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Predicting the stability of large structured food
webs
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The stability of ecological systems has been a long-standing focus of ecology. Recently, tools

from random matrix theory have identified the main drivers of stability in ecological

communities whose network structure is random. However, empirical food webs differ greatly

from random graphs. For example, their degree distribution is broader, they contain few

trophic cycles, and they are almost interval. Here we derive an approximation for the stability

of food webs whose structure is generated by the cascade model, in which ‘larger’ species

consume ‘smaller’ ones. We predict the stability of these food webs with great accuracy, and

our approximation also works well for food webs whose structure is determined empirically or

by the niche model. We find that intervality and broad degree distributions tend to stabilize

food webs, and that average interaction strength has little influence on stability, compared

with the effect of variance and correlation.
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T
he stability of large ecological systems has been
investigated for more than 40 years1. The interest in this
subject was sparked by a short article by Robert May1, who

was able to show that large ecosystems with random interactions
would invariably be unstable, with potential consequences for
biodiversity maintenance. To obtain this result, May employed
basic tools of random matrix theory, and recent advances in this
area2,3 allowed for an extension of May’s result to more general
cases4,5—effectively identifying the main drivers of stability in
ecological communities.

All these findings hinge on an important assumption that the
network structure describing who interacts with whom in an
ecosystem is random4,5, that is, any two species have the same
probability of interacting, irrespective of species identity.
However, the empirical food webs collected thus far display
major departures from the structure of random graphs6. For
example, in empirical webs the degree distribution, describing the
number of partners each species interact with, is much broader6

than in random graphs; the webs contain only a handful
of trophic cycles7 (in which, for example, species a consumes
b, b consumes c and c consumes a), while random graphs with the
same number of links would contain many more; finally,
empirical webs are almost interval—there is a way to order all
species such that consumers tend to prey on consecutive species
in the hierarchy8.

To overcome this limitation, we derive an approximation for
the stability of food webs whose structure is generated by the
cascade model9, which assumes that species can be ordered such
that ‘larger’ species consume ‘smaller’ ones. We sample the
strength of interaction between consumers and resources from an
empirical distribution, obtained via body-size scaling theory5. We
show numerically that our approximation estimates the stability
of these food webs with great accuracy, and that similar results
are obtained when we generate food webs starting from empirical
data, or when using the niche model10. We show that intervality
and broad degree distributions tend to stabilize food webs, and we
highlight a counterintuitive result: although research on the
relationship between stability and the distribution of interaction
strengths has historically focused on average strength11–14, we
show that its role in determining stability is small, compared with
that of variance and correlation.

Results
Constructing the community matrix. We want to determine the
real part of the leading (‘rightmost’) eigenvalue of the community
matrix M, Re(lM,1), which is the key for the local asymptotic
stability of the ecological system. In fact, the community
matrix1,15 determines the effects of one species on another
around a feasible equilibrium point: if all the eigenvalues of
M have a negative real part, the equilibrium is locally stable—
small perturbations will be buffered (Supplementary Note 1).
The study of community matrices has a long history in ecology,
but so far methods relying on large random matrices4,5 have not
been able to account for realistic food web structure, and were
based on the simplifying assumption of a completely random
network, in which every species has the same probability of
consuming any other.

Here we study the matrix M constructed in the following way.
First, an S� S adjacency matrix K is built according to the
cascade model9: the species are ordered from 1 to S, and each
species j has probability C of consuming each of the preceding
species. A coefficient Kij¼ 1 means that species i is consumed by
j. Then, we build the community matrix M by independently
sampling each pair of coefficients (Mij,Mji)ioj from the bivariate
distribution Z¼ (X,Y) whenever Kij¼ 1. For simplicity, we leave

Mii¼ 0. Setting all diagonal coefficients to � d would simply shift
all the eigenvalues (li0 ¼ li� d), and sampling the diagonal
coefficients from a distribution with mean � d and a given
variance would yield qualitatively the same results, provided that
the variance is not large compared with that of the off-diagonal
coefficients5. In this setting, we can think of Re(lM,1) as the
minimum amount of self-regulation we would have to impose on
each species to make the system stable11.

Because the pairs (Mij,Mji) model the effect of the consumer on
the resource (Mij) and that of the resource on the consumer (Mji),
we have Mijo0 and Mji40 whenever Kij¼ 1. Thus, we assume
Z¼ (X,Y) to be a bivariate distribution with marginal means
mx and my, Var(X)¼sx

2, Var(Y)¼sy
2, and Cov(X, Y)¼rxysxsy,

where mxo0, and my40 (see Methods section).
The matrix M then contains non-positive coefficients in the

upper-triangular part (either 0 when Kij¼ 0, or negative when
Kij¼ 1). Similarly, the lower-triangular part of the matrix
contains only non-negative coefficients. We denote by mU and
mL the means of the upper- and lower-triangular coefficients; by
sU

2 and sL
2 the variances; and by rULsUsL the covariance.

Derivation strategy. Having shown how M is built, we now
illustrate the strategy we use to find the distribution of its
eigenvalues. First, we decompose the matrix into the sum of
two matrices, M¼AþB, where A is a deterministic matrix
whose upper-triangular coefficients are all equal to mU, and all the
lower-triangular to mL. B is obtained by difference, B¼M�A,
and therefore its coefficients are described by a bivariate
distribution with means 0 and covariance matrix identical to
that found for the coefficients of M. Matrix A models the ‘signal’,
and B the ‘noise’ (Fig. 1). We then studied the spectrum of A and
B separately.

For A, one can show (see Methods section) that all the
eigenvalues fall on the curve describing a circle in the complex
plane with center (cA,0) and radius rA. When � mU4mL, that is,
negative effects are stronger than positive ones, the bulk of the
eigenvalues of A have positive real part, and a few eigenvalues
with large modulus have negative real part (Fig. 1). In this case,
Re(lA,1)ErAþ cA, and 0rRe(lA,1)r� mU for any choice of size
and parameters (Supplementary Note 3).

For sL
2¼sU

2 ¼ s2, the eigenvalues of B would follow the elliptic
law3, and thus, for large S, they would be approximately uniformly
distributed over an ellipse in the complex plane centred at
(0,0), with horizontal semi-axis approximately (Ss2)1/2(1þr) and
vertical semi-axis approximately (Ss2)1/2(1� r). Here we
conjecture that even in the more general case of sL

2asU
2 , the

eigenvalues of B are approximately uniform in an ellipse centred
at (0,0) with horizontal semi-axis rh,B, and vertical semi-axis rv,B

(see Methods section).
Having shown that when � mU4mL, Re(lA,1)ErAþ cA,

and Re(lB,1)Erh,B, we take the last approximation:
Re(lM,1)ERe(lA,1)þRe(lB,1). In fact, the eigenvalues of M fall
either close to the curve found for A, or in the ellipse found for B,
centred at (Re(lA,1),0) instead of (0,0) (Fig. 1). This type of
approximation is known to be accurate for symmetric matrices
(following Weyl’s inequality16), but our results suggest that it is
well suited for the matrices studied here as well, provided that the
variances sL

2 and sU
2 are sufficiently large compared with mL and

mU (Supplementary Note 3).

Numerical results. To test the quality of our approximation, we
built 150 adjacency matrices K using the cascade model9. The size
of the matrix was randomly chosen among {500, 750, 1,000}, and
the probability of interaction C was sampled uniformly between
0.1 and 0.3. We sampled the pairs (Mij,Mji) independently from
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the empirical distribution Z whenever Kij¼ 1. The results are
presented in Fig. 2. The approximation is very accurate, and
clearly superior to what expected following the derivations by
May1 or Tang et al.5.

We then built 150 adjacency matrices using the niche model10,
which can generate trophic cycles, so that there is no way to order
the species such that all the coefficients in the upper-triangular
part of M are non-positive. Hence, even knowing the distribution
Z, we need to find a way to calculate mU, mL and so on. Clearly,
the eigenvalues of M do not change when we sort the species
in different ways, but, because our approximation makes explicit
use of the coefficients in the upper- and lower-triangular parts
of M, each ordering of the species would yield a different
approximation. To choose the ‘best’ approximation, we sorted
the species in the adjacency matrix K so that the minimum
number of non-zero coefficients were present in the
lower-triangular part of the matrix, and then used this order
to parameterize the approximation (Supplementary Note 2).
Results show that the approximation is also excellent for the
niche model, even though the matrices built in this way are
slightly more likely to be stable than those built using the cascade
model (Fig. 2).

Finally, we took 15 large empirical food webs (Supplementary
Note 2) and parameterized each food web 10 times. Also in this
case, we sorted the adjacency matrix K to obtain the ‘most upper-
triangular’ configuration prior to calculating the approximation.
Despite the fact that empirical networks are quite different from
those generated by the cascade model (for example, containing
‘modules’17 and having broader degree distributions6), the
approximation is clearly superior to previous approaches, even
though it still tends to over-estimate the actual Re(lM,1).

Effect of network properties. Having an analytic expectation for
Re(lM,1) allows us to investigate which particular features of net-
work structure are stabilizing. For example, the networks produced
by the niche model differ from those generated by the cascade
model in three main aspects. First, although trophic cycles are
forbidden in the cascade model, the niche model typically produces
networks with a handful of trophic cycles. Second, in a food web
produced by the niche model, we can always order the species such
that each predator consumes prey that are adjacent in the hierarchy
(for example, this would be the case if each predator were to prey
upon all the species falling in a certain interval of sizes18), a
property known as ‘intervality’. Intervality is rarely attained by the
cascade model, especially for large webs9. Finally, the degree
distributions (that is, number of predators per prey, and number of
prey per predator) differ substantially between the networks
produced by the two models (starting from the same parameters).

To test whether these features can account for the small
discrepancy between our expectation and that found in simula-
tions, we built three variants of the cascade model: (i) a version of
the cascade model producing the same degree distribution for the
consumers as that of the niche model; (ii) a version producing
interval food webs; (iii) a version yielding the same consumer
degree distribution as the niche model, and producing interval
food webs (that is, a cycle-less niche model). In Fig. 3 we show that
all these modifications are slightly stabilizing, making the matrices
built using these variants as likely to be stable as those for the niche
model. Similarly, modifying the cascade model so that it matches
the degree distribution of a given empirical network recapitulates
the small deviation we observe between the predicted and observed
Re(lM,1) for matrices generated using empirical food web
structures (Supplementary Note 4).
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Figure 1 | The derivation strategy. (a) The matrix M has non-positive coefficients in the upper-triangular part, and non-negative coefficients in the lower-

triangular part, as we would expect for community matrices of food webs built according to the cascade model (colours denote the sign and magnitude of

the coefficients, with shades of blue for positive coefficients and shades of red for negative ones). M¼AþB, where A has upper-triangular coefficients

equal to the mean of the upper-triangular part of M, and lower-triangular coefficients equal to the mean of the lower-triangular part of M and B¼M�A.

(b) The spectrum of the three matrices with S¼ 500, C¼0.25. The eigenvalues of A (red crosses) fall on a the curve defining a circle (orange), while those

of B (dark blue) are approximately uniform over an ellipse (light blue) centred at (0,0). The eigenvalues of M either fall close to the curve obtained for A, or

in the ellipse found for B, centred at (Re(lA,1)E0.08,0), rather than (0,0).
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Figure 2 | Accuracy of the approximation. (a) We parameterized 150 community matrices with structure determined by the cascade model. The

predicted Re(lM,1) (real part of the leading eigenvalue of M, light blue squares) is much closer to the observed value than when approximating it using the

method by Tang et al.5 (green triangles) or using May’s criterion1 (purple dots). The coloured dashed lines are the best-fitting linear models, and the black

dashed line is the bisector of the first quadrant, marking perfect predictions. (b) The bulk of the eigenvalues of M for one of the matrices. The light blue
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The green ellipse is that predicted according to Tang et al.5, and the purple circle is that predicted using May’s criterion1. (b and e) The same plots for
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comparison. In all the cases, the effect of the variation is stabilizing, with intervality having a stronger effect than the degree distribution.
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The case of strong positive effects. So far, we have concentrated
on the case of �mU4mL meaning that negative interactions
are on an average stronger than the positive ones. This is
what is typically found in food webs—due to the low efficiency
of transformation of prey into predators. When this is not
the case, the eigenvalue distribution of M is ‘flipped’ around
the imaginary axis (that is, the distribution is like that in the
bottom-left panel of Fig. 1, but with the x-axis reversed), such
that a pair of large complex roots determines the stability of
the system (Supplementary Note 3). This observation is
sufficient to make a suggestive prediction: large systems in
which the positive effects dominate the negative ones will likely
lose stability through a Hopf bifurcation (two complex
roots crossing the imaginary axis), typically giving rise to
limit cycles. For a simple Lotka–Volterra model, a pair of
coefficients of matrix M modelling a resource–consumer
interaction can be written as Mij¼ �bijNi* and Mji ¼ EijbijN

�
j ,

where bij is the attack rate of j on i, Ni* is the equilibrium biomass
of resource i, and Eij is the conversion efficiency of resources into
consumers. In this simple setting, given that Eijo1, the Hopf
bifurcations should be most common in the presence of an
inverted biomass pyramid, typically occurring in planktonic19 or
other aquatic20 systems. This prediction is quite suggestive,
because in general it is not possible to predict the type of
bifurcation simply looking at basic quantities such as mU and mL.
Our hypothesis could be investigated both theoretically and
empirically.

Discussion
The new approximation allows us to quantify the contribution
of several key quantities to the stability of large food webs.
Take a food web built by the cascade model for a given size
S, connectance C and parameterized using the bivariate
distribution Z¼ (X,Y) defined by its means mx and my, its
variances sx

2 and sy
2 and the correlation rxy. In Fig. 4, we

show how Re(lM,1) responds to changes in the parameters, by
re-calculating the approximation when a given parameter is
multiplied by a factor y.

Interestingly, even doubling (or halving) the average interaction
strengths, mx and my has very little effect on the stability of the
system. This is due to the fact that, when � mU4mL and Re(lA,1) is
very constrained, and increasing the average strength of interaction
simply makes the large eigenvalues with negative real part even
more negative, with negligible effects on stability (note, however,
that average strengths would be the most important quantities
when � mUomL; Supplementary Note 3). The size and con-
nectance have a stronger effect (confirming the inverse relationship
between stability and ‘complexity’21), but far less than the variances
and the correlation, with increasing variances being strongly
destabilizing, and high negative correlation being strongly
stabilizing. These observations question a large body of
literature11–14 focusing on the relationship between mean
interaction strength and stability.

Here we have derived for the first time an analytic
approximation able to predict the stability of large, structured
food webs. The approach is based on the decomposition of the
community matrix into the sum of two matrices, and the same
approach could be used to study the influence of stability of other
important food web properties, such as modularity17, the
presence of trophic groups22 and the division into trophic levels.

Methods
Distribution of interaction strengths. We build an empirical distribution for
Z using a large database detailing the relationship between consumer and resource
body sizes for thousands of observed trophic interactions23. To transform body-
size relationships into the coefficients of the community matrix, we need to
estimate the interactions between species as well as the equilibrium biomasses for
all populations. To this end, we make use of body-size scaling theory5 to construct
a reasonable distribution Z (Supplementary Note 2). All the figures presented here
are obtained for a particular choice of parameters, but our results hold also for
alternative parameterizations, and even for entirely different distributions
(Supplementary Note 4). In particular, the results are consistent with the
universality property found for other random matrices2,3: once fixed the mean and
covariance matrix, the details of the distribution of the coefficients have no effect
on the distribution of the eigenvalues.

Spectrum of A and B. In Supplementary Note 3, we derive the eigenvalues of A.
All eigenvalues fall on the curve describing a circle in the complex plane with

rA ¼ mU � mLð Þ � mL=mUð Þ
1
S

� mL=mUð Þ
2
S � 1

cA ¼ mL � mUð Þ � mL=mUð Þ
2
S

� mL=mUð Þ
2
S � 1

ð1Þ

where rA is the radius of the circle, and is (cA,0) its center.
For matrix B, we conjecture that its eigenvalues are approximately uniformly

distributed in the ellipse in the complex plane with horizontal semi-axis
rh,BE(aþ rULsUsL(S� 1))/(a)1/2 and vertical semi-axis rv,BE(a� rULsUsL

(S� 1))/(a)1/2, where a/S tends to (sU
2 �sL

2)/log(sU
2 /sL

2) for S large (Supplementary
Note 3). In the limit of sU-sL, we obtain aES, consistently
with the elliptic law.
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