
GPU accelerated voxel‑driven forward
projection for iterative reconstruction
of cone‑beam CT
Yi Du1,2, Gongyi Yu1,3, Xincheng Xiang1 and Xiangang Wang1*

Background
Cone-beam computed tomography (CBCT) has been advanced to serve as a widely
available and commonly used imaging modality in clinical applications, such as den-
tal diagnostics [1], image-guided radiotherapy [2], intraoperative navigation [3], and
implant planning [4], and has broadened its usage in new settings, including breast can-
cer screening and endodontics [5]. However, due to the insufficient data conditioning
caused by the circular trajectory, the images of CBCT are susceptible to artefacts, noise
and the scatter effect [6]. In order to improve image qualities, increasing research efforts
have been directed towards iterative reconstruction algorithms [7].

For iterative methods, most computation time is spent calculating the forward
and back projections iteratively, which are indispensable and essential components
to model the imaging geometry and X-ray physics. Due to the use of high-resolution
flat panel detectors in CBCT, when an iterative reconstruction algorithm is used, the

Abstract

Background: For cone-beam computed tomography (CBCT), which has been playing
an important role in clinical applications, iterative reconstruction algorithms are able to
provide advantageous image qualities over the classical FDK. However, the computa-
tional speed of iterative reconstruction is a notable issue for CBCT, of which the forward
projection calculation is one of the most time-consuming components.

Method and results: In this study, the cone-beam forward projection problem using
the voxel-driven model is analysed, and a GPU-based acceleration method for CBCT
forward projection is proposed with the method rationale and implementation work-
flow detailed as well. For method validation and evaluation, computational simulations
are performed, and the calculation times of different methods are collected. Compared
with the benchmark CPU processing time, the proposed method performs effectively
in handling the inter-thread interference problem, and an acceleration ratio as high as
more than 100 is achieved compared to a single-threaded CPU implementation.

Conclusion: The voxel-driven forward projection calculation for CBCT is highly paral-
leled by the proposed method, and we believe it will serve as a critical module to
develop iterative reconstruction and correction methods for CBCT imaging.

Keywords: Cone-beam CT, GPU, Forward projection

Open Access

© The Author(s) 2017. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium,
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdo-
main/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

RESEARCH

Du et al. BioMed Eng OnLine (2017) 16:2
DOI 10.1186/s12938‑016‑0293‑8 BioMedical Engineering

OnLine

*Correspondence:
wangxiangang@tsinghua.
edu.cn
1 Institute of Nuclear
and New Energy Technology,
Tsinghua University,
Beijing 100084, China
Full list of author information
is available at the end of the
article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12938-016-0293-8&domain=pdf

Page 2 of 11Du et al. BioMed Eng OnLine (2017) 16:2

computational load becomes a major issue. Thanks to the advent of graphic process-
ing units (GPUs), massive computation power has been unleashed [8, 9]. In principles,
forward and back projections can be generated either in a line-driven or voxel-driven
approach. Although both methods deliver the equivalent results with identical theoreti-
cal complexities, the compute operations are different in numerical implementation, as
shown in Table 1 [9]. When the algorithm shifts from CPUs to GPUs, it is not an intui-
tive issue because the concurrent threads write data in GPU memories in a scattered
manner [10]. The scatter operations potentially cause the inter-thread interference (or
thread-racing) problem with write hazards. Since gather operations are more efficient
than scatter operations for faster memory reads, the strategy of using unmatched projec-
tor–backprojector pairs in iterative methods becomes a common solution, as in [11–13]
using the ray-driven technique as the projector and the voxel-driven as the backprojec-
tor. Nevertheless, Zeng [14] has proved that this bypass scheme will mathematically
induce the iterative process to diverge from the true values, and thus matched projec-
tor/backprojector pairs are preferred for their mathematical stability and robustness to
noise.

Several compute models have been proposed as matched forward/back projector
pairs, including distance-driven [15] and separable-footprint approaches [16], and some
have been successively GPU-accelerated with specific strategies [17–19]. Among these
models, the voxel-driven method is extensively used to perform CBCT forward and back
projections for its low complexity. While the voxel-driven backprojection is easy to be
GPU-accelerated, due to the nature of scatter operation (as in Table 1), the implementa-
tion of its matched forward projector on GPUs is embarrassingly nonparallel, and, to our
knowledge, its efficient GPU-based acceleration has never been reported yet.

In this study, a GPU acceleration method is present to calculate voxel-driven forward
projections for CBCT iterative reconstruction. This paper is organized as follows: the
voxel-driven projection algorithm and the inter-thread interference problem are first
investigated in “Voxel-driven model and inter-thread interference study” section; based
on the analysis, the proposed GPU acceleration method is detailed in “Combating strat-
egy by optimizing thread-grid allocation” section, with a brief workflow in “Implemen-
tation outline” section; as method validation, computational simulations are performed
with results given in “Experiment and results” section; some issues are discussed and
major conclusions are drawn in “Discussion and conclusion” section.

Methods
Voxel‑driven model and inter‑thread interference study

For a typical CBCT scanner, the patient (or scanned object) is kept stationary, and the
X-ray source and the flat panel detector are rotating simultaneously around the object
in a circular trajectory. To facilitate the mathematical description, the scanned object

Table 1 Gather and scatter operations involved in forward and back projection computes

Approach Forward projection Back projection

Voxel-driven Scatter Gather

Line-driven Gather Scatter

Page 3 of 11Du et al. BioMed Eng OnLine (2017) 16:2

is discretized as a three-dimensional image matrix, and the flat panel detector as a two-
dimensional grid, as in Fig. 1a. In the voxel-driven method, the values of the image
matrix are assumed to locate at the centre of each cubic voxel. To generate the two-
dimensional forward projections for CBCT through the image matrix, the algorithm can
be summarized into three steps: (1) draw a virtual line from the source (S) to a voxel
centre (F(x,y,z)), which represents an X-ray pencil beamlet casting through the voxel; (2)
extend the line from the voxel to intersect the detector plane at one point (U(u,v)), which
represents the position where the traversal beamlet reaches the flat panel detector; (3)
scatter the image value of the voxel into the adjacent detector units as the simplified pro-
cess of X-ray signal detection, as illustrated in Fig. 1b.

Conventionally thread grids are allocated to adjacent voxels in axial planes, as recon-
structed images are preferred to be displayed in the axial direction. To facilitate the
analysis of the inter-thread problem, the three-dimensional forward projection scenario
in CBCT is simplified into two-dimension, as illustrated in Fig. 2. The beamlets from
the X-ray source (S) go through each voxel and cast onto the detector. For two arbitrary
voxels, the distance between their ray-casting intersections on the detector, Δu, can be
derived from the imaging geometry relationship as

where β is the projection angle, Fg the geometric factor, and Δv the distance between the
voxels.

For two neighbouring voxels, Δv is equal to the voxel size, i.e.:

In the meantime, we can also rewrite the distance between the ray-casting intersec-
tions, Δu, using the detector unit size as:

where ΔN represents the relative distance normalized by the detector unit size Sunit.
The geometric factor Fg can be derived according to the imaging geometry and written

as

(1)�u = �v · Fg · |cosβ|

(2)�v = Svoxel

(3)�u = Sunit ·�N

(4)Fg =
SDD

SVD

Source

Image
Matrix(F)

Flat Panel
Detector(D)

X

Y

Z

D(u,v+1)

D(u,v)

D(u+1,v)

D(u+1,v+1)

F(x,y,z)

U

V

a b
Fig. 1 Schematic of CBCT imaging (a) and the voxel-driven forward projection algorithm (b), where the
image voxel value is scattered into the four adjacent detector units

Page 4 of 11Du et al. BioMed Eng OnLine (2017) 16:2

where SVD stands for the source-to-voxel distance, and SDD the source-to-detector
distance.

For a typical CBCT, the size of the image voxel is settable according to the user’s
choice. Since the highest resolution is usually preferred by radiologists for more image
details, the voxel size can be expressed as

where SAD stands for source-to-axis distance.
When we replace the respective terms of Eq. (1) with Eqs. (2)–(5), the distance

between the projection intersections of two neighbouring voxels is rewritten as:

where ΔN stands for the relative distance normalized by the detector unit size.
Due to the cone-beam effect in CBCT, the value of the first term,

(

SAD
SVD

)

, changes along
the beamlet, but is always around 1; for the second term, |cos β|, it’s always less than or
equal to 1.

Meanwhile, in Fig. 2, we can see that for adjacent voxels in the same plane, some of
them are cast into adjacent detector grids (as Ray1 and Ray3 in Fig. 2), and some into dif-
ferent grids (as in Ray3 and Ray4 in Fig. 2). Moreover, for the voxels whose beamlet paths
are quite close to each other (as Ray1 and Ray2 in Fig. 2), they will be projected into the
same detector grids. Note that, since each thread is assigned to each image voxel and

(5)Svoxel =

(

SDD

SAD

)

· Sunit

(6)�N =

(

SAD

SVD

)

· |cosβ|

Fig. 2 Schematic of the voxel-driven forward projection algorithm for adjacent voxels at β

Page 5 of 11Du et al. BioMed Eng OnLine (2017) 16:2

each detector grid to each tally address on the GPU, when two voxels are cast into adja-
cent or identical detector grids, the underlying two threads will try to write data to the
same memory address on the GPU simultaneously, which leads to write hazards—this is
what we call the inter-thread interference problem, or the thread racing problem.

The analysis implies that if the thread grids are allocated to image voxels closely one by
one, some threads will race against each other in GPU memory accessing. Unless a spe-
cific strategy is taken, this phenomenon is certain to happen and is impossible to avoid.
In the meantime, Fig. 2 also shows that if thread grids are allocated in axial planes or
horizontally, the worst case will show up in the central axial plane at all projection angles.
However, for the planes above or below the axial plane, the blow of the thread-racing
(inter-thread interference) problem is softened because of the cone-beam geometry.

It is noted that although the geometric analysis above is based on the axial plane,
because of the symmetry of cone-beam geometry along the central axis, the discussion
is also applicative in the vertical planes. Similar conclusions can be drawn when the
thread-grid are allocated in the vertical planes.

Combating strategy by optimizing thread‑grid allocation

Based on our discussion, the inter-thread interference phenomenon always come across
to a certain degree, which becomes the major hindrance for GPU acceleration. To com-
bat the problem, what we need is a concrete solution to reduce the occurrence frequency
to as low as possible and serialize the residual racing threads in the same process. Rising
out of the idea that the cone-beam geometry can be utilized to soften the blow of thread
racing, we propose a strategy of optimizing the thread-grid allocation to achieve GPU
acceleration. The method comprises three key steps:

(a) Allocate thread grids in the vertical planes (or vertically)
 We denote the axial direction as the horizon direction (as in Fig. 3a) and the coronal

and sagittal directions as the vertical directions (as in Fig. 3b). By allocating threads
vertically, the thread-racing frequency of the voxels along the same X-ray light path
is much decreased. However, as a side-effect, the worst case of inter-thread interfer-
ence is shifted from the central axial plane at all projection angles to the vertical
planes at perpendicular angles to the detector plane, where β is equal to 90° or 270°.
Then the second step is needed to solve this side-effect problem.

(b) Interchange the thread-plane direction at the critical projection angles
 In fact, as illustrated in Fig. 3c, the worst case of inter-thread interference induced

by Step (a) can be easily solved by interchanging the thread-plane direction from
the coronal planes to the sagittal planes at certain projection angles. Here we call
the angles for thread-plane direction interchange the critical angles. The critical
angles are dependent on the imaging and scanner specifications, including SAD,
SDD, and Sunit, but can be easily obtained by simulation.

(c) Serialize the residual interfering threads by atomic operations
 By the two steps above, the thread-racing occurrence frequency can be much

decreased. To combat the residual threads that still interfere with each other, we
use the GPU-enabling atomic operations to serialize the read-and-write operations

Page 6 of 11Du et al. BioMed Eng OnLine (2017) 16:2

among these threads. The mechanism of atomic operations is like an address access
lock: at the same moment, only one thread is authorized, and all the others are
forced to wait in queue [20].

Implementation outline

The key idea of the acceleration method is described in the above. For reference, the core
framework is depicted in the form of pseudo-codes in Table 2. Once the initialization on
GPU is completed, the key processes can be implemented as a kernel CUDA function.

Experiment and results
For method validation, computational simulations are performed using the Shepp-Logan
phantom. The simulation scenario specifications are similar to our in-house CBCT scan-
ner geometry [21]: the flat detector panel has 512 × 512 units, and the size of each unit
is 0.127 mm; the source-to-axis distance is 80 cm, and the source-to-detector distance
100 cm; projections are calculated over 360° with a 1° interval.

The program is deployed on a Windows Server 2012 workstation with 32-bit single
precision. The CPU is Intel Xeon E5-2620, which offers two processors with 12 cores
running at a frequency of 2.1 GHz. The GPU is nVidia Tesla K20M. Its capability version
number is 3.5, and it has 2696 cores running at a frequency of 0.71 GHz. For comparison,

a b

c
Fig. 3 Conventional threads are allocated in horizontal planes (a). In the proposed method, the threads are
allocated in vertical (coronal) planes (b), and the thread-plane direction is interchanged at certain angles from
coronal to sagittal (c)

Page 7 of 11Du et al. BioMed Eng OnLine (2017) 16:2

Table 2 Outline of the GPU acceleration method

Page 8 of 11Du et al. BioMed Eng OnLine (2017) 16:2

the voxel-driven forward projection generation method is programmed and deployed on
the same platform. Since multi-thread parallelization of the voxel-driven forward pro-
jection algorithm on CPU also has to deal with the inter-thread interference problem
among CPU threads, which is beyond the scope of this study, the algorithm is imple-
mented on a single threaded CPU, and the single threaded running time is recorded as
benchmark for performance assessment. Besides, in order to achieve higher accuracy, an
8-subvoxel splitting strategy used: each voxel is first divided 8 cubic subvoxels, and then
each subvoxel is forward projected on the detector with 1/8 weight of the father voxel
value. Note that the recorded times only account for the process of forward projection
kernel excluding the time of transferring data between CPU and GPU.

To obtain the optimal interchange angles or critical angles, we first ran the GPU-ena-
bled programme without the thread plane interchange, and collected the calculation
times (green curve in Fig. 4). Then, we interchanged the thread plane at 45°, 135°, 225°,
and 315°, and got the new calculation times (blue curve in Fig. 4). When the two tempo-
ral curves together were plotted, they intersected with each other, and the intersection
angles were the optimal interchange angles. In this scenario, we can see that the optimal
interchange angles are 80°, 100°, 260°, and 280°, which are then used as critical angles for
thread-plane direction interchange.

As reference, the GPU processing time of using atomic operations to solve all race
conditions is plotted as the black curve, and the time without thread-plane interchange
is drawn as the green curve in Fig. 4. The computation times of different methods are
listed in Table 3, with the CPU computation time as benchmark. We can see that the
GPU acceleration ratio of the proposed method is as high as 105.

Fig. 4 Calculation time curves of different methods: threads are allocated in axial planes and racing threads
are solved with atomic operations (black); threads are allocated in vertical planes and racing threads are solved
with atomic operations without thread-plane direction interchange (green); threads are allocated in vertical
planes and racing threads are solved with atomic operations with thread-plane direction interchange at given
angles (blue); threads are allocated in vertical planes and racing threads are solved with atomic operations
with thread-plane direction interchange at critical angles (red)

Page 9 of 11Du et al. BioMed Eng OnLine (2017) 16:2

Discussion and conclusion
As detailed in “Methods” section, the proposed method consists of three key steps. For
the first two steps, they are mainly aimed to reduce the inter-thread interference occur-
rence frequency. From the results in Table 3, we can see that both steps contribute to
the calculation acceleration, and Fig. 4 unveils their respective roles: (1) comparing the
method of allocating thread grids in axial planes (black curve) and in vertical planes
(green curve), we can see the optimization of thread-grid plane can save more than 20%
processing time; (2) comparing the method with and without interchanging the thread-
grid plane direction, i.e. the red and green curve respectively, we can conclude this oper-
ation performs effectively in reducing the peak compute time.

Besides, in Fig. 4, we can see a stair jump effect in the calculation time (as the blue
curve) after we interchange the thread grids from coronal planes to sagittal planes. Since
the three-dimensional image matrix is stored voxel by voxel in linear memory addresses
on GPUs, when a thread is accessing the memory it not only reads the data in the speci-
fied address, but also loads the data in adjacent addresses into the GPU cache for pos-
sible further usage: this mechanism is what we call memory coalescing, which is highly
beneficial for fast data accessing [22]. For our method, thread grids are initially bound
to voxels that are saved in coalescing addresses. When we interchange the thread-plane
direction, the address coalescing condition is corrupted, and data accessing will take
more time.

In terms of the critical angles, to investigate their dependence on the CBCT geometric
specifications, several scenarios were set up with SAD/SDD ranging from 0.6 to 1. The
critical angles were obtained in the same way as in “Experiment and results” section.
Only a slight dependence is observed, and the critical angles in different scenarios are
fairly close to each other—around 80°, 100°, 260°, and 280°. So we can imply that, from a
practical perspective, this set of critical angles performs effectively, and they can be used
as empirical values.

In summary, we propose a GPU acceleration method of calculating voxel-driven for-
ward projection for cone-beam CT. The method is composed of three key steps and is
easy to implement. The experimental results demonstrate its effectiveness and efficiency
in handling the inter-thread interference problem, and a surprising acceleration ratio, as
high as 105, has been achieved. It should be noted that the CPU implementation runs on
a single thread. A multicore CPU implementation using 6 cores can be accelerated and
run faster (for example using OpenMP and streaming SIMD extensions (SSE)), which

Table 3 Computation efficiency comparison of different methods

a CPU implementation on a single thread, b GPU acceleration with threads allocated in axial planes, c GPU acceleration
without thread‑plane interchange, d proposed GPU acceleration method

Projection frames/image matrix dimen‑
sion

Method Total time (s) Average time (s) Acceleration ratio

360/512c CPUa 360 × 45 45 1

GPUb 214.97 0.597 75.36

GPUc 168.49 0.468 96.15

GPUd 153.499 0.426 105.54

Page 10 of 11Du et al. BioMed Eng OnLine (2017) 16:2

would reduce the speedup, but certain approach is also required to combat the thread
racing problem on CPU.

Besides, using a more sophisticated forward projection method is probably able
to achieve improved accuracy. For example, Long et al. [16] proposed a voxel-driven
method combining a full voxel model and a detector unit response. In their method, the
boundaries of each cubic voxel are first ray-cast onto the detector to generate a polygonal
pattern, and then the pattern multiplies a trapezoid/rectangular function to produce the
respective forward projection footprint. As discussed in [16], highly realistic projection
images can be delivered, but at the expense of tremendously increasing computational
complexities compared with the proposed method here. In the meantime, as in [17], it
is of scatter operation in nature as well, so special GPU acceleration approaches are also
required to combat the thread racing problem (denoted as read-modify-write errors in
[17]). Therefore, in some extent, method selection is like a trade-off between approxima-
tion and computation complexity, and it all depends on the application requirements.

We believe the proposed acceleration method is probable to serve as a critical module
to develop the iterative reconstruction and correction methods for CBCT imaging, as in
our case where this method has already been incorporated into our iterative algorithm
development platform and working properly [23]. Since the algorithm is programmed
for research only, we believe that, with further coding optimization, a higher speedup
can be further achieved.

Abbreviations
GPU: graphic processing unit; CT: computed tomography; CBCT: cone beam computed tomography; SDD: source-to-
detector distance; SAD: source-to-axial distance; SVD: source-to-voxel distance.

Authors’ contributions
YD carried out most of the study, numerical implementation and statistical analysis. GY helped in algorithm develop-
ment and programming. XG and XX helped in the algorithm optimization. YP contributed in the result analysis and
manuscript review. All authors read and approved the final manuscript.

Author details
1 Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China. 2 Department of Engineer-
ing, Macquarie University, Sydney, NSW 2109, Australia. 3 Department of Radiation Oncology, Fudan University Shanghai
Cancer Center, Shanghai 200032, China.

Acknowledgements
This work was jointly supported by the National Natural Science Foundation of China (Nos. 61571262, 11575095), and
National Key Research and Development Program (No. 2016YFC0105406).

Competing interests
The authors declare that they have no competing interests.

Availability of data and supporting materials
The simulation phantom is derived from the general Shepp-Logan phantom. The pseudo-code of algorithm is listed in
Table 1, and the computing and programming environment is detailed in “Experiment and results” section. As part of
iterative reconstruction and artefact correction algorithm development platform, the code is not open-source at the
moment.

Received: 18 August 2016 Accepted: 4 December 2016

References
 1. Horner K, Islam M, Flygare L, Tsiklakis K, Whaites E. Basic principles for use of dental cone beam computed tomog-

raphy: consensus guidelines of the European Academy of Dental and Maxillofacial Radiology. Dentomaxillofacial
Radiol. 2009;38:187–95.

 2. Sharp GC, Jiang SB, Shimizu S, Shirato H. Prediction of respiratory tumour motion for real-time image-guided radio-
therapy. Phys Med Biol. 2004;49:425.

Page 11 of 11Du et al. BioMed Eng OnLine (2017) 16:2

• We accept pre-submission inquiries

• Our selector tool helps you to find the most relevant journal

• We provide round the clock customer support

• Convenient online submission

• Thorough peer review

• Inclusion in PubMed and all major indexing services

• Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central
and we will help you at every step:

 3. Dobbe JGG, Curnier F, Rondeau X, Streekstra GJ. Precision of image-based registration for intraoperative navigation
in the presence of metal artifacts: application to corrective osteotomy surgery. Med Eng Phys. 2015;37:524–30.

 4. Chang S-H, Lin C-L, Hsue S-S, Lin Y-S, Huang S-R. Biomechanical analysis of the effects of implant diameter and bone
quality in short implants placed in the atrophic posterior maxilla. Med Eng Phys. 2012;34:153–60.

 5. Patel S, Durack C, Abella F, Shemesh H, Roig M, Lemberg K. Cone beam computed tomography in endodontics—a
review. Int Endod J. 2015;48:3–15.

 6. Schulze R, Heil U, Groß D, Bruellmann DD, Dranischnikow E, Schwanecke U, et al. Artefacts in CBCT: a review. Den-
tomaxillofacial Radiol. 2011;40:265–73.

 7. Beister M, Kolditz D, Kalender WA. Iterative reconstruction methods in X-ray CT. Phys Med. 2012;28:94–108.
 8. Eklund A, Dufort P, Forsberg D, LaConte SM. Medical image processing on the GPU—past, present and future. Med

Image Anal. 2013;17:1073–94.
 9. Pratx G, Xing L. GPU computing in medical physics: a review. Med Phys. 2011;38:2685–97.
 10. Flores L, Vidal V, Mayo P, Rodenas F, Verdu G. Iterative reconstruction of CT images on GPUs. Conf Proc IEEE Eng Med

Biol Soc. 2013;2013:5143–6.
 11. Zhao X, Hu J, Zhang P. GPU-based 3D cone-beam ct image reconstruction for large data volume. Int J Biomed Imag-

ing. 2009;2009:1–8.
 12. Noël PB, Walczak AM, Xu J, Corso JJ, Hoffmann KR, Schafer S. GPU-based cone beam computed tomography. Com-

put Methods Programs Biomed. 2010;98:271–7.
 13. Hillebrand L, Lapp RM, Kyriakou Y, Kalender WA. Interactive GPU-accelerated image reconstruction in cone-beam

CT. Proc SPIE. 2009;7258:72582A–1–72582A–8.
 14. Zeng GL, Gullberg GT. Unmatched projector/backprojector pairs in an iterative reconstruction algorithm. IEEE Trans

Med Imaging. 2000;19:548–55.
 15. De Man B, Basu S. Distance-driven projection and backprojection in three dimensions. Phys Med Biol.

2004;49:2463–75.
 16. Long Y, Fessler JA, Balter JM. A 3D forward and back-projection method for X-ray CT using separable footprint. IEEE

Trans Med Imaging. 2010;29:3–6.
 17. Wu M, Fessler J. GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT

image reconstruction. In Proceedings international meeting on fully 3D image reconstruction 2011; p. 56–9.
 18. Gao H. Fast parallel algorithms for the x-ray transform and its adjoint. Med Phys. 2012;39:7110–20.
 19. Nguyen V-G, Jeong J, Lee S-J. GPU-accelerated iterative 3D CT reconstruction using exact ray-tracing method for

both projection and backprojection. In 2013 IEEE nuclear science symposium on medical imaging conference 2013;
p. 1–4.

 20. NVIDIA. Cuda C programming guide. Program Guid. 2015. p. 1–261. http://docs.nvidia.com/cuda//pdf/CUDA_C_
Programming_Guide.pdf.

 21. Yi DU, Xiangang W, Xincheng X, Bing LIU. Automatic X-ray inspection for the HTR-PM spherical fuel elements. Nucl
Eng Des. 2014;280:144–9.

 22. Cook S. CUDA programming: a developer’s guide to parallel computing with GPUs. Newnes; 2012. https://www.
amazon.com/CUDA-Programming-Developers-Computing-Applications/dp/0124159338.

 23. Du Y, Wang X, Xiang X, Wei Z. Evaluation of hybrid SART + OS + TV iterative reconstruction algorithm for optical-CT
gel dosimeter imaging. Phys Med Biol. 2016;61:8425–39.

http://docs.nvidia.com/cuda//pdf/CUDA_C_Programming_Guide.pdf
http://docs.nvidia.com/cuda//pdf/CUDA_C_Programming_Guide.pdf
https://www.amazon.com/CUDA-Programming-Developers-Computing-Applications/dp/0124159338
https://www.amazon.com/CUDA-Programming-Developers-Computing-Applications/dp/0124159338

	GPU accelerated voxel-driven forward projection for iterative reconstruction of cone-beam CT
	Abstract
	Background:
	Method and results:
	Conclusion:

	Background
	Methods
	Voxel-driven model and inter-thread interference study
	Combating strategy by optimizing thread-grid allocation
	Implementation outline

	Experiment and results
	Discussion and conclusion
	Authors’ contributions
	References

