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Abstract: The present study investigates how to apply continuous tow shearing (CTS) in a manufac-
turable design parameterization to obtain reduced imperfection sensitivity in lightweight, cylindrical
shell designs. The asymptotic nonlinear method developed by Koiter is applied to predict the post-
buckled stiffness, whose index is constrained to be positive in the optimal design, together with
a minimum design load. The performance of three machine learning methods, namely, Support
Vector Machine, Kriging, and Random Forest, are compared as drivers to the optimization towards
lightweight designs. The new methodology consists of contributions in the areas of problem mod-
eling, the selection of machine learning strategies, and an optimization formulation that results in
optimal designs around the compromise frontier between mass and stiffness. The proposed ML-based
framework proved to be able to solve the inverse problem for which a target design load is given
as input, returning as output lightweight designs with reduced imperfection sensitivity. The results
obtained are compatible with the existing literature where hoop-oriented reinforcements were added
to obtain reduced imperfection sensitivity in composite cylinders.

Keywords: buckling; post-buckling; imperfection; imperfection sensitivity; filament winding; sup-
port vector machine; Kriging; random forest; differential evolution

1. Introduction

The buckling performance of cylindrical shells is recognized to be highly sensitive to
geometric, load, and material imperfections, a behavior that was identified already since the
first attempts to correlate experimental with theoretical predictions. The use of straight-fiber
laminated composite materials has enabled the maximization of the mass-normalized load-
carrying capacity of these shells, while customarily applying conservative knock-down
factors to reduce the theoretical load-carrying capacity. Recent studies present measured
imperfections for filament-wound composite cylinders [1], showing a thickness pattern
that highly depends on the design and that significantly affects the buckling strength.
Furthermore, other defects, such as those created during service due to low-velocity im-
pacts [2–4], can also lead to a significant knock-down on the theoretical performance of
cylindrical shells.

The application of novel composite manufacturing technologies such as continuous
tow shearing (CTS) can enable a larger design space by means of fiber steering and thickness
variation. This larger design space encompasses composite cylindrical shell designs that
showed an imperfection-insensitive behavior and which have the potential to undergo
buckling without collapse.

Imperfection-sensitive structures such as cylindrical shells are known for their large
number of nonlinear paths and nearby bifurcation points. During the experimental eval-
uation of such structures, only one nonlinear path is preferably chosen according to the
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localization event produced by geometric, load, and material imperfections. The high
sensitivity of the chosen nonlinear path with respect to this localization event was called,
by Thomson and Virgin, “spatial chaos” [5], justifying the large scatter of experimental
data that is usually obtained from the experimental assessment of cylindrical shells, and
other imperfection-sensitive shells.

Recently, Groh et al. [6] proposed a representative and simple model based on rigid
links supported by transverse springs to numerically demonstrate the concept of spatial
chaos, where small changes in the geometric imperfections result in a large scatter of the
maximum load-carrying capacity. The NASA-8007 guideline [7], which is derived from the
collection of experimental results from Seide, Weingarten, and Morgan [8,9], reports a large
number of experimental results for cylindrical shells having different radius-per-thickness
ratios, where the aforementioned scatter can be clearly observed. The guideline defines a
lower-bound curve with respect to the scattered data that is frequently used to calculate
knock-down factors (KDF), and these KDF can be directly used in combination with the
theoretical linear buckling load of cylindrical shells, as discussed by Hilburger [10]. Such a
resource is useful while designing shells for a given required compression load and while
taking the imperfection sensitivity into account.

The determination of the post-buckling behavior of shells requires nonlinear analysis
schemes that usually fall into one of three categories: analytical, axisymemtric, or full
3D models. The asymptotic theory originally proposed by Koiter [11] allows for a rapid
evaluation of the initial post-buckling behavior of structures, and the method has been used
within semi-analytical contexts [12–14], and mostly within finite element schemes [15–25].
In recent years, the method has been applied in the context of the variable stiffness of panel-
type structures [21,23,26–29], and in the analysis of imperfection-sensitive shells [25,30–33].

White et al. [34] proposed the use of Koiter’s asymptotic method to achieve reduced
imperfection sensitivity in variable-stiffness cylindrical panels, solving the numerical
problem by means of generalized differential and integral quadrature. A genetic algorithm
optimizer was used to find optimal straight- and curved-fiber composite layouts for the
curved panels under investigation. The best post-buckling performance achieved by the
curved-fiber designs showed virtually no drop in axial stiffness while entering the post-
buckling regime. The work of White et al. [34] inspired the present study on the lightweight
design of cylindrical shells, aiming at reduced imperfection sensitivity.

The main scientific contributions of the present study are:

• a new parameterization scheme for variable-stiffness cylindrical shells manufactured
using continuous tow shearing (CTS), which result in a vast design space that is
explored in order to attain designs with reduced imperfection sensitivity;

• the comparison of the performance of three classes of machine learning strategies with
multiple kernel models, in a total of eighteen distinct instances;

• an algorithm to calculate the optimal design that meets the target levels of mass,
buckling load, and post-buckling stiffness. The inverse problem is formulated within
the scope of global optimization for mixed-integer variables.

The study is concluded by showing the potential of the algorithm to solve the inverse
problem related to the proposed design scheme, where for each design load, the optimal de-
sign that is lightweight and has a reduced imperfection sensitivity can be obtained efficiently.

The paper is organized as follows. Section 2 presents the characteristics of the com-
putational model of a cylinder and explains the key features considered in the analysis.
The linear buckling is discussed in Section 3, and the asymptotic expansion is discussed
in Section 4. Section 5 outlines the characteristics of the Support Vector Machine, Kriging,
and Random Forest algorithms, and presents the results obtained from the adjustment of
the kernel parameters. Section 6 details the proposed algorithm that computes the inverse
problem and discusses the results obtained from numerical experiments. The conclusions
are summarized in Section 7.
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2. Design Parameterization with Circumferentially Oriented Thickness Patterns

The proposed parameterization consists of circumferentially oriented thickness pat-
terns created from the nonlinear steer–thickness coupling that is enabled by the continuous
tow shearing (CTS) manufacturing process.

Figure 1 schematically shows the design parameterization in an example with two
regions c2 (n = 2) and three regions c1. Between the regions c1 and c2, there is a transition
region t. The tow angle θ(x) at the regions c1 and c2 is, respectively, θ1 and θ2. In the
continuous tow shearing (CTS) process, the robot head moves in such a way that the
deposited tow width remains constant, such that any tow angle different than zero will
generate a tow of higher thickness, where the local thickness can be calculated with

h(x) = htow/ cos θ(x) (1)

as shown in [35–38]. This is true if we assume that the shift direction of the deposition
head, where it moves to start the next tow, is the circumferential direction of the cylinder.
The transition regions t that are located between the two regions c1 and c2 are made
by steering the fibers with a defined steering radius rCTS ≥ rCTSmin, being rCTSmin =
50 mm [35], as inspired by the work of Ummels and Castro [39] on overlap-stiffened
structures suggesting pre-determined steering angle values. In the present study, it is
assumed that the fiber angles in the transition region change linearly with x. Hence, the
length t can be calculated as

t = rCTS sin (|θc2 − θc1 |). (2)
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Figure 1. Design parameterization based on circumferentially oriented thickness patterns.

If n regions with length c2 are used between n + 1 regions with length c1, the following
simple equation for the total cylinder length L can be derived:

L = (2t + c2)n + c1(n + 1). (3)

A nondimensional quantity c2ratio can be conveniently used to express the ratio be-
tween regions c1 and c2:

c2ratio =
c2

c2max
(4)

such that 0 ≤ c2ratio ≤ 1. The value c2max is the maximum length of region c2, and is
determined assuming c1 = 0 in Equation (3), leading to

c2max =
L− 2tn

n
. (5)



Materials 2022, 15, 4117 4 of 33

Assuming that the whole cylinder length is covered with transition regions t, implying
c1 = c2 = 0, the maximum number of c2 regions, or the maximum value for n, can be
calculated for the proposed design parameterization as

nmax =
L
2t

. (6)

The special case c2ratio = 0 and n > 0 leads to a feasible design consisting of a
combination of regions c1 and transition regions t. The case with c2ratio = 1 and n > 0 also
leads to a feasible design combining transition regions t with regions c2. When c2ratio = 0
and n = 0, a constant-stiffness cylinder with stacking sequence ±θ1 is generated, whereas
c2ratio = 1 and n = 0 leads to a constant-stiffness cylinder with stacking sequence ±θ2.

In summary, the proposed parameterization takes, as input:

• n: the number of regions c2;
• rCTS: the CTS steering radius in the transition zone;
• c2ratio: the ratio between the design length c2 with respect to c2max, which is calculated

as per Equation (5);
• θ1 and θ2: the respective angles at regions c1 and c2.

With these inputs, the following design parameters are calculated:

• The length of the transition regions t, according to Equation (2);
• The length c2, based on c2ratio and c2max;
• The length c1, according to Equation (3).

Furthermore, the adopted strategy to control the finite element mesh size takes, as input:

• nxt: the number of nodes along x, along the length of each transition zone, given by t;
• ny: the number of nodes along the circumferential direction, which is constant along

the length. If ny is not given, then it is calculated assuming a desired aspect ratio of
ny
nx

= 1;
• the maximum aspect ratio of the elements in the circumferential direction, with respect

to the axial direction: (
ny

nx

)
max

. (7)

If this value is exceeded, more nodes in the x direction are added to the regions c1 and
c2 to keep

ny

nx
≤
(

ny

nx

)
max

. (8)

Note that Equation (7) does not affect the transition regions with length t, which have
their number of nodes along the length determined by nxt.

With these mesh inputs, the number of nodes along the lengths c1 and c2 are then
calculated. The workflow is shown in Algorithm 1.

The proposed design parameterization creates a tailored circumferentially oriented
thickness pattern, and enables the proposition of an optimization formulation. Setting the
main objective as a lightweight design aiming at minimum mass m, with a given design
load Pdesign, a positive post-buckling stiffness bI > 0, and the linear buckling load of the
cylinder Pcritical , the resulting optimization problem can be formally stated as

min
(rCTS ,n,c2ratio ,θ1,θ2)

m (9)
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subject to

Pcritical ≥ Pdesign

bI > 0

rCTS ≥ rCTSmin

1 ≤ n ≤ nmax (10)

0 ≤ c2ratio ≤ 1

0 ≤ θ1 ≤ 75

0 ≤ θ2 ≤ 75

Algorithm 1: The modeling phase

/* Initial setup */
n← number of regions c2;
rCTS ← steering radius;
c2ratio ← ratio in agreement with Equation (5);
θ1 ← tow angle at c1;
θ2 ← tow angle at c2;
/* Intermediary computation */
t← length of the transition regions (Equation (2));
c2 ← length (Equations (4) and (5));
c1 ← length (Equation (3));

Ensure ny
nx
≤
(

ny
nx

)
max

;

Proceed with model evaluation;
/* Output */
Return the number of nodes along the lengths c1 and c2.

Although the formulation expressed by Equations (9) and (10) may lead to optimal
designs, there is no guarantee that a feasible design exists for an arbitrary Pdesign and bI > 0.
Therefore, a new multi-objective formulation is proposed:

min
(rCTS ,n,c2ratio ,θ1,θ2)

{
α1

(
m−mre f

)2
+ α2

(
Pcritical − Pre f

)2
+ α3

(
bI − bre f

)2
}

(11)

subject to

0.05 ≤ rCTS ≤ 0.20

1 ≤ n ≤ nmax

0 ≤ c2ratio ≤ 1 (12)

0 ≤ θ1 ≤ 75

0 ≤ θ2 ≤ 75

where mre f , Pre f , and bre f are reference values for m, Pcritical , and bI , respectively. The
weighting values α1, α2, and α3 represent the preference in optimizing each criteria.

An advantage of this formulation (Equations (11) and (12)) is the ability to contemplate
some constraints as objectives to be minimized. It avoids the issue that the set of inequalities
(Equation (10)) may, in some circumstances, lead to an empty set of solutions. Furthermore,
the optimization process will provide feasible designs even when an infeasible set of
reference values mre f , Pre f and bre f is given.

Although finding suitable reference values for the new objective function (Equation (11))
is not trivial, the current proposition consists in the usage of machine learning strategies
as a heuristic to provide useful estimates. Those parameters will then be used as part of a
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global optimization procedure, in the domain of mixed-integer variables, which will refine
the search of the global optimum.

Further details on this topic can be found in Section 6.

3. Linear Buckling Constraint

The linear buckling load Pcritical is compared to the design load Pdesign in the optimiza-
tion scheme described by Equation (10). In order to calculate the linear buckling load of the
proposed variable-stiffness design, the single-curvature Bogner–Fox–Schmit–Castro (SC-
BFSC) finite element is selected. First presented by Wang et al. [40], the SC-BFSC element is
based on the plate version presented by Castro and Jansen [24], which is a C1-contiguous
and confirming element obtained by taking tensor products of cubic Hermite splines [41].
With 4 nodes per element and 10 degrees of freedom per node, the BFSC approximates the
in-plane and out-of-plane displacements using third-order polynomials, leading to a fast
convergence for cases with variable stiffness.

Figure 2 illustrates a SC-BFSC element and the global coordinate system xyz used,
where coordinate y is curvilinear following the circumferential perimeter, such that at
y = 2πr, the path closes on itself. The displacements along x, y, z are, respectively, u, v, w,
and they are approximated within each element as:

ue, ve, we = ∑4
i=1 SSSu,v,w

i ueueuei (13)

where SSSu,v,w
i and ueueuei are the shape functions and the 10 degrees of freedom of the ith node

of the SC-BFSC element, being in the following order: u, ∂u/∂x, ∂u/∂y, v, ∂v/∂x, ∂v/∂y, w,
∂w/∂x, ∂w/∂y, ∂2w/∂x∂y . For the SC-BFSC element, the same shape functions of the plate
BFSC element [24] can be used:

SSSu
i =

[
Hi Hx

i Hy
i 0 0 0 0 0 0 0

]
SSSv

i =
[
0 0 0 Hi Hx

i Hy
i 0 0 0 0

]
SSSw

i =
[
0 0 0 0 0 0 Hi Hx

i Hy
i Hxy

i

] (14)

with the cubic Hermite functions Hi, Hx
i , Hy

i , Hxy
i calculated using natural coordinates [42–44]:

Hi =
1
16 (ξ + ξi)

2(ξξi − 2)(η + ηi)
2(ηηi − 2)

Hx
i = − `x

32 ξi(ξ + ξi)
2(ξξi − 1)(η + ηi)

2(ηηi − 2)

Hy
i = − `y

32 (ξ + ξi)
2(ξξi − 2)ηi(η + ηi)

2(ηηi − 1)

Hxy
i =

`x`y
64 ξi(ξ + ξi)

2(ξξi − 1)ηi(η + ηi)
2(ηηi − 1)

(15)

where `x, `y are, respectively, the finite element dimensions along x, y, as represented in
Figure 2. Using the proposed nodal connectivity for the SC-BFSC element, the nodal
degrees of freedom ueueuei and the respective shape functions SSSu,v,w

i are concatenated as:

ueueue =
{

ueueue1 ueueue2 ueueue3 ueueue4
}>

SSSu =
[
SSSu

1 SSSu
2 SSSu

3 SSSu
4
]

SSSv =
[
SSSv

1 SSSv
2 SSSv

3 SSSv
4
]

SSSw =
[
SSSw

1 SSSw
2 SSSw

3 SSSw
4
]

(16)

with SSSu, SSSv, and SSSw being matrices of shape 1× 40.
The total potential energy of the cylindrical shell under axial compression can be

represented by Equation (17), where Ω represents the shell domain and δΩ the shell
boundaries, i.e., the loaded edges. The first term represents the strain energy based
on equivalent single-layer theories [45,46], while the second term represents the work
conducted by external forces at the boundaries N̂̂N̂N, multiplied by a scalar λ, with N̂̂N̂N expressed
in force per length units.
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φ =
1
2

∫
Ω
(NNNεεε + MMMκκκ)dΩ−

∫
δΩ

λN̂̂N̂Nᵀuuud(δΩ) (17)

The strain energy functional of the entire shell continuum is built from the individual
contributions of all finite elements φe:

φe =
1
2

y4∫
y=y1

x2∫
x=x1

(NNNεεε + MMMκκκ)dxdy (18)

where the membrane forces are NNN =
{

Nxx, Nyy, Nxy
}> and the distributed moments are

MMM =
{

Mxx, Myy, Mxy
}>. The integration limits x1 ≤ x ≤ x2 and y1 ≤ y ≤ y4 define the

domain of one finite element Ωe. The membrane εεε and rotational κκκ strains are assumed
to follow Sanders-type kinematics [47], also discussed in references [48,49] for cylindrical
shells, and in references [50–53] for conical shells:

εεε =


εxx

εyy

γxy

 =


u,x + 1

2 w,2x
v,y + 1

r w + 1
2 w,2y +

1
2

1
r2 v2 − 1

r vw,y
u,y + v,x + w,xw,y − 1

r vw,x



κκκ =


κxx

κyy

κxy

 =


−w,xx

−w,yy +
1
r v,y

−2w,xy +
1
r v,x


(19)

with (·),x = ∂(·)/∂x used as a compact notation for partial derivatives.

Figure 2. Single-curvature BFSC element and the global coordinate system xyz.

At the bifurcation point, the following state of equilibrium exists, considering all ne
elements:

δφ =
ne

∑
e=1

δφe −
∫

δΩ
λN̂̂N̂Nᵀδuuud(δΩ) =[

ne

∑
e=1

∫
Ωe

(
NNN>δεεε + MMM>δκκκ

)
dΩe

]
−
∫

δΩ
λN̂̂N̂Nᵀδuuud(δΩ) = 0

(20)

Expressing the displacements within one element in terms of nodal coordinates ueueue, as
in Equation (13), δεεε and δκκκ can be calculated from Equation (19) as:

δεεε = BmBmBmδueueue

δκκκ = BbBbBbδueueue

(21)
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where BmBmBm and BbBbBb are defined as:

BmBmBm =


SSSu

,x + w,xSSSw
,x

SSSv
,y +

1
r SSSw + w,ySSSw

,y +
1
r2 vSSSv − 1

r vSSSw
,y − 1

r w,ySSSv

SSSu
,y + SSSv

,x + w,xSSSw
,y + w,ySSSw

,x − 1
r vSSSw

,x − 1
r w,xSSSv



BbBbBb =


−SSSw

,xx

−SSSw
,yy +

1
r SSSv

,y

−2SSSw
,xy +

1
r SSSv

,x


noting that the partial derivatives of SSSu,v,w are directly calculated from the shape functions
of Equation (14) in terms of the natural coordinates ξ, η, using the Jacobian relations
∂/∂x = `x/2∂/∂ξ and ∂/∂y = `y/2∂/∂η.

Applying the neutral equilibrium criterion δ2φe = 0 [53] leads to:

δ2φ =
ne

∑
e=1

δ2φe =
ne

∑
e=1

[∫
Ωe

(
δNNN>δεεε + δMMM>δκκκ

)
dΩe

+
∫

Ωe

(
NNN>δ2εεε + MMM>δ2κκκ

)
dΩe

]
= 0

(22)

The first integral of Equation (22) becomes the constitutive stiffness matrix of the ele-
ment, calculated using the constitutive relations from classical laminated plate theory [46],
where δNNN = AAAδεεε + BBBδκκκ and δMMM = BBBδεεε + DDDδκκκ. Note that the geometric non-linearity
appears in the constitutive stiffness matrix due to w,x, w,y, and v in Equation (21). There-
fore, the linear constitutive stiffness matrix of a finite element KeKeKe is calculated assuming
w,x, w,y, v = 0 in BmBmBm and BbBbBb, leading to a 40× 40 matrix defined by:

KeKeKe =
∫∫
xy

(
B>mB>mB>m AAABmBmBm + B>mB>mB>mBBBBbBbBb + B>bB>bB>b BBBBmBmBm + B>bB>bB>b DDDBbBbBb

)
dxdy (23)

The second integral of Equation (22) becomes the geometric stiffness matrix of the
finite element KG0eKG0eKG0e, capturing the geometrically nonlinear effects of a linear pre-buckling
membrane stresses N0N0N0 =

{
N0xx, N0yy, N0xy

}> on the membrane stiffness. Noting that
δ2κκκ = 000 [24,53], the equation for KG0eKG0eKG0e becomes:

KG0eKG0eKG0e =
∫∫
xy

[
N0xxSSSw>

,x SSSw
,x+

N0yy

(
SSSw>

,y SSSw
,y +

1
r2 SSSv>SSSv − 1

r
SSSv>SSSw

,y −
1
r

SSSw>
,y SSSv

)
N0xy

(
SSSw>

,y SSSw
,x + SSSw>

,x SSSw
,y −

1
r

SSSv>SSSw
,x −

1
r

SSSw>
,x SSSv

)]
dxdy

(24)

The contributions of all ne finite elements are added to build the global constitutive
stiffness matrix KKK and the geometric stiffness matrix KG0KG0KG0 of the system:

KKK =
ne
∑

e=1
KeKeKe

KG0KG0KG0 =
ne
∑

e=1
KG0eKG0eKG0e

(25)

The linear pre-buckling stress field of one finite element N0xx, N0yy, N0xy is calculated
from the corresponding nodal displacements u0eu0eu0e as:

N0N0N0 =


N0xx
N0yy
N0xy

 = AAABmBmBmu0eu0eu0e (26)
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where u0eu0eu0e is directly extracted from the full pre-buckling displacement vector u0u0u0 that can
be obtained from a linear static analysis, derived from the equilibrium of Equation (20):

u0u0u0 = KKK−1 f0f0f0 (27)

with f0f0f0 representing any general pre-buckling force, here calculated based on a uniformly
distributed axially compressive unit force Punit = 1. Assuming that there is a stress state
NNN = λN0N0N0 that leads to the condition δ2φ = 0, the problem consists of finding the value of
λ, such that:

δuuu>(KKK + λKG0KG0KG0)δuuu = 0 (28)

which holds true for any variation δuuu, such that the required condition for the equality of
Equation (28) is:

det (KKK + λKG0KG0KG0) = 0 (29)

Equation (29) represents a linear buckling eigenvalue problem, solved numerically
in the present study by means of the locally optimal block preconditioned conjugate
gradient method [54], implemented in SciPy [55]. The lowest eigenvalue is the critical linear
buckling load multiplier λc, from which the critical compressive load can be calculated
with Pcritical = λc.

The integration of KeKeKe and KG0eKG0eKG0e over the finite element domains are performed nu-
merically using standard Gauss-quadrature with 4 × 4 integration points per element.
The authors verified that this amount of integration points leads to a converged behavior
even for variable-stiffness filament-wound cylinders [40]. For each integration point, the
local shell constitutive properties are calculated using the smeared approach proposed
by Castro et al. [36] based on a constant-volume constraint, verified against a discreet
thickness modeling by Vertonghen and Castro [37].

4. Post-Buckling Stiffness

The post-buckling stiffness bI , also known as b f actor, is herein calculated using the
proposed SC-BFSC element, based on Koiter’s asymptotic approach. Given a total potential
energy functional φ[uuu, λ] that depends on displacements uuu and a scalar load multiplier
λ, a pre-buckling static equilibrium with solution u0u0u0 that corresponds to a load level λ0
can be described as per Equation (30), where the notation φ′δuuu is used instead of δφ to
conveniently express the functional variation as a tensor product between the Fréchet
derivative φ′ and the variation of the vector containing all degrees of freedom δuuu [24,25,56].
Assume that there exists at least one point of equilibrium that intersects [uuu(λ), λ] at a
bifurcation point [ucucuc, λc], such that ucucuc = λcu0u0u0, with λc representing the critical buckling
load, or critical bifurcation load, such that:

δφ[u0u0u0, λ0] = φ′[u0u0u0, λ0]δuuu = 0 (30)

Koiter [11] proposed expressing uuu− ucucuc and λ− λc using asymptotic expansions to
represent the difference between the current displacements and the displacements at the
bifurcation point with the corresponding load increment λ− λc:

uuu− ucucuc = vvv = ξuIuIuI + ξ2uI IuI IuI I + ξ3uI I IuI I IuI I I + · · ·
λ− λc = aIλcξ + bIλcξ2 + · · · (31)

where:

1. ξ is a scalar parameter;
2. uIuIuI is a first-order field, taken directly from one or a linear combination of multiple lin-

ear buckling modes. Vector uIuIuI is customarily re-scaled by dividing with the maximum
normal displacement amplitude and multiplying by the plate or shell thickness;

3. uI IuI IuI I is a second-order field that provides a correction to the first-order field;
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4. the third-order field uI I IuI I IuI I I , and higher fields, are assumed to have a negligible contribution;
5. aI and bI are, respectively, the first- and second-order load parameters to be determined.

Equation (31) is a reduced-order model (ROM) relating the load λ and displacement uuu
around the equilibrium point [ucucuc, λc].

Note that Equation (31) consists of a reduced-order model to calculate displacements
uuu based on a pre-buckled state ucucuc with known first- and second-order fields uIuIuI and uI IuI IuI I . The
coefficient ξ can be determined for each known load level λ, after the calculation of the
coefficients aI and bI .

The expression given by Equation (31) can be applied to the expanded total potential
energy functional of Equation (32) [24,25], leading to:

φ′[uuu, λ]δuuu =

(
φ′′c +

•
φ′′c (λ− λc) +

1
2
••
φ′′c (λ− λc)

2 + · · ·
)

vvvδuuu

+
1
2

(
φ′′′c +

•
φ′′′c (λ− λc) +

1
2
••
φ′′′c (λ− λc)

2 + · · ·
)

vvv2δuuu

+
1
6

(
φiv

c +
•
φiv

c (λ− λc) +
1
2
••
φiv

c (λ− λc)
2 + · · ·

)
vvv3δuuu

+ · · ·

(32)

The resulting formula is shown in Equation (33), where the terms multiplying ξ2 and
ξ3 are collected. Note that this expansion concerns only a single mode, and the reader is
referred to Castro and Jansen [24,25] for details about the multi-modal expansion adopting
the same notation. It follows that

ξ2
[

2aIλIuIuIuI
•
φ′′c + φ′′′c uIuIuIuIuIuI + 2φ′′c uI IuI IuI I

]
δuuu

+ξ3
[

6λ
•
φ′′c uIuIuIbI + φiv

c uIuIuIuIuIuIuIuIuI + 6φ′′′c uIuIuIuI IuI IuI I

+12
••
φ′′c λ2uIuIuI aI + 12

•
φ′′′c λiaIuIuIuIuIuIuI

]
δuuu + · · · = 0 (33)

where φ′′c is the tangent stiffness matrix; the calculation of
•
φ′′c ,

•
φ′′′c ,

••
φ′′c , φ′′′c , and φiv

c is
discussed in detail by Castro and Jansen [24,25]. For the expanded equilibrium to be
stationary, each term in Equation (33) must vanish separately. Assuming δuuu = uIuIuI in
Equation (33), the expressions for aI and bI of Equation (31) can be obtained, as given,
respectively, in Equations (34) and (35):

aI = −
1

2λi

φ′′′c uIuIuIuIuIuIuIuIuI
•
φ′′c uIuIuIuIuIuI

(34)

bI =
−1

6λ
•
φ′′c uIuIuIuIuIuI

[
φiv

c uIuIuIuIuIuIuIuIuIuIuIuI + 6φ′′′c uIuIuIuIuIuIuI IuI IuI I

+ 3λ
•
φ′′′c aIuIuIuIuIuIuIuIuIuI + 3λ2 ••φ′′c a2

IuIuIuIuIuIuI

] (35)

The second-order fields uI IuI IuI I needed for the calculation of bI can be obtained by first
calculating a non-orthogonal second-order field ūI IūI IūI I . The calculation of ūI IūI IūI I can be conducted
directly from Equation (33), knowing that the term multiplying ξ2 must vanish separately:

ūI IūI IūI I =
[
φ′′c
]−1
(
−1

2
φ′′′c uIuIuIuIuIuI − aIλuIuIuI

•
φ′′c

)
(36)



Materials 2022, 15, 4117 11 of 33

The orthogonal second-order field vector uI IuI IuI I in the single-modal asymptotic expansion
can be obtained after a Gram–Schmidt orthogonalization [57] operation, used to remove the
components of ūI IūI IūI I that are parallel to the linear buckling mode used in the single-modal
expansion named uIuIuI , as formulated in Equation (37).

uI IuI IuI I = ūI IūI IūI I − uIuIuI
〈ūI IūI IūI I , uIuIuI〉
〈uIuIuI , uIuIuI〉

(37)

This topic concludes the discussion of the modeling strategy, with the exposition that
follows focusing on the application and performance evaluation of three machine learning
(ML) strategies applied on the optimization problem of Equation (11).

5. Machine Learning Strategies for Meta-Modeling

An interesting characteristic of machine learning algorithms is their ability to general-
ize the training experience and provide an unexpected output that best fulfills the objective
function, predicting future events or scenarios that are not explicitly mapped in the training
process, and that can, therefore, reach results that are unexpected and non-intuitive. Among
a myriad of alternatives for implementing a learning strategy, a comprehensive overview
of popular strategies and resources is presented by Russell [58].

In the present work, the viability of the Support Vector Machine (Section 5.2), the Krig-
ing surrogate (Section 5.3), and the Random Forest (Section 5.4) algorithms are investigated
as learning strategies to meta-model and optimize cylinder design. Numerical calculations
were performed by several packages of the R software platform [59]. The discussion starts
with the design of the experiments (Section 5.1).

5.1. Design of Experiment

The steering radius rCTS, the number n of c2 regions (Equation (6)), the ratio c2ratio
(Equation (4)), the tow angle θ1 at region 1, and the tow angle θ2 at region 2 constitute the
five design variables

v = [rCTS, n, c2ratio, θ1, θ2] (38)

where v1 = {rCTS ∈ R | 0.05 ≤ rCTS ≤ 0.20}, v2 = {n ∈ N | 1 ≤ n ≤ 12}, v3 = {c2ratio ∈
R | 0 ≤ c2ratio ≤ 1}, v4 = {θ1 ∈ R | 0 ≤ θ1 ≤ 75}, and v5 = {θ2 ∈ R | 0 ≤ θ2 ≤ 75}. The
real-valued variables v4 and v5 are limited to two decimal places, in order to be closer to a
viable solution for manufacturing.

The response in terms of buckling load Pcritical(v) and post-buckling stiffness bI(v) are
evaluated throughout the design space by means of a Design of Experiment (DOE) where a
set of 2000 feasible points is chosen from the design envelope

0.05 ≤ rCTS ≤ 0.20

1 ≤ n ≤ 12

0 ≤ c2ratio ≤ 1 (39)

0 ≤ θ1 ≤ 75

0 ≤ θ2 ≤ 75

by means of a Latin hypercube sampling methodology, as available in the LHS toolbox [60].
The DOE is publicly available in a dataset published by the authors [61].

The finite element model is evaluated at each point of the DOE, and the results are
presented below. Figure 3 shows the mass versus bI obtained from every evaluation within
the DOE, where no clear correlation between the variables can be seen. Figure 4 plots mass
versus Pcritical , showing a Pareto frontier at the upper limit of Pcritical for increasing values
of mass.
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Figure 3. Mass and bI of sample points.
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Figure 4. Mass and Pcritical of sample points.

The effectiveness of meta-modeling the bI , mass, and Pcritical indices by means of SVM,
Kriging, and Random Forest methodologies are discussed in Sections 5.2–5.4, respectively.
The numerical results, obtained from a set of nsample = 2000 feasible points, are divided
into two groups: the first group of ntraining = 1600 points is used in the training phase, to
adjust the models, and the second group of ntest = 400 points is used in the test phase, to
infer the quality of the models.
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The relative error E(v) of the meta-model is used to quantify the deviance between
the actual f (v) and estimated f̂ (v) values of a design v, and is evaluated as

E(v) =
| f̂ (v)− f (v)|
| f (v)| (40)

while providing estimates for the post-buckling stiffness bI , the mass, and the buckling
load Pcritical . There are several boxplot diagrams presented in Figures 5–16, whose data are
calculated following Equation (40). The results summarized in Tables 1–9 are also obtained
by using Equation (40). As the sample points are randomly chosen in the design space,
from the project perspective, it is important to identify the points along the frontier that
offer a positive post-buckling stiffness, herein represented by the criteria bI > 0. This
discussion will be expanded in Section 6.

5.2. Support Vector Machine

The standard SVM is formulated as a classifier whose decision function is represented
by a hyper-plane that maximizes the distance of separated samples from different classes.
The methodology ultimately finds a linear combination of features that characterizes or
separates two or more classes of objects or events (as described by yi). Since the convex
optimization problem is solved by a deterministic algorithm, for a specific input dataset,
the same optimal hyper-plane parameter is obtained, as a solution of Equations (41)–(43).

Formally, the minimization problem is given by

min
w,ξ,b

(
0.5 ‖ w ‖2 +C

ntraining

∑
i=1

ξi

)
(41)

subject to
yi(〈φ(vi), w〉+ b) ≥ 1− ξi, ∀i = 1, . . . , m (42)

where
ξi ≥ 0, ∀i = 1, . . . , m (43)

and m ≤ ntraining is the number of active constraints. A detailed discussion about the
SVM method and variants can be found in Awad and Khanna [62] and Salcedo-Sanz and
Rojo-Álvarez [63].

In the present study, the SVM methodology is evaluated considering the characteristics
of seven different kernels (as expressed by φ in Equation (42)): Laplace, RBF, Polynomial,
Vanilla, Hyperbolic Tangent, Bessel, and ANOVA. The executions are performed thought
the Kernlab toolbox [64]. A set of 2000 feasible points is chosen from the design envelope
using a Latin hypercube sampling methodology that is available in the LHS toolbox [60].
Then, the set is divided into two groups: the first group of 1600 points is used in the training
phase, to adjust the models, and the second group of 400 points is used in the test phase, to
infer the quality of the models. As a result, the performance of each kernel will be evaluated
against a set of 400 designs not used in the training phase.

The minimum error, the median error, and the maximum error in the estimation of
the bI are shown in Table 1. The error dispersions (Equation (40)) of all SVM methods are
compared in Figure 5.

The median of the error dispersion is used as a metric to identify the best adjustment.
According to this criteria, the first model, using the Laplace kernel, is found to be the best
bI predictor.
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Table 1. Error statistics of the bI meta-model using distinct SVM kernel options.

Id Kernel Min. Median Max.

1 Laplace 0.00000 0.00008 0.18026
2 RBF 0.00000 0.00012 0.18438
3 Poly 0.00000 0.00019 0.18768
4 Vanilla 0.00000 0.00019 0.18769
5 Tanh 0.00162 1.29576 6.39274
6 Bessel 0.00001 0.00341 0.18597
7 ANOVA 0.00506 0.61795 1.71422

1 × 10−5

1 × 10−3

1 × 10−1

1 × 10+1

1 2 3 4 5 6 7
SVM

E
rr

or

Figure 5. Error dispersion of the bI estimate using distinct SVM kernel options.

For the mass estimation, the minimum error, the median error, and the maximum error
are shown in Table 2. The error dispersion of the mass estimates using all SVM methods are
compared in Figure 6. Based on the median error, the Laplace kernel is the best bI predictor.

For the estimation of Pcritical , the minimum error, the median error, and the maximum
error are shown in Table 3. The error dispersion of the Pcritical estimate is shown in Figure 7.
The Laplace kernel is the best Pcritical predictor, based on the median error.

According to the metric of the median error, the SVM combined with the Laplace kernel
is the best predictor for the design space created under the proposed parameterization of
variable-stiffness cylinders.

Table 2. Error statistics of the mass estimate using distinct SVM kernel options.

Id Kernel Min. Median Max.

1 Laplace 0.00224 0.09454 14.09538
2 RBF 0.00020 0.12610 9.27851
3 Poly 0.00544 0.49763 529.40430
4 Vanilla 0.00628 0.49850 529.81813
5 Tanh 0.12038 41.58680 5921.04232
6 Bessel 0.00129 0.35197 339.96942
7 ANOVA 1.93005 28.31336 12,837.05073
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Table 3. Error statistics of the Pcritical estimate using distinct SVM kernel options.

Id Kernel Min. Median Max.

1 Laplace 0.00020 0.11691 46.73723
2 RBF 0.00024 0.14848 35.81538
3 Poly 0.00210 0.62256 166.42386
4 Vanilla 0.00242 0.62194 166.51978
5 Tanh 0.04686 52.67757 16,211.19438
6 Bessel 0.00086 0.33308 87.76449
7 ANOVA 0.17326 19.83168 5415.23160

1 × 10−1

1 × 10+2

1 × 10+5

1 2 3 4 5 6 7
SVM

E
rr

or

Figure 6. Error dispersion of the mass estimate using distinct SVM kernel options.
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Figure 7. Error dispersion of the Pcritical estimate using distinct SVM kernel options.



Materials 2022, 15, 4117 16 of 33

5.3. Kriging Surrogate

Haeri and Fadaee [65] present a reliability analysis of laminated composites using a
Kriging surrogate model, where the performance is compared with results obtained from
a radial basis neural network. The comparison results confirm the computational cost
efficiency and accuracy of Kriging model for reliability analyses of laminated composites.
The Kriging method [66,67] treats the function of interest as a realization of a stochastic
process y(v) by means of the equation:

y(v) =
k

∑
j=1

β j f j(v) + Z(v) (44)

where f (v) is a linear regression of the data, with k regressors modeling the drift of the
process mean over the domain. The second part, Z(v), is a model of a Gaussian and
stationary random process with zero mean and covariance

cov(v1, v2) = σ2R(v1, v2) (45)

between two observations, v1 and v2. The authors of [68] present an overview of common
spatial correlation functions R(v1, v2) for approximating a deterministic computer model
and the influence of parameter selection on the properties of these functions.

In the present study, the Kriging methodology is evaluated considering the char-
acteristics of five different spatial correlation kernels: Gaussian, Matern 52, Matern 32,
Exponential, and Power-Exponential. The performance of each model is evaluated against
a set of 400 testing designs not used in the training phase. The executions are performed
through the DiceKriging toolbox [69].

A set of 2000 feasible points is chosen from the design envelope using a Latin hyper-
cube sampling methodology, available in the LHS toolbox [60]. Then, the set is divided
into two groups: the first group of 1600 points is used in the training phase, to adjust the
models, and the second group of 400 points is used in the test phase, to infer the quality of
the models.

For the bI estimation using Kriging with different kernels, the minimum error, the
median error, and the maximum error as evaluated by Equation (40) are shown in Table 4.
The error dispersion of all Kriging methods are compared in Figure 8. The median of
the error dispersion is used as a metric to identify the best adjustment. According to this
criteria, the first model, using the Gaussian kernel, is found to be the best bI predictor.

Table 4. Error statistics of the bI meta-model using a distinct Kriging covariance kernel structure.

Id Kernel Min. Median Max.

1 Gauss 0.00000 0.00005 0.18798
2 Matern 52 0.00000 0.00010 0.18809
3 Matern 32 0.00000 0.00015 0.17966
4 Exp 0.00000 0.00033 0.18004
5 Powexp 0.00000 0.00080 0.18080
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Figure 8. Error dispersion of the bI estimate using distinct Kriging kernel options.

The minimum error, the median error, and the maximum error in the estimation of the
mass m are shown in Table 5. The error dispersion of the mass estimates using all Kriging
methods are compared in Figure 9, where the first model, based on the Gauss kernel, is the
best mass predictor according to the metric of the median error.

Table 5. Error statistics of the mass estimate using a distinct Kriging covariance kernel structure.

Id Kernel Min. Median Max.

1 Gauss 0.00004 0.01341 13.12694
2 Matern 52 0.00001 0.02327 3.54187
3 Matern 32 0.00010 0.02933 6.50619
4 Exp 0.00036 0.05714 20.58523
5 Powexp 0.00003 0.01734 22.41985

1 × 10−4

1 × 10−2

1 × 10+0

1 2 3 4 5
Kriging

E
rr

or

Figure 9. Error dispersion of the mass estimate using distinct Kriging kernel options.

For the estimation of Pcritical , the errors are shown in Table 6. The error dispersion of
the Pcritical estimate is shown in Figure 10. The Matern 32 kernel is the best Pcritical predictor,
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based on the median error; the other kernels lead to similar results, and therefore, they can
be chosen without compromising the analysis.

It noteworthy that there is no single option with superior performance on all three
datasets (mass, bI , and Pcritical). In this case, the performance is dependent on the data
under consideration.

Table 6. Error statistics of the Pcritical estimate using a distinct Kriging covariance kernel structure.

Id Kernel Min. Median Max.

1 Gauss 0.00008 0.06522 43.00029
2 Matern 52 0.00016 0.05478 39.23206
3 Matern 32 0.00007 0.05416 36.73150
4 Exp 0.00011 0.05613 22.85848
5 Powexp 0.00042 0.05325 20.13985

1 × 10−4

1 × 10−2

1 × 10+0

1 2 3 4 5
Kriging

E
rr

or

Figure 10. Error dispersion of the Pcritical estimate using distinct Kriging kernel options.

5.4. Random Forest

The Random Forest [70] algorithm is a supervised learning procedure which operates
according to the divide-and-conquer principle: sample fractions of the data, grow a ran-
domized tree predictor on each small piece, and then aggregate these predictors together.
It can be applied to a wide range of prediction problems and have few parameters to tune.

A Random Forest consists in a predictor composed by a collection of M randomized
regression trees. For the j-th tree in the family, the predicted value at the query point x is
denoted by mn(x; Θj, Dn), where Θ1, . . . , ΘM are independent random variables.

A key result of such methodology is that as the number of trees increases, all sequences
of generalization error converge almost surely. This result explains why Random Forests do
not overfit as more trees are added, but produce a limiting value of the generalization error.

In the present study, the Random Forest is evaluated considering the number of trees to
grow (tree ∈ {50, 100, 200}) and the number of variables randomly sampled as candidates
at each split (split ∈ {3, 5}). The performance of each model is evaluated against a set of
ntest = 400 designs not used in the training phase. The executions are performed thought
the randomForest toolbox in R [71].

The minimum error, the median error, and the maximum error in the estimation of the
bI , as evaluated by Equation (40), are shown in Table 7. The error dispersion of all Random
Forest methods are compared in Figure 11. The median of the error dispersion is used as a
metric to identify the best adjustment. According to this criteria, the fifth model, using the
100 trees and 5 splits, is found to be the best bI predictor.
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Table 7. Error statistics of the bI meta-model using a Random Forest with distinct number of trees
and splits.

Id Tree/Split Min. Median Max.

1 50/3 0.00000 0.00012 0.18004
2 100/3 0.00000 0.00013 0.18000
3 200/3 0.00000 0.00015 0.22901
4 50/5 0.00000 0.00005 0.31076
5 100/5 0.00000 0.00005 0.30622
6 200/5 0.00000 0.00007 0.27966

1 × 10−7

1 × 10−5

1 × 10−3

1 × 10−1

1 2 3 4 5 6
Random Forest
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rr

or

Figure 11. Error dispersion of the bI estimate using distinct Random Forest parameters.

The errors in the estimation of the mass are shown in Table 8, while the dispersion
using all Random Forest methods are compared in Figure 12. The parameters tree = 200
and split = 5 provided the best mass predictor, based on the median error.

For the estimation of Pcritical , the error data is given in Table 9, with the error dispersion
shown in Figure 13 where, based on the median error, the parameters tree = 200 and
split = 3 provided the best Pcritical predictor.

Table 8. Error statistics of the mass estimate using a Random Forest with distinct number of trees
and splits.

Id Tree/Split Min. Median Max.

1 50/3 0.00001 0.09256 93.12868
2 100/3 0.00041 0.08894 81.82169
3 200/3 0.00026 0.08498 107.73466
4 50/5 0.00034 0.08707 77.93849
5 100/5 0.00003 0.08891 72.21142
6 200/5 0.00012 0.08465 94.27213
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Table 9. Error statistics of the Pcritical estimate using a Random Forest with a distinct number of trees
and splits.

Id Tree/Split Min. Median Max.

1 50/3 0.00018 0.07656 31.20040
2 100/3 0.00024 0.08051 16.20204
3 200/3 0.00004 0.07359 24.21144
4 50/5 0.00002 0.08778 23.46504
5 100/5 0.00007 0.08512 31.84951
6 200/5 0.00016 0.08478 20.88944

1 × 10−5

1 × 10−2

1 × 10+1

1 2 3 4 5 6
Random Forest

E
rr

or

Figure 12. Error dispersion of the mass estimate using distinct Random Forest parameters.
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Figure 13. Error dispersion of the Pcritical estimate using distinct Random Forest parameters.

Different values for trees and splits resulted in small performance deviations. A similar
profile is observed in all the datasets considered. As a result, this method is seen as a robust
choice for meta-modeling which does not require specific knowledge about parameter
tuning in order to obtain good results.



Materials 2022, 15, 4117 21 of 33

6. The Inverse Problem

Raissi et al. [72] proposed a physics-informed neural network for solving inverse
problems after learning the unknown model parameters, by means of gradient-based
learning, of the Navier–Stokes and Korteweg–de Vries equations. Haghighat et al. [73]
applied a similar approach to solid mechanic problems. Yan et al. [74] applied extreme
machine learning to the analysis of composite structures, demonstrating how the framework
can be applied to inverse problems with the aim of finding optimal designs.

A typical challenge that occurs in the design phase is the ability to satisfy a trade-off
between mass and stiffness. In order to meet the changing need for various requirements,
the possibility of exploring the design space and the optimal compromise between variables
are important aspects that are discussed now.

In the present study, the direct problem consists in calculating the mass m, the critical
buckling load Pcritical , and the post-buckling stiffness bI from the input design variables
v1, . . . , v5 (Equation (38)). The inverse problem to be solved with the proposed machine
learning framework consists of finding the values of the design variables v = [v1, . . . , v5] for
a given m, Pcritical , and bI . The solution of the inverse problem is computed as outlined in
Algorithm 3 below, where the relative error between the index estimate and the actual index
value is computed through Equation (40). The model with the smallest median of error
values is chosen as representative of each category: SVM, Kriging, and Random Forest.

While evaluating bI , the error dispersion of the selected methods are compared, as
shown in Figure 14. Note that the Random Forest presented the lowest error median;
thus, it is used in the computations of the inverse problem discussed later. For the mass
evaluation, the error dispersion of the selected methods are compared, as is shown in
Figure 15. The Kriging algorithm is used in the computations discussed next because it
presented the lowest median error.

For the evaluation of Pcritical , the error dispersion of the selected methods are compared,
as is shown in Figure 16. The Kriging algorithm was selected as the best meta-modeling
technique to compute Pcritical , although the best results of each of the three groups presented
similar performances. In this case, the Random Forest or the SVM are used without
compromising the result, and both methods show comparable computational costs.
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1 × 10−2

SVM Kriging RF
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E
rr

or

Figure 14. Comparison of bI error dispersion considering the best SVM, Kriging, and Random
Forest estimates.
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Figure 15. Comparison of mass error dispersion considering the best SVM, Kriging, and Random
Forest estimates.

1 × 10−4

1 × 10−2

1 × 10+0

SVM Kriging RF
Method

E
rr

or

Figure 16. Comparison of Pcritical error dispersion considering the best SVM, Kriging, and Random
Forest estimates.

The steps performed in adjusting the models for a given dataset—the training
phase—are shown in Algorithm 2.

Given a set of target values b̃, m̃, and p̃, representing the desired bI , mass, and Pcritical ,
the inverse problem is computed by means of the minimization of

H(b̃, m̃, p̃, vj) = α1(Fb − b̃)2 + α2(Fm − m̃)2 + α3(Fp − p̃)2

+α4

[
5

∑
j=1

(Gj − vj)
2

]
(46)
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subject to

0.05 ≤ v1 ≤ 0.20

1 ≤ v2 ≤ 12

0 ≤ v3 ≤ 1 (47)

0 ≤ v4 ≤ 75

0 ≤ v5 ≤ 75

where α1, α2, α3, and α4 are weighting parameters, indicating preference in meeting each
goal. Although the design values vj that solve the inverse problem are not known at the
beginning of the optimization process, an useful estimate is provided by the meta-model Gj.

Algorithm 2: The training phase

/* The index of the design variables */
j← 1, . . . , 5;
/* The number of DOE sample points */
nsample ← 2000;
ntraining ← 0.8× nsample;
Generate a Design of Experiment vi,j ∈ Rntraining×5;
Evaluate the FEM model at vi,j designs;
/* The estimate of the index performance bI by means of machine

learning */
Adjust a meta-model Fb such that b← Fb(vi,j);
/* The estimate of the mass m index by means of machine learning */
Adjust a meta-model Fm such that m← Fm(vi,j);
/* The estimate of the Pcritical index */
Adjust a meta-model Fp such that p← Fp(vi,j);
/* A new design estimate by means of machine learning */
for j ∈ {1, . . . , 5} do

Adjust a meta-model Gj such that
vj = Gj(b, m, p, vi,k), i ∈ 1, . . . , ntraining, k ∈ 1, . . . , 5, k 6= j;

It is worth mentioning that Equation (46) retains the concepts provided by
Equation (11), and extends the analysis by considering further information provided
by Gj. Furthermore, the inequalities explicitly described by Equation (10) are implicit
in the learning process of the Fb, Fm, Fp, and Gj meta-models. The remaining box con-
straints (Equation (12)) will also be checked by Algorithm 3. As a result, the proposition of
Equations (11) and (12) also constitutes a contribution of the present study.

After the training phase is accomplished (Algorithm 2), the computation of a new
design v∗j , j = 1, . . . , 5 that solves the inverse problem is given by Algorithm 3. The
effectiveness of this methodology in providing feasible designs is discussed in the following.

Algorithm 3: Obtaining the design as an inverse problem

b̃← target bI index ;
m̃← target mass m index ;
p̃← target Pcritical index ;
/* Candidate design by means of machine learning */
for j ∈ {1, . . . , 5} do

vj ← Gj(b̃, m̃, p̃) ;

/* The objective as seen in Equation (46) */
v∗j ← minvj H(b̃, m̃, p̃, vj)
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A Design of Experiments of nsample = 2000 points is generated by means of a Latin
hypercube sampling algorithm [60]. The optimization phase is driven by a differential
evolution strategy implemented in the DEoptim toolbox [75,76]. The mass m, the post-
buckling stiffness bI , and the buckling load Pcritical of each point are shown in Figure 17,
where a correlation between the upper value of Pcritical and the mass can be noticed.
However, there is no apparent correlation between mass and bI , nor is there one between
Pcritical and bI . As a result, it would be of practical interest for the design optimization of
the present study to identify designs on this Pareto-like frontier between m and Pcritical that
contains a positive bI .
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P
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−5

0

b_I

Figure 17. Mass m, Pcritical , and bI of the DOE.

Using no further information about feasible designs, an arbitrary set of experiments are
evaluated by this inverse problem algorithm. The entire process of modeling (Algorithm 1),
training (Algorithm 2), and optimization (Algorithm 3) is summarized in Figure 18.

The designs obtained as a response to the inverse problem are evaluated by the finite
element model, resulting in the values of m and Pcritical shown in Figure 19. Those results
resemble the trend found in the DOE when mass and Pcritical are compared. Therefore, the
meta-models herein applied have proven effective in evaluating new designs in a region
of interest.

The comparison between the mass and the post-buckling stiffness bI is presented
in Figure 20. The feasible designs contain a positive bI . The methodology was effective
in identifying feasible designs in two ranges of mass (m < 2 kg and m > 2.5 kg). The
comparison of bI and Pcritical is shown in Figure 21. Feasible designs (bI > 0) are found in
the ranges Pcritical < 10,000 and Pcritical > 25,000.
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Figure 18. Workflow for obtaining the optimal design.
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Figure 19. Mass m and Pcritical at critical designs.
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A similar trend is found in the comparison of Figures 20 and 21. Since the mass m and
buckling load Pcritical are chosen in a correlated fashion, this similarity was expected. The
design variables and the corresponding bI , m, and Pcritical are presented in Table 10.

Table 10. Design values obtained from the analysis of the inverse problem.

Id v1 v2 v3 v4 v5 m Pcritical bI

1 0.1199 3 0.4123 48.41 7.60 1.510 4885 −0.004
2 0.1487 4 0.4377 47.44 41.43 1.707 8024 0.038
3 0.0953 5 0.5615 49.68 51.61 1.910 11,344 −0.003
4 0.1545 5 0.6250 54.75 56.16 2.139 14,253 −0.002
5 0.1500 5 0.5299 59.09 57.71 2.303 17,020 −0.006
6 0.1524 4 0.5205 60.55 62.40 2.534 20,467 −0.002
7 0.1520 4 0.4729 65.19 62.33 2.745 23,818 0.031
8 0.1520 4 0.5200 67.06 63.55 2.896 25,779 0.035
9 0.0885 8 0.4050 67.56 67.00 3.133 31,053 0.342

10 0.1582 4 0.5127 66.79 70.41 3.338 34,298 0.095
11 0.1217 4 0.4316 68.98 70.37 3.465 37,080 0.309
12 0.1405 2 0.6810 50.10 12.63 1.448 4758 0.095
13 0.1450 2 0.7022 48.38 42.34 1.690 8151 0.033
14 0.1575 4 0.5750 49.95 51.61 1.915 11,375 −0.003
15 0.1520 5 0.5999 54.75 57.01 2.166 14,739 −0.002
16 0.1520 5 0.6650 59.09 57.76 2.293 16,918 −0.007
17 0.1525 6 0.6654 63.68 57.98 2.435 18,751 −0.005
18 0.1805 4 0.4348 66.48 61.05 2.788 23,240 −0.017
19 0.1617 4 0.4436 64.22 68.53 3.009 27,982 0.029
20 0.1043 6 0.4595 65.79 70.51 3.254 31,232 0.005
21 0.1632 4 0.4677 69.07 68.50 3.340 34,555 0.350
22 0.1624 4 0.4705 70.86 68.51 3.500 36,835 0.317

Two decimal digits are considered when calculating the values of the design variables
v4 and v5 throughout the optimization process. This constraint addresses a manufacturing
requirement. Moreover, the v2 design variable has integral values. The corresponding
results are shown in columns 2, 4, and 5 of Table 10, respectively.

The correlation between m and Pcritical in those designs can be verified as shown
in Figure 19.

It is worth mentioning the design presented in the second line of Table 10, whose
mass is 1.707 kg and bI > 0, confirms that the inverse problem is effectively solved in the
discovery of feasible designs with reduced mass requirements. Designs with reduced mass
values of 1.448 kg and 1.690 kg, and with positive post-buckling stiffness bI > 0, were also
found in lines 12 and 13 of the table, respectively.

The three best optima of Table 10 have the following optimum mass values: m = 1.448 kg,
m = 1.510 kg, and m = 1.690 kg; these are illsutrated, respectively, in Figures 22–24. The
thickness pattern of these optima have a close resemblance with the imperfection-insensitive
hybrid shells proposed by Wagner et al. [77], where hoop-oriented belts were installed
on top of a monolithic cylindrical shell to achieve the imperfection-insensitive behavior
described by the authors. Furthermore, Lincoln et al. [78] also reported imperfection-
insensitive designs with hoop-oriented thickness patterns created by CTS, and the encoun-
tered optima reported therein also resemble what the inverse ML-driven solver found in the
present study. The nonlinear behavior of the optimum configuration with m = 1.448 kg was
evaluated using the ABAQUS finite element solver using a mesh of 240 general-purpose
elements S4R around the circumference, which have 4 nodes and reduced integration, while
keeping the element aspect ratio close to 1. The results are compared against two constant-
stiffness cases, where the cylinders were produced by setting θ1 = θ2 and equal to 0◦ and
45◦, respectively. For the latter, the thickness of the plies is higher by a factor of 1/ cos 45◦

due to the nonlinear steering–thickness coupling produced by the CTS manufacturing
process, as previously explained.
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Figure 22. Optimum design ID = 12 from the Pareto front of Table 10, with m = 1.448 kg. The contour
shows the thickness distribution. The black and blue lines represent, respectively, the CTS tow paths
of each layer.

Figure 23. Optimum design ID = 1 from the Pareto front of Table 10, with m = 1.510 kg.

Figure 24. Optimum design ID = 13 from the Pareto front of Table 10, with m = 1.690 kg.
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Imperfection-Sensitivity Analysis

The imperfection sensitivity of the optimal design obtained after solving the afore-
mentioned inverse problem is evaluated using single-perturbation load imperfections
(SPLI) [79]. The performance is compared with two designs: one design named “Case 0◦”,
having two plies with all the fibers oriented parallel to the axial direction; and another
named “Case ±45◦”, with two plies oriented at ±45◦. Note that, in the latter design, the
thickness is increased by a factor of 1/ cos 45, assuming manufacturing by means of CTS.
All analyses are performed using ABAQUS and 240 S4R elements around the circumference,
as detailed in Castro et al. [80]. The name boundary conditions used for the optimization
are herein realized by fixing the bottom- and top-edge nodes in the y and z directions, and
by fixing the translation in the x direction for all nodes laying in the middle cross-section
of the cylindrical shell. Note that this renders a load-controlled compression analysis,
where the nodes at the edges are allowed to move separately from each other in the axial
direction. The results of the imperfection sensitivity analysis are presented in Table 11,
where the optimum cylinder herein obtained (design ID = 12 of Table 10) shows a reduced
imperfection sensitivity when compared to Case 0◦ and Case ±45◦.

Table 11. Imperfection sensitivity of Case 0◦, Case±45◦, and the design optimum ID = 12 from Table 10.

Pristine BL (N) BL (N) KDF KDF
Buckling with a with a with a with a
Load (N) SPLI of 0.1 N SPLI of 1.0 N SPLI of 0.1 N SPLI of 1.0 N

Case 0◦ 3017 1747 225 57.9% 7.4%
Case ±45◦ 4261 3402 2040 79.8% 47.9%

Optimum Id = 12 3017 2511 1831 83.2% 60.7%

In summary, a new methodology was proposed that encompasses modeling
(Algorithm 1), training (Algorithm 2), and optimizing (Algorithm 3). Numerical com-
putation confirmed the feasibility of the proposal, whose main advantages are:

• effective modeling strategy that explores the design space;
• uses popular machine learning methods without needing to adjust special parameters;
• optimization proposition that leads from the Design of Experiments (Figure 17) to optimal

designs on the boundary of the compromise between mass and stiffness (Figures 19–21).

Eighteen machine learning instances were evaluated on three datasets. No single
strategy demonstrated superior performance in all cases (Figures 14–16). On the other hand,
sub-optimal machine learning strategies were also effective in supporting the optimization
process. This confirms the need to select a reliable workflow (Figure 18) that will not
degrade due to poor machine learning performance.

As a result, the authors believe that the present methodology constitutes a contribution
to the design phase of a new project.

7. Conclusions

The present study proposed a design parameterization compatible with the continuous
tow shearing (CTS) manufacturing process that is able to produce lightweight variable-stiffness
cylindrical structures with tailored buckling load and reduced imperfection sensitivity.

The new methodology consists of contributions in the areas of problem modeling, the
selection of machine learning strategies, and the proposition of an optimization formulation
that results in optimal designs around the compromise frontier between mass and stiffness.

The parameterization developed herein took into account the nonlinear steering–
thickness variation, which resulted in hoop-oriented regions of variable thickness for
steering angles larger than zero. The maximum number of regions of larger thicknesses
depends on the minimum fiber-steering radius, here assumed to be 50 mm, reportedly
achievable by the CTS process.

An optimization goal to minimize the mass of cylindrical shells while keeping their
post-buckling stiffness positive was proposed. The investigated problem consisted of a
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cylindrical shell under load-controlled axial compression, where both edges are simply
supported and allowed to deform unevenly in the axial direction under the load application.
The shells should be able to withstand a given design load, which is then compared with
its linear buckling load. The post-buckling stiffness and linear buckling load are assessed
by means of an enriched finite element model, using a formulation based on 10 degrees of
freedom per node and a third-order interpolation of all the displacement field variables.
For the post-buckling stiffness, a displacement-based formulation of Koiter’s method
was adopted.

The machine learning models enabled a new design perspective based on the solution
of a highly nonlinear inverse problem, and this proposition was effective in determining
the input variables from a pre-determined design load. It is worth noting that all three of
the methods performed well when using a suitable kernel choice, and the election of the
best methodology would change if another criteria is considered, such as computational
time or maximum error.

In addition to the quality of the designs provided by the methodology, as can be seen
in Table 10, the formulation does not require additional parameter adjustments. Therefore,
the investigation of the design space became straightforward.

Further studies will focus on applying Koiter’s method from a nonlinear pre-buckling
state while looking for fully imperfection-insensitive shell designs that are capable of reach-
ing post-buckled stiffness in load- and displacement-controlled applications. Furthermore,
a detailed reliability-based evaluation of the obtained shells will be performed to map
how robust the obtained positive post-buckling stiffness is in terms of angle and thickness
imperfections, as well as variations in material properties. The evaluation of buckling behavior
after an imperfection created post-impact, which was investigated, for instance, by Maziz et al.
for filament-wound hybrid composite pipes [4], would be an interesting next step.
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