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Abstract The persistence of drought events largely determines the severity of socioeconomic and
ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is
subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by
comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider
dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry
status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought
persistence bias, most of the simulations show systematic underestimation of drought persistence at global
scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models,
(iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the
spread in drought persistence errors using an analysis of variance approach. The results show that at monthly
scale, model uncertainty and observational uncertainty dominate, while the contribution from internal
variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by
the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired
by the limited number of considered time steps. These findings reveal systematic errors in the representation
of drought persistence in current GCMs and suggest directions for further model improvement.

1. Introduction

The persistence of droughts is one of the main attributes that determines the level of their socioeconomic
and ecological impacts (Bêche et al., 2009; Harou et al., 2010; Kelley et al., 2015). Lately, several studies have
highlighted that climate models tend to underestimate drought persistence compared to the observational
record (Ault et al., 2014; Wetter et al., 2014), which contributes to the uncertainty of future projections of
drought risk. Furthermore, the characteristics of extremely prolonged droughts have been found to be similar
over different time frames, including the twentieth century and longer paleoclimatic records (Ault et al.,
2014). However, the driving mechanism of such droughts remains controversial and likely differs between
individual events (Ault et al., 2014; Cook et al., 2015; Dai, 2011; Griffin & Anchukaitis, 2014; Shanahan et al.,
2009; Stine, 1994). Thus, an in-depth assessment of the underestimation of drought persistence in current
climate models in the recent past century may help to better understand similar issues found for longer
time scales.

Measures of persistence (or memory) of drought events and related climate phenomena have been used to
analyze drought variability in both models and observations. Commonly used measures include power spec-
tra of the time series (Ault et al., 2014; Pelletier & Turcotte, 1997) or the Hurst exponent (Mandelbrot & Wallis,
1969) which have been used, for example, to measure long-term persistence in time series of drought indices
(Tatli, 2015) or precipitation (Bunde et al., 2013; Kumar et al., 2013). By transforming continuous time series of
drought indicators into categorical time series of dry and wet spells, the persistence of drought can be effec-
tively estimated through the parameters of a binary first-order Markov chain model (Sericola, 2013). In this
case the dry-to-dry transition probability (Pdd) is used as a measure of drought persistence (Jackson, 1975;
Sharma & Panu, 2014; Wilby et al., 2015). The primary assumption for this measure is that the probability of
drought and nondrought events is conditional only upon the previous time step. Interestingly, the dry spell
length distribution can also be approximated by the geometric distribution given the assumption that the
dry spell lengths that are estimated are binary sequences of independent trial results (in this case, drought
and nondrought), and the probability of success (in this case, probability of drought) is equal for all the trials
(Lee et al., 1986; Mathier et al., 1992).

Quantifications of drought persistence errors in a model ensemble are themselves subject to several sources
of uncertainty, which include (i) uncertainty of the considered observations, (ii) uncertainty of the individual
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models, (iii) internal variability, and (iv) errors related to the statistical estimation of drought persistence (i.e.,
finite sample effects). Assessing the relative contribution of each of these sources to the total uncertainty will
aid interpretation in a model validation exercise. Uncertainty in the observation-based data sets generally
refers to the combination of observational errors and the uncertainty related to data processing methods
which depend on the interpolation scheme, station density, and quality control tools (Xie et al., 1996) as well
as the subset of selected stations. Previous studies that have assessed global climate models (GCMs) globally
usually relied on a single observational data set as a reference and sometimes accounted for observational
uncertainty in the analysis by excluding the regions where observations were deemed unreliable. An alterna-
tive approach to account for observational uncertainty is to use independent observation-based data sets for
the analysis and to investigate the associated spread. Model uncertainty can be characterized as the spread
across different models, mainly generated from the discrepancy in their structure. Internal climate variability
(or natural climate variability) corresponds to fluctuations generated in the climate system without changes
in external forcing and can thus be approximated from the spread across initial condition ensembles of indi-
vidual GCMs. Lastly, the fact that model evaluation is based on finite data sources leads to uncertainty in the
statistical characterization of model performance. This statistical estimation error is often omitted in model
validation studies, although it could affect the robustness of the analysis and hence also the conclusions.

In this study, we aim to investigate the ability of GCMs to simulate drought persistence, measured through
the dry-to-dry transition probability (Pdd) in a Markov chain framework. Currently, a number of drought indi-
cators are used in the scientific literature. Typically, these indices are tailored to specific types of analysis and
are often categorized into meteorological (Keyantash & Dracup, 2002) hydrological (Tallaksen & van Lanen,
2004), or agricultural drought (Quiring & Papakryiakou, 2003). In addition, indicators like the Standardized
Precipitation Index (McKee et al., 1993) or the Standardized Precipitation and Evapotranspiration Index
(Vicente-Serrano et al., 2009) depend on the choice of a model distribution which in turn needs to be cali-
brated and is subject to uncertainty (Stagge et al., 2015). Finally, the choice of threshold to discriminate
droughts from nondrought events is highly contextual and sometimes even subjective (Steinemann,
2014). Consequently, there is no single unifying drought definition, and the choice of drought indicator is
usually dependent on the scope of individual assessments. Here we use precipitation anomalies as a drought
indicator to separate dry (negative anomalies) from wet spells, which form the basis for estimating Pdd. The
rationale underlying this decision is that precipitation is one of the climate variables that has been monitored
with the best spatial and temporal coverage throughout the past century, and few additional assumptions
are required (see section 3). In order to robustly assess the representation of Pdd in the models and to fully
characterize the spread of the model error, we compare multiple observation-based data sets with a large
ensemble of GCMs runs. Finally, we assess to which degree the spread in drought persistence error can be
attributed to differences among models, observation uncertainty, internal variability, and the statistical esti-
mation error of Pdd using an analysis of variance (ANOVA)-based approach. We close with a discussion on the
link between the drought persistence error identified in this study to the issues found in precipitation varia-
bility and suggest potential implication of using the error partitioningmethod introduced in this study for the
interpretation of climate model projections.

2. Data
2.1. Precipitation From the Fifth Phase of CoupledModel Intercomparison Projects Model Simulations

With the international consensus on establishing global Coupled Model Intercomparison Projects (CMIP),
there have been continued phases of CMIPs since the early 2000s. The GCM simulations of the fifth phase
of CMIP (CMIP5; K. E. Taylor, Stouffer, & Meehl, 2012) include historical simulations for the period 1850–
2005 and Representative Concentration Pathways experiments built according to different greenhouse
gas concentration scenarios from 2006 onward. Here we consider historical simulations (1901–2005) and
Representative Concentration Pathway 8.5 simulations (2006–2010) to cover the 1901–2010 period. Only
models with at least three initial condition ensemble members were included in the analysis to account
for internal variability (Table 1).

2.2. Interpolated Precipitation Observations and Reanalysis Products

To quantitatively assess the performance of the considered GCM simulations, five observation-based global
precipitation data sets were selected, all covering at least the 1901–2010 time period (Table 2). The Climatic
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Research Unit Timeseries version 3.1 (Harris et al., 2014), University of Delaware version 3.0.1 (Matsuura &
Willmott, 2012), and Global Precipitation Climatology Centre (Schneider et al., 2014) data are generated
from interpolated station data, and each data product uses a different subset of available stations as well
as different interpolation and quality control methods. In addition, we use the 20CR (20th Century
Reanalysis; Compo et al., 2006) and the European Centre for Medium-Range Weather Forecasts twentieth
century reanalysis (Poli et al., 2016), which assimilate different variables and differ both with respect to the
underlying models and assimilation schemes.

3. Methods
3.1. Quantifying Drought Persistence

To quantify drought persistence, we convert observed andmodeled precipitation values into binary time ser-
ies indicating dry (negative) and wet (positive) anomalies. For annual time series anomalies are computed by
subtracting the linear trend (least squares estimate). For the monthly resolution, the series were first
detrended using linear least squares regression. Subsequently, the long-term mean of each month was
removed from the detrended time series. Drought persistence is then measured through the dry-to-dry tran-
sition probability Pdd, which is defined as the proportion of dry-to-dry transition out of all transitions from a
dry status. The theoretical minimum of Pdd is 0.5 by construction as this value indicates a white noise system
without memory (unless there is a tendency to systematically have wetter conditions after dry conditions). In
a few cases Pdd values estimated from observed or simulated climate variables are slightly below the theore-
tical minimum, which can be explained by the sampling uncertainty. In the analyses, we consider both

Table 1
GCMs Used in This Study

GCM Institution (country) Ensemble members

CanESM2 Canadian Centre for Climate Modeling and Analysis (Canada) 5
CCSM4 National Center for Atmospheric Research (United States) 6
CESM1-CAM5 National Science Foundation, Department of Energy, National Center for Atmospheric Research

(United States)
3

CNRM-CM5 Centre National de Recherches Météorologiques / Centre Européen de Recherche et Formation
Avancées en Calcul Scientifique (France)

5

CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research Organisation in Collaboration with the Queensland
Climate Change Centre of Excellence (Australia)

10

EC-EARTH EC-EARTH Consortium 6
FIO-ESM The First Institute of Oceanography, SOA (China) 3
GISS-E2-H NASA Goddard Institute for Space Studies (United States) 5
GISS-E2-R 5
HadGEM2-ES Met Office Hadley Centre (UK) 4
IPSL-CM5A-LR Institut Pierre Simon Laplace (France) 4
MIROC5 Atmosphere and Ocean Research Institute, The University of Tokyo (Japan) 3
MPI-ESM-LR Max Planck Institute for Meteorology (Germany) 3

Note. Names of GCMs, modeling institution, and number of ensemble simulations are given. GCM = global climate model.

Table 2
Observation-Based Data Set Used in This Study

Observation-based data set Data features Provided resolution

CRU TS3.1 3,500–9,000 weather station records from CLIMAT Monthly, 0.5° × 0.5°
UDEL 4,100–18,000 weather station records mainly from GHCN v2 Monthly, 0.5° × 0.5°
GPCC 11,000–49,450 gauge stations Monthly, 0.5° × 0.5°, 1.0° × 1.0°, and 2.5° × 2.5°
20CR Assimilating variable: surface pressure Subdaily, daily, and monthly, 2° × 2°
ERA-20C Assimilating variable: surface pressure, surface winds Subdaily, daily, and monthly, approximately 128 km × 128 km

Note. Names of data sets, number of minimum stations used (for interpolated data sets), assimilated variables (for atmospheric reanalysis), and temporal and
spatial resolution are given. Number of stations taken from Schneider et al. (2014). CRU TS3.1 = Climatic Research Unit Timeseries version 3.1;
UDEL = University of Delaware; GPCC = Global Precipitation Climatology Centre; 20CR = 20th Century Reanalysis; ERA-20C = ECMWF twentieth century reanalysis;
CHCN v2 = Global Historical Climate Network version 2.
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month-to-month and year-to-year transitions. In addition to the dry-to-
dry transition probability Pdd, also dry-to-wet (Pdw), wet-to-wet (Pww),
and wet-to-dry (Pwd) transition probabilities can be estimated from the
time series. The transition probabilities are related to each other such
that Pdd = 1 � Pdw and Pww = 1 � Pwd, implying that the dynamics of
the binary series can be captured by two parameters only. Under a
first-order Markov chain assumption, these transition probabilities can
then be used to simulate stochastic ensembles resembling the original
binary time series, which in turn can be used to generate estimates of
the dry spell length distribution. The statistical simulation of a Markov
chain is conducted by first taking a random initial status (either dry or
wet) of which subsequent statuses are determined based on the prior
status and the corresponding transition probabilities derived from the
original time series. The process is repeated until the length of con-
structed binary time series equals the length of the original time series.
To facilitate the interpretation of the persistence metric (Pdd), Figure 1
shows how the drought length distribution depends on the value of
Pdd. For constructing this figure, 1,000 time steps were considered for
the statistical simulation of binary time series with a constant Pww value

of 0.5. For each Pdd value, the statistical simulation was repeated 1,000 times and median of the simulated
samples was taken as the best estimates of dry spell length distributions. Dry spell lengths at 90th of each
distribution are also presented, which increase with increasing Pdd.

Figure 2 shows an example of an annual precipitation anomaly time series at a grid cell in Eastern Europe
from the Climatic Research Unit Timeseries version 3.1 data together with the dry spell length distribution
derived from the time series with the uncertainty range obtained by statistical simulation. Pdd and Pww
estimated in this grid cell are also provided for better understanding of the conversion between Markov
chain parameters and dry spell length distribution. More examples in different regions are presented in
Figure S1 (supporting information).

To assess whether the Markov chain model and thus also the dry-to-dry transition probability (Pdd) later used
for model validation are reasonable approximations for observed and modeled dry spell length distributions,
a two sample Kolmogorov-Smirnov (KS) test was conducted to compare dry spell length distributions derived
from the original time series to those derived from statistical simulation. For doing so, the previously
described statistical simulation was repeated 1,000 times and the median of the bootstrapped distribution
(black line in Figure 2b; gray shading corresponds to the range spanned by the individual simulations) com-
pared with the observed or modeled dry spell length distributions using the KS test with a 0.05 significance
level. Failure to reject the null hypothesis of equal distributions indicates that the Markov chain (and thus Pdd)
is a reasonable approximation of the observed andmodeled dry spell length distributions. Figure 3 shows the

Figure 1. Dependence of the dry spell length frequency distribution on dif-
ferent Pdd values with constant Pww (0.5). Vertical lines indicate the 90th
percentile of the distributions for different Pdd values. The unit of x axis (dry
spell lengths) is omitted as it varies depending on the temporal scale, for
example, months for monthly time series and years for annual time series.

Figure 2. (a) Precipitation anomaly for 1901–2010 at a randomly chosen grid cell in Eastern Europe. The time series is
taken from the Climatic Research Unit Timeseries version 3.1 data set. (b) Dry spell length distribution derived from the
observed time series and median and 5th to 95th uncertainty range of 300 dry spell length distributions from statistical
simulation of Markov chain.
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total number of cases at which the KS test rejects the null hypothesis that observed and modeled dry spell
length distributions can be approximated with a Markov chain model at the monthly time scale. For
observation-based data sets, there are no cases of rejection in most of the regions while a few grid cells
located in Sahara, Northeast Brazil, and Southeast Asia have one to five cases of rejection out of five
observation-based data sets indicating that the dry spell length distribution is not well presented with
Markov chain model in the respective regions. For model simulations, the spatial distribution of rejections
is similar to the observation-based estimates, with one to six cases out of 63 model simulations in the same
region, which in this case confirms the reliability of the Markov chain assumption. At the annual time scale,
there were no cases of rejection for model simulations and less than 10 grid cells had one to two rejections
for observations (thus not shown in the figures).

Uncertainty in Pdd estimation is related to the finite number of samples in the observed and modeled time
series at both time scales, and it is critical to assess whether this uncertainty substantially affects the model
validation results. To quantitatively assess the uncertainty due to finite sample size, which also can be
referred to as statistical estimation error, we generate the uncertainty distribution of Pdd using parametric
bootstrapping (Basawa et al., 1990; Efron & Tibshirani, 1994). In each grid cell, 1,000 samples of binary time
series are generated through statistical simulation under Markov chain assumption (described in the previous
paragraph of this chapter) based on the Pdd and Pwd parameters estimated from the original time series. Pdd is
then calculated for each statistical ensemble member, resulting in the uncertainty distribution for each Pdd
estimate from the observational data and the ensemble runs of the GCMs. The bth bootstrapped sample
of Pdd from observation o can be denoted as Pdd ob and from ensemble r in modelm as Pdd mrb. We compute
the drought persistence error of ensemble r in model m against observation o as

Eomrb ¼ Pdd mrb � Pdd ob (1)

so that the uncertainty range of the estimated error can be spanned by the differences between boot-
strapped samples from the observations and the models.

3.2. Partitioning the Spread of the Pdd Error

To investigate the respective roles of the sources of uncertainty on the drought persistence error, we aim at
partitioning the spread of Eomrb. For doing so, we adapt a methodology that has been previously used to par-
tition the spread in climate model projections (Hawkins & Sutton, 2009; Orlowsky & Seneviratne, 2013), with
modifications that allow to account for observation uncertainty and the statistical estimation error of Pdd.
Using an ANOVA-based approach, we aim to quantify the relative contribution of (i) differences among obser-
vational products, (ii) differences among climate models, (iii) internal climate variability, and (iv) statistical
estimation uncertainty of Pdd to the total spread of Eomrb. As ensemble members are subordinate to the mod-
els and bootstrapped samples are subordinate to the ensemble members and observations (Figure 4), we
apply a crossed and nested ANOVA (Krzywinski et al., 2014). A schematic of the partitioning is shown in

Figure 3. Assessment of the suitability of the Markov-chain assumption for approximating observed (a) andmodeled (b) dry spell length distributions. Shown are the
number of cases at which a two-sample Kolmogorov-Smirnov test rejects the null hypothesis that the observed (a) or modeled (b) dry spell length distribution
can be approximated by a first-order Markov chain.
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Figure 5. This approach partitions the total sum of squares of Eomrb (SSt)
into model uncertainty (SSm), observation uncertainty (SSo), internal
variability (SSi), and sampling error (SSs) as

SSt ¼ SSo þ SSm þ SSi þ SSs ¼
XNo

o¼1

XNm

m¼1

XRm
r¼1

XNb

b¼1

Eomrb
2

� �� cf (2)

where No is the number of observation data sets, 5, Nm is the number of
models, 13, Rm is the number of ensemble members available for each
model m, minimum 3 to maximum 10 (Table 1), and Nb is the number
of bootstrapped samples per observation or model, 1000. We introduce
the correction factor (cf) defined as

cf ¼
XNo

o¼1

XNm

m¼1

XRm
r¼1

XNb

b¼1

Eomrb

 !2

=Nt (3)

to correct the sum of squares of nonnested factors (Crawley, 2005) by subtracting it from the raw sum of
squares of average error of each observation (Eo ���2 ) and model (E�m ��2 ) to adjust them as deviations from
the total mean as

SSo ¼ NsNb

XNo

o¼1

Eo ���2 � cf (4)

and

SSmod ¼ NoNb

XNm

m¼1

RmE�m ��2 � cf (5)

Figure 4. Hierarchical structure of drought persistence (Pdd) error.

Figure 5. Schematic of partitioning the spread in the error, for the case Nm = 2, No = 2, R1 = 5, R2 = 6, and Nb = 30. See text for details and definitions.
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where Ns is total number of model simulations,
P

Rm, and Nt is the total number of Eomrb calculated as NoNbNs.
Note that for SSi, additional terms are subtracted from the raw sum of squares of average error of each
ensemble simulation to account for the hierarchical structure of the problem.

SSi ¼ NoNb

XNm

m¼1

XRm
r¼1

E�mr�2 � SSm þ cfð Þ

¼ NoNb

XNm

m¼1

XRm
r¼1

E�mr�2 � NoNb

X13
m¼1

E�m ��2
(6)

SSs is calculated as the sum of squared deviations of bootstrapped samples from average error of each
ensemble simulation against each observation or as a residual sum of squares

SSs ¼ SSt � Nb

XNo

o¼1

XNm

m¼1

XRm
r¼1

Eomr �2 ¼ SSt � SSm � SSo � SSi (7)

4. Results
4.1. Observed Global Pdd Patterns

Figure 5 shows the mean dry-to-dry transition probability (Pdd) over all observational data sets at each grid
cell around the world for both monthly and annual time scales. At the monthly scale, global mean Pdd is
0.62 (with [0.58, 0.65] interquartile range) and at annual scale global mean Pdd is 0.57 (with [0.54, 0.60] inter-
quartile range). The global means of observed maximum dry spell lengths are 19.1 months and 8.9 years for
each time scale.

Monthly and annual Pdd values display clear different spatial patterns (Figure 6), indicating that monthly
persistence does not necessarily propagate linearly to the yearly persistence. Some of the desert areas, for
example, Sahara, Gobi, and Atacama, are commonly recognizable in both temporal scale with larger Pdd
values. The results of KS test (Figure 3) also suggest higher uncertainty in Pdd estimation in Sahara.

4.2. Drought Persistence Error of CMIP5 Model Simulations

Figures 7a and 7c show the drought persistence error (Eomrb) averaged over all observational data sets and all
model simulations. Overall, the models tend to underestimate Pdd at both monthly and annual scales, a fea-
ture that is particularly pronounced in western North America, western South America, Africa, and Northeast
Asia. In around 40% of the land grid cells (38.9% at monthly scale and 37.9% at annual scale) at least 80% of
the model simulations agree on the negative sign of Eomrb. For the positive sign, the same percentage of
agreement was only found in 2.7% of the land grid cells at monthly scale and 1.5% at annual scale.
Figures 6b and 6d show the global distribution of Eomrb and for each observational data set. For all considered
observational data sets the tendency of the models to underestimate drought persistence is visible, but it
should be noted that 20CR has stronger drought persistence at annual scale and suggests even larger nega-
tive drought persistence biases in the climate models than when using other reference data sets. It should be

Figure 6. Mean drought persistence (Pdd) estimated from five observation-based data sets for 1901–2010 at (a) monthly and (b) annual scales.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027577

MOON ET AL. 3489



noted for this result that 20CR relies on less direct observations than the other considered products (see
Table 2). The “drizzle problem,” where GCMs overestimate the number of days with light rainfall (Dai,
2006), might contribute to the larger biases found in desert regions.

Although the mean drought persistence bias indicates that the considered climate models tend to underes-
timate drought persistence, there are a few regions in which overestimation of Pdd is found. This is most pro-
nounced at the monthly scale in the Arabian Peninsula and India, and there is a tendency for overestimation
in the Mediterranean, southeastern South America, South Australia, and Southeast Asia. South Australia and
India also show overestimation in annual Pdd.

Figure 7. Spatial distribution of multi-simulation mean drought persistence error (Eomrb) for (a) monthly and (c) annual scales. Stippling indicates agreement in the
sign of drought persistence error among more than 80% of the model simulations. Global distribution of drought persistence error for (b) monthly and (d) annual
scales. CRU = Climatic Research Unit Timeseries version 3.1; UDEL = University of Delaware; GPCC = Global Precipitation Climatology Centre; ERA-20C = ECMWF
twentieth century reanalysis; 20CR = twentieth century reanalysis.

Figure 8. Spatial distribution of multi-simulation mean drought length bias against observed mean drought length at 95th percentile for (a) at monthly scale and
(b) at annual scale.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027577

MOON ET AL. 3490



Additionally, most of these regions also show underestimation of wet persistence (Pww) (supporting
information Figure S2), which indicates that models are generally underestimating persistence of both dry
and wet anomalies, at monthly and annual time scales.

Figure 8 shows the mean drought length bias at the 95th percentile of the dry spell length distribution, esti-
mated on the multisimulation and observation mean Pdd. For doing so the observed and modeled dry spell
length distributions were estimated on the basis of the multiobservation and multisimulation mean Pdd and
Pww values (using statistical simulation; see section 3). Subsequently, the difference between the observed
and the modeled dry spell length distribution at the 95th percentile was calculated. The spatial distribution
of drought length bias generally follows the pattern of the drought persistence bias in Figure 7. At monthly
scale, the strongest underestimation in drought length (up to 5 months) is found in Sahara. Substantial over-
estimation of drought length in Arabian Peninsula and India is also noticeable. The spatial pattern at annual
scale is rather homogenous over all regions. Considering the scale difference, drought length bias at annual
scale is considerably smaller than monthly, unlike the larger persistence bias (Figure 7) which is related to the
generally smaller values of Pdd at annual scale. Drought length biases at other percentiles are presented in
Figure S3 (supporting information).

Figures 9a and 9c show the standard deviation of model error at monthly and annual scales. While the
spread of Eomrb at monthly scale is only large in a few regions (e.g., Amazon, central Andes, Tibetan
Plateau, and Sahara), most of the regions show substantial spread in Eomrb at annual scale. To compare
the relative magnitude of spread against the magnitude of multisimulation mean bias, the coefficient of var-
iation is calculated (Figures 9b and 9d). In many regions, the absolute value of the coefficient exceeds 1,
which indicates that the standard deviation is larger than the mean of Eomrb. Nevertheless, pronounced
underestimation can be confirmed at monthly scale, in western North America, central, and South Africa,
and at annual scale, in Greenland, western South America, Tibetan Plateau, and mainland Southeast Asia,
while there are only few grid cells with mean overestimation larger than the spread.

Figure 9. Standard deviation of drought persistence error at (a) monthly and (c) annual scales and grid cells at which the coefficient of variation Eomrb is
larger or smaller than one for the (b) monthly and (d) annual scales. Stippling in (a) and (c) indicates regions with absolute value of coefficient of variation
less than 1.
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4.3. ANOVA of Drought Persistence Error

As a substantial spread in the drought persistence error is found, we apply the ANOVA-based partitioning to
quantitatively assess the relative contribution from the four possible sources of uncertainty to the total
spread (see section 3.2). Figure 10 shows the spatial patterns determined by the relative contribution from,

which are observation uncertainty, model uncertainty, and internal
variability, where contribution from the statistical estimation error is
only used for indicating reliability of the partitioning. Interestingly, the
overall spatial patterns clearly differ depending on the considered time
scale. The spread in monthly drought persistence error is mostly related
to differences among the considered observational products and model
uncertainty, except for high-latitude regions. Dominant contributions
from model uncertainty are especially pronounced in western North
America, Amazon, Northeast Brazil, Algeria, India, and Australia. Even
some regions with scarce ground measurements, for example, Sahara,
Amazon, and Australia, show similar or even higher contributions from
model uncertainty to the spread in Eomrb at the monthly time scale,
although a higher contribution of observation uncertainty might have
been expected. In southern South America, central Africa, Arabian
Peninsula, and East Asia, observation uncertainty is dominating to the
total spread. Interestingly, a large spread among observation-based
data sets for monthly precipitation in North Africa and Arabian
Peninsula and other low-precipitation regions was reported in a
previous study (Tanarhte et al., 2012). In contrast, the spread in
annual drought persistence error is dominated by a combination from
observation uncertainty and internal climate variability. In the Arabian

Figure 10. Partitioning the spread of the drought persistence error (Eomrb) into model uncertainty, observation uncer-
tainty, and internal variability for (a) monthly and (b) annual scales. Stippled areas indicate that the summated
contribution from the other sources is smaller than contribution from statistical estimation error.

Figure 11. Box plots showing global distribution of contribution from each
source of uncertainty to the total spread of drought persistence error for
monthly (red) and annual (blue) scales. Each box represents the interquartile
range, and the median is shown as white line. The whiskers show the range
(25th quantile �1.5·IQR, 75th quantile +1.5·IQR), and values outside this
range are indicated as dots.
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Peninsula, Eastern Africa, and the Tibetan Plateau, observation uncertainty is more pronounced. Note,
however, that for the annual scale, the statistical estimation error is larger than the sum of the relative con-
tribution of all other sources of uncertainty at most locations, indicating that most of the spread (Figure 9c) is
caused by finite sample effects.

Figure 11 shows the global distribution of the contributions from each source to the total spread in drought
persistence error. At the monthly scale, overall contribution from observational and model uncertainty is
clearly larger than that from internal variability. At the annual scale, the median of the contribution from sta-
tistical estimation error is larger than any other source, implying that the partitioning is unreliable in most of
the regions (Figure 10b). In addition, a substantially lower contribution frommodel uncertainty is also notice-
able at the annual scale.

5. Discussion
5.1. Drought Persistence Error

While previous studies have highlighted the underestimation of interannual to multidecadal precipitation
variability in current climate models (Ault et al., 2012; Dai, 2006; Kumar et al., 2013), we investigated here
whether state-of-the-art climate models capture meteorological drought persistence at shorter time scales.
We find a systematic underestimation of the persistence of drought at both the monthly and annual scales
in the considered CMIP5 models, when compared to five observational reference products over the 1901
to 2010 time frame. This underestimation is clear, despite the large spread in drought persistence error, which
is in many regions attributable to observational uncertainty. Consequently, this study complements previous
research (Ault et al., 2014; Wetter et al., 2014) by showing that the underestimation of drought persistence
already occurs if year-to-year or month-to month variability is considered.

Overall, the climate models’ ability to simulate precipitation variability at long time scales is likely related to
the representation of tropical sea surface temperature and El Niño–Southern Oscillation variability in the
GCMs, as previously suggested (Meinke et al., 2005; Schubert et al., 2016). Consequently, it is not unlikely that
drought persistence in current climate models also depends on how well large-scale ocean-atmosphere
variability is represented. On shorter time scales, the general underestimation of drought persistence shown
in this study could possibly be attributed to issues in the representation of land-atmosphere couplings, such
as the soil moisture-precipitation coupling at the regional scale (Guillod et al., 2015; Koster et al., 2006;
Orlowsky & Seneviratne, 2010; C. M. Taylor, de Jeu, et al., 2012). Consequently, the differences in the spatial
distribution of the drought persistence error at monthly and annual time scales identified in this study might
be related to differences in the governing processes. However, to which degree this is the case and how
errors on short time scales (e.g., day to day) translate to errors on long time scales (e.g., year to year) remains
to be investigated.

5.2. Partitioning the Spread in the Drought Persistence Error

While the considered GCMs display a systematic underestimation of drought persistence, the range of under-
estimation spanned by these models and by the observational data sets is substantial. To further investigate
this issue, we developed an ANOVA-based approach that allows to partition the contribution of unprecise
observations, differences among climate models, internal climate variability, and statistical uncertainty to
the total spread in the drought persistence error. The partitioning method applied in this study is motivated
by an approach that is used to partition the uncertainty in future climate projections into model uncertainty,
scenario uncertainty, and internal variability (Addor et al., 2014; Hawkins & Sutton, 2009; Orlowsky &
Seneviratne, 2013; I. H. Taylor, Burke, et al., 2012). In this study, we expand this framework for the model vali-
dation task. To this end, we incorporated observation uncertainty together with the statistical estimation
error of Eomrb into the existing framework. The analysis showed that both observational uncertainty and
the statistical estimation uncertainty can play a significant role in climate model validation.

The results of the partitioning of the spread in the drought persistence error have interesting implications
both for future model validation studies and for model development. On the one hand, the analysis high-
lights that differences among the considered climate models are in many cases larger than the uncertainty
of observations, highlighting the potential of future model development. On the other hand, the analysis also
shows that issues with the considered observational data products (especially in data scarce regions) as well
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as finite sample effects (annual time scale) can impair themodel validation exercise. Consequently, the results
highlight the importance of considering the latter uncertainties in future model validation studies.
Furthermore, the partitioned spread in this study might be used to assess the efficiency of model selection
based on observational constraint for reducing the model spread in future projections (Cox et al., 2013;
Hall & Qu, 2006). The efficiency is expected to be higher in the regions where the range of observation uncer-
tainty is substantially narrower than the model uncertainty.

6. Conclusions

Persistent meteorological drought triggers subsequent drying of other hydrological variables on land (Van
Loon, 2015) such as soil moisture or water storage, which can, for example, have strong impacts on vegeta-
tion (Nicolai-Shaw et al., 2017) and regional temperature (Seneviratne et al., 2010). In this study, we investi-
gated how well current generation GCMs represent drought persistence over the twentieth century and
the recent past. For doing so we focused on meteorological drought and compared dry-to-dry transition
probabilities (Pdd) at yearly and monthly time scales of an ensemble of simulations from the CMIP5 archive
with observational data sets (interpolated observations and reanalyses). Overall, the results highlight that
the considered models tend to underestimate drought persistence at monthly and annual time scales. This
is an interesting addition to previous results (Ault et al., 2014; Kumar et al., 2013), which indicate that
CMIP5 models underestimate the risk of prolonged droughts on multidecadal time scales.

To investigate the substantial spread in the drought persistence error, we develop a new methodology to
effectively partition the spread into its main components, which include (i) observation uncertainty, (ii) model
uncertainty, (iii) internal variability, and (iv) statistical estimation error of the considered validation metric. At
the monthly time scale, observation uncertainty (which is often neglected in model validation studies) and
model uncertainty are the main contributors to the total spread. At annual time scales, the statistical estima-
tion error is dominant in most regions, followed by combined contributions from internal variability and
observational uncertainty. This analysis reveals regions where improvements of GCMs or model selection
can substantially reduce the spread of model uncertainty. Reducing uncertainty of drought simulations is
important for improving drought projections in a changing climate.
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