqing University. 
Now he is an Associate Profes-
sor researching pulse power 
technology and its application 
in biomedical engineering.

Chenguo Yao  had received 
the B.S., M.S. and Ph.D. 
degrees in electrical engineering 
from Chongqing University. 
Currently, he is a Professor 
researching pulse power tech-
nology and its application in 
biomedical engineering.

http://dx.doi.org/10.1117/12.807999


1122	 Med Biol Eng Comput (2017) 55:1109–1122

1 3

Jin Xu  had received the B.S. 
degree in electrical engineering 
from Chongqing University. 
Currently, he is pursuing the 
Ph.D. degree and researching 
pulse power technology and its 
application in biomedical 
engineering.

Changhao Bian  had received 
the B.S. degree in electrical 
engineering from Central South 
University. Currently, he is pur-
suing the M.S. degree and 
researching pulse power tech-
nology and its application in 
biomedical engineering.

Xuefeng Tang  had received 
the B.S. degree in electrical 
engineering from Chongqing 
University. Currently, he is pur-
suing the M.S. degree and 
researching pulse power tech-
nology and its application in 
biomedical engineering.


	Multi-parametric study of temperature and thermal damage of tumor exposed to high-frequency nanosecond-pulsed electric fields based on finite element simulation
	Abstract 
	1 Introduction
	2 Methods
	2.1 Finite element model
	2.2 Parameter model
	2.3 Computing method

	3 Results
	3.1 Simulation results for temperature and thermal damage
	3.2 Relationship between thermal effects and pulse parameters
	3.3 Determination of pulse parameters without causing thermal damage

	4 Discussion
	4.1 Prediction of temperature and thermal damage under high-frequency nanosecond pulse bursts
	4.2 Limitations of the simulations
	4.3 Future work

	5 Conclusions
	Acknowledgements 
	References




