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Background: The semaphorin 3D (SEMA3D) gene has been implicated in the

pathogenesis of Hirschsprung disease (HSCR), a complex genetic disorder characterized

by the loss of ganglion cells in varying lengths of gastrointestinal tract. We wished to

investigate the role of SEMA3D variants, both rare and common variants, as well as its

mRNA expression in Indonesian HSCR patients.

Methods: Sanger sequencing was performed in 54 HSCR patients to find a pathogenic

variant in SEMA3D. Next, we determined SEMA3D expression in 18 HSCR patients and

13 anorectal malformation colons as controls by quantitative real-time polymerase chain

reaction (qPCR).

Results: No rare variant was found in the SEMA3D gene, except one common

variant in exon 17, p.Lys701Gln (rs7800072). The risk allele (C) frequency at rs7800072

among HSCR patients (23%) was similar to those reported for the 1,000 Genomes

(27%) and ExAC (28%) East Asian ancestry controls (p = 0.49 and 0.41, respectively).

A significant difference in SEMA3D expression was observed between groups (p =

0.04). Furthermore, qPCR revealed that SEMA3D expression was strongly up-regulated

(5.5-fold) in the ganglionic colon of HSCR patients compared to control colon (1CT 10.8

± 2.1 vs. 13.3 ± 3.9; p = 0.025).

Conclusions: We report the first study of aberrant SEMA3D expressions in HSCR

patients and suggest further understanding into the contribution of aberrant SEMA3D

expression in the development of HSCR. In addition, this study is the first comprehensive

analysis of SEMA3D variants in the Asian ancestry.

Keywords: aberrant expression, Hirschsprung disease, Indonesia, SEMA3D, rare and common variants

INTRODUCTION

Hirschsprung disease (HSCR: MIM# 142623) is a complex genetic disorder, characterized by
the lack of ganglion cells in the bowel, resulting in a functional obstruction during infancy (1).
HSCR is categorized into the following types: short-segment, long-segment, and total colonic
aganglionosis (1, 2).
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HSCR incidence differs among ethnic groups, with 1.5, 2.1,
and 2.8 cases per 10,000 live births in European, African, and
Asian ancestry cases, respectively (1, 2). There are at least 17
genes responsible for the development of HSCR, with most of
them being members of the RET and EDNRB signaling pathways
(1, 2). Two genetic risk factors are the RET rs2435357 and
rs2506030 variants (3, 4). Our recent studies showed that the RET
rs2435357 and rs2506030 risk alleles have higher frequency in
Indonesian ancestry cases as compared with European ancestry
cases (5, 6), which might relate to the higher incidence of
HSCR in Indonesia (3.1 cases per 10,000 live births) than other
populations (7).

The third signaling pathway of HSCR pathogenesis includes
class 3 semaphorins (SEMA3s), involving SEMA3D (4, 8, 9)
SEMA3D has been implicated in the development of HSCR and
contributes to risk through both common and rare variants in
European ancestries (4, 8, 9), as evidenced by (1) the detection of
both common and rare SEMA3D variants in HSCR patients; (2)
the expression of SEMA3D in the human, mouse, and zebrafish
intestines and, particularly, the enteric nervous system (ENS);
and (3) the joint effect of Ret and Sema3d loss of function in an
aganglionosis animal model. However, our recent study showed
that the effect of SEMA3 rs11766001 common variant on HSCR
depends on the ethnic background (10). In addition, the allele
frequencies of common variants might differ among Asians, since
the North Asians, Han Chinese, Japanese, and Southeast Asians
can be distinguished based on their Y chromosome variants (11).
Moreover, alterations in the expression of specific genes have
been implicated in the development of HSCR (12–15). Therefore,
we wished to investigate the role of SEMA3D variants, both
rare and common variants, as well as its mRNA expression in
Indonesian HSCR patients.

MATERIALS AND METHODS

Patients for SEMA3D Variant Screening
We identified 54 HSCR patients: 38 males and 16 females
(Table 1). We diagnosed HSCR in these patients in Dr.
Sardjito Hospital, Yogyakarta, Indonesia, after evaluating
clinical findings, contrast enema, and histopathology. For
histopathological findings, we used hematoxylin-eosin staining
and S100 immunohistochemistry (5–7, 10, 15, 16).

All parents signed a written informed consent form before
participating in this study. The Institutional Review Board of
the Faculty of Medicine, Public Health, and Nursing, Universitas
Gadjah Mada/Dr. Sardjito Hospital gave approval for this study
(KE/FK/1356/EC/2015). All experiments were performed in
accordance with relevant guidelines and regulations.

Polymerase Chain Reaction (PCR) and
DNA Sequencing
A QIAamp DNA Extraction Kit (QIAGEN, Hilden, Germany)
was used to extract genomic DNA from whole blood from each
individual, according to the manufacturer’s instructions. We
stored the extracted DNA samples at −20◦C until analysis. PCR
was conducted using a Swift Maxi thermal cycler (Esco Micro
Pte. Ltd., Singapore), followed by Sanger sequencing analysis to

TABLE 1 | Clinical features of the HSCR patients for SEMA3D sequencing

analysis.

Clinical features n (%); months

SEX

• Male 38 (70)

• Female 16 (30)

AGANGLIONOSIS TYPES

• Short segment

• Long segment

• Total colon aganglionosis

53 (98)

1 (2)

0

AGE AT DIAGNOSIS 34.6 ± 44.5

AGE AT DEFINITIVE SURGERY 38.7 ± 43.9

DEFINITIVE SURGERY (49 PATIENTS)

• Transanal endorectal pull-through 21 (43)

• Duhamel 12 (25)

• Transabdominal Soave 11 (22)

• Posterior sagittal neurectomy 4 (8)

• Posterior myectomy 1 (2)

identify sequence variants in all 17 exons of the SEMA3D gene in
HSCR patients using BigDye Terminator V3.1 Cycle Sequencing
Kits (Applied Biosystems, Foster City, CA) and a 3730xl Genetic
Analyzer (Applied Biosystems), with DNA Sequencing Analysis
Software (Applied Biosystems) 0.1 (7). The primer sequences
for SEMA3D rare variant analysis were chosen based on a
previous study (4).

DNA Genotyping
DNA genotyping was performed using Sanger sequencing
analysis. The SEMA3D rs7800072:A>C (chr7: g.
84,628,989A>C) variant was identified during the Sanger
sequencing analysis to find a rare variant in Indonesian
HSCR patients. The risk allele (C) was determined according

to the 1,000 Genomes Project and ExAC population
databases (17, 18).

RNA Extraction and Quantitative
Real-Time PCR (qPCR)
The ganglionic and aganglionic intestinal specimens were
collected at pull-through surgeries from 18 HSCR patients, while
control intestinal specimens were obtained at colostomy closure
from 13 anorectal malformation (ARM) patients (Table 2).

Total RNA was isolated from colonic specimens using the
total RNA Mini Kit (Tissue) (Geneaid Biotech Ltd., New
Taipei City, Taiwan). RNA was quantified by a NanoDrop 2000
Spectrophotometer (Thermo Scientific, Wilmington, DE, USA).
The OD260/280 ratios ranged from 1.8 to 2.0, indicating high
RNA purity.

SEMA3D gene expression was quantified using the BioRad
CFX Real-Time PCR System (California, USA) and the
SensiFASTTM SYBR R© No-ROX One-Step Kit (Bioline, Meridian
Bioscience, Memphis, USA) using the 5′-CAACGCAGCCTG
ATAAACAA-3′ (forward) and 5′-TCTTTCATCTCTTGTGGGG
AGT-3′ (reverse) (19) The primers were designed to bridge
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TABLE 2 | Clinical characteristics of the HSCR patients for SEMA3D expression

study.

Clinical characteristics n (%); months

SEX

• Male 11 (61)

• Female 7 (39)

AGANGLIONOSIS TYPES

• Short segment

• Long segment

• Total colon aganglionosis

16 (89)

2 (11)

0

AGE AT DIAGNOSIS 16.5 ± 33.3

AGE AT DEFINITIVE SURGERY 25.5 ± 35.8

DEFINITIVE SURGERY

• Transanal endorectal pull-through 13 (72.2)

• Duhamel 3 (16.7)

• Transabdominal Soave 2 (11.1)

SEMA3D exon 8 and 9 junctions (19). Glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), a housekeeping gene,
was used as an endogenous control. The GAPDH primers
were 5′-GCACCGTCAAGGCTGAGAAC-3′ (forward) and 5′-
TGGTGAAGACGCCAGTGGA-3′ (reverse). qPCR reactions
contained SensiFASTTM SYBR R© No-ROX One-Step mix (2×)
10 µL, RiboSafe RNase Inhibitor 0.4 µL, reverse transcriptase
0.2 µL, forward primer (10µM) 0.8 µL, reverse primer (10µM)
0.8 µL, and total RNA 50 ng, with final volume of 20 µL.
qPCR was performed for 10 minutes (min) at 45◦C for reverse
transcription process, followed by 2min at 95◦C and 39 cycles
for 5 s at 95◦C, 10 s at 58◦C and, 5 s at 72◦C, and 1 cycle for
5 s at 65◦C, according to the manufacturer’s instructions. We
performed the gel electrophoresis for the qPCR of SEMA3D and
GAPDH (Supplemental Figure 1).

The Livak method was utilized to determine the SEMA3D
mRNA expression level (20). This method is designed to calculate
a relative gene expression and referred to as the 1CT method.
The (log) expression is proportional to the negative CT value (the
lower the CT, the higher the expression) (20).

Statistical Analysis
SEMA3D expression was described as a mean value ± SD.
The Kolmogorov–Smirnov test was used to determine the
data distribution, and a one-way ANOVA was utilized to
assess statistical differences between groups. A chi-square test
was used to establish p-value for the case-control association
analysis for SEMA3D rs7800072 variant. A p < 0.05 was
considered significant.

RESULTS

Most of our HSCR patients were male (70%) and short-segment
aganglionosis type (98%), with the mean age at diagnosis being
34.6 ± 44.5 months (Table 1). Among the 54 HSCR patients, 49,
3, and 2 children underwent a definitive surgery, a colostomy, and

a full-thickness rectal biopsy waiting a pull-through procedure,
respectively, with themost common definitive surgery conducted
being transanal endorectal pull-through (43%) (Table 1); and our
controls were six males and seven females, with a mean age
during stoma closure of 47± 45.1 months.

We could not identify any rare variant in all 17 exons
of SEMA3D gene in 54 HSCR patients, but encountered one
common variant in exon 17: p.Lys701Gln (rs7800072) (Figure 1).
The genotype frequencies for rs7800072 variant among HSCR
patients were as follows: AA (32/54, 60%), AC (19/54, 35%),
and CC (3/54, 5%). Subsequently, we compared the risk allele
(C) frequency of rs7800072 in 54 Indonesian HSCR cases and
the 1000 Genomes and ExAC East Asian ancestry controls
(Table 3). The risk allele (C) frequency was similar in HSCR
cases (23%) and the 1000 Genomes (27%) and ExAC (28%)
East Asian ancestry controls, with p-values of 0.49 and 0.41,
respectively (Table 3). According to the conservation score
prediction using PhyloP, the p.Lys701Gln variant did not reach
a deleterious threshold of 0.84, while the predicted deleterious
effect (Condel) showed the p.Lys701Gln variant as being
neutral (4). Furthermore, the SIFT and PolyPhen-2 analysis of
p.Lys701Gln showed the variant as being tolerated and benign,
respectively (18).

Next, we compared SEMA3D expression in 18 aganglionic
and ganglionic colons of HSCR patients and 13 control colons.
The distribution of SEMA3D expression data were normal for
ganglionic, aganglionic, and control colons (p = 0.2, 0.17, and
0.2, respectively). A significant different of SEMA3D expression
was observed between groups (p = 0.04). Furthermore, qPCR
showed that the SEMA3D expression was strongly up-regulated
(5.5-fold) (Figure 2) in the ganglionic colon of HSCR patients
compared to control colon (1CT 10.8 ± 2.1 vs. 13.3 ± 3.9; p
= 0.025) (Table 4, Figure 3), while the SEMA3D expression was
not significantly different between the aganglionic colon of HSCR
patients and the control colon (1CT 13.1 ± 3.0 vs. 13.3 ± 3.9; p
= 0.89) (Table 4, Figure 3).

DISCUSSION

In this study, we have performed an in-depth genetic and gene
expression study of the SEMA3D in Indonesian HSCR patients.
We did not detect any rare variants in this gene, although
previous studies in European ancestry cases have identified rare
coding variants in SEMA3D associated with HSCR. Our results
indicate that the association of such variants to the disease
may be restricted to specific ethnic groups. It may still be the
case that other semaphorin 3 genes could play a role in HSCR
pathogenesis (4, 9). A previous study showed the existence of
other genetic factors conferring risk to HSCR in specific ethnic
populations (3). For example, there were two different RET
haplotypes involving the enhancer mutation that were over-
transmitted to the HSCR offspring in the European sample,
while in the Chinese sample, only one of those haplotypes was
present (3). It might be speculated that the enhancer mutation
arose in one haplotype, which after the Asian–Caucasian split,
rearranged to also give the other haplotype, but exclusively in
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FIGURE 1 | Sanger sequencing of exon 17 SEMA3D gene in a HSCR patient. Arrow indicates a common variant, p.Lys701Gln (rs7800072).

TABLE 3 | SEMA3D common variant frequency in Indonesian HSCR and

population databases (17, 21).

Variant

(risk allele)

HSCR

patients

1000

Genomes*

ExAC* p-value

vs. 1000

Genomes

vs.

ExAC

p.Lys701Gln

(rs7800072) (C)

25/108 274/1,008 2,399/8,626 0.49 0.41

*East Asian ancestries; ExAC, exome aggregation consortium; HSCR,

Hirschsprung disease.

the Caucasian (22). Another example is the NRG1 rs7835688
genetic marker, which has been originally discovered in Chinese
HSCR patients (23) and has been shown in other Asian ancestry
cases (5, 24), but is rare and shows no effect in the Caucasian
population (8, 22). Makhmudi et al. (25) also demonstrated that
the MTHFR c.677C>T is a genetic risk factor for Indonesian
gastroschisis, but not seen in Caucasians (26, 27). A recent study
showed that loss of Sema3d in null homozygotes mice had no
impact on the intestinal transcriptome (28). The authors were
unable to find evidence for Ret and Sema3d interaction affecting
survival, presence of myenteric plexus, or intestine transcriptome
(28). Furthermore, Tang et al. revealed that the effects of RET
and NRG1 variants are universal across Caucasian and Asian
ancestries, but the impact of SEMA3 variant was restricted to
Caucasian ancestries (29). It should be noted that our screening
method did not cover the promoter and enrich regions of CpG
of SEMA3D.

In addition, the observed SEMA3D rs7800072 variant
frequency in Indonesian HSCR patients is similar to those
reported for the 1,000 Genomes Project and ExAC East Asian
ancestry controls (17, 18). Therefore, we might conclude that
this common variant does not have a role on the development
of HSCR in Indonesia.

FIGURE 2 | The SEMA3D expression was strongly up-regulated (5.5-fold) in

the ganglionic colon of HSCR patients compared to control colon (p = 0.025),

while the SEMA3D expression was not significantly different between the

aganglionic colon of HSCR patients and the control colon (p =

0.89). *p < 0.05.

ENS development is a complex process, regulated by a
large range of molecules and signaling pathways. This strictly
controlled process needs the correct regulation of ENS-specific
gene expression. The expressions of several genes implicated
in HSCR development have been shown to be regulated
by epigenetic mechanisms. RET expression was regulated by
retinoic acid through DNA methylation on this 5′-CG-3′-
rich enhancer region (30), while a significantly lower level of
EDNRB methylation was also detected in HSCR patients (31).
Interestingly, our study clearly demonstrates that SEMA3D gene
expression was strongly up-regulated in the ganglionic intestines
of HSCR patients as compared to controls. To the best of
our knowledge, our study is the first report of the aberrant
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TABLE 4 | SEMA3D expressions in colon of HSCR patient and control.

SEMA3D 1CT ± SD 11CT (95% CI) Fold change p-value

Ganglionic colon 10.8 ± 2.1 −2.5 (−4.7 to −0.2) 5.5 0.025*

Aganglionic colon 13.1 ± 3.0 −0.2 (−2.4 to 2.1) 1.1 0.89

Control colon 13.3 ± 3.9

CI, confidence interval; CT , cycle threshold; SD, standard deviation; *p < 0.05 is

considered statistically significant.

FIGURE 3 | Box-plot graph of 1CT value of the SEMA3D expressions in

HSCR ganglionic colon (1CT 10.8 ± 2.1), HSCR aganglionic colon (1CT 13.4

± 2.9), and control colon (1CT 13.3 ± 3.9). Box-plot graph of 1CT value

reveals the median values as lines across the box. Lower and upper boxes are

representing the 25th percentile to the 75th percentile, while whiskers indicate

the maximum and minimum values. *p < 0.05.

expressions of SEMA3D in HSCR patients. Another novelty
in our findings is we conducted the study on patients with
Indonesian ancestry [vs. European (4) ancestry cases]. It has
been shown that reduced sema3d expression by morpholino
resulted in severe effects on the intestine and its innervation
of zebrafish (4). In addition, sema3d bound to nrp1a to
facilitate the axonal guidance and contributed to peripheral
axon outgrowth interdependently with dpysl3 (32, 33) Binding
of Sema3d to neuropilin and plexin receptors introduced
biochemical responses in specific neurons and stimulated the
neuron migration (34, 35). Therefore, we might hypothesize that
the aberrant expressions of SEMA3D will have an impact in
our HSCR patients by affecting the neuronal guidance during
ENS development.

It has been shown that some HSCR patients have persistent
bowel symptoms, such as constipation, soiling, and enterocolitis,
after an appropriate pull-through procedure. Most HSCR
patients with persistent bowel symptoms do not have any
identifiable etiology for their ongoing bowel dysmotility (36).
The current hypothesis is that the aberrant expression of some
genes in the ganglionic colon of HSCR patients includes SK3,
Cx26, ChAT, and nNOS (37–40). Our study presented the altered
SEMA3D expressions in the ganglionic colon of HSCR patients.
Therefore, we might hypothesize that the aberrant SEMA3D

expressions in the ganglionic colon involve in the pathogenesis
of persistent bowel symptoms in HSCR patients following a
properly performed pull-through surgery.

Our results should be interpreted with some caution, however,
because they are based on overall means without accounting for
other factors generating variation in the data such as gender, age,
and degree of aganglionosis. Further studies of the methylation
pattern of the SEMA3D gene are required to investigate whether
the aberrant expression of SEMA3D in HSCR patients is due to
abnormal DNA methylation. It is also necessary to compare the
SEMA3D protein expression level between HSCR patients and
controls and to identify its location in the colon tissue to prove
the increased SEMA3D expressions. Unfortunately, we do not
have any data on themethylation pattern, protein expression, and
immunohistochemistry of SEMA3D due to resource limitations
in our institution. Furthermore, our study utilized ARM patients’
colon as controls. It has been shown that most ARMpatients have
abnormal colonic motility (41) and low expression of interstitial
cells of Cajal marker (42). Therefore, further research with
more proper control colon (e.g., autopsy bowel material from
healthy infants or trauma patients) is necessary to better confirm
the role of SEMA3D expression in the pathogenesis of HSCR.
Noteworthy, however, our small sample size is a limitation of our
study and suggests that a multicenter larger sample population
needs to be studied to clarify our findings.

In conclusion, we report the first study of aberrant SEMA3D
expressions in HSCR patients and suggest further understanding
into the contribution of aberrant SEMA3D expression in
the development of HSCR. In addition, this study is the
first comprehensive analysis of SEMA3D variants in the
Asian ancestry.
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