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A B S T R A C T

In the present study, the bioaccumulation of heavy metals (Cr, Cu, Cd, Pb) content were determined in fresh-
water edible fishes Cyprinus carpio Linnaeus and Pelteobagrus fluvidraco, which were caught from the Meiliang
Bay, Taihu Lake, a large, shallow and eutrophic lake of China. The results showed that the Cr, Cu, Cd and Pb
content in the edible parts of the two fish species were much lower than Chinese Food Health Criterion (1994).
However, the results showed marked differences in the four analyzed metal content between the two species and
different tissues as well as significant variations. Pb content were the highest in the liver of fishes, Cd contents
were almost the same in all organs of fishes, Cr contents mainly enriched in the kidney and liver, Cu contents
were the highest in gills, However, the total metal bioaccumulation were greatest in the liver, gills and the lowest
in the muscle. Although the total accumulations were highest in P. fluvidraco compare then C.carpio. This in-
vestigation indicated that fish products in Meiliang Bay, Taihu Lake were still safe for human consumption, but
the amount consumed should be controlled under the Chinese Food Health Criterion to avoid excessive intake of
Pb. Further, this is the first report on seasonal distribution of heavy metals and proximate compositions of
commercialized important edible fishes from Meiliang Bay, Taihu Lake, China.

1. Introduction

In the recent years, world consumption of fish has increased si-
multaneously with the growing concern of their nutritional and ther-
apeutic benefits. In addition to its important source of protein, fish
typically have rich contents of essential minerals, vitamins and un-
saturated fatty acids Mederos et al., 2012. The American Heart
Association recommended eating fish at least twice per weak in order to
reach the daily intake of omega-3 fatty acids [1].

Two main ways by which heavy metals enter the aquatic food chain
are by direct consumption of water and food through the digestive tract
and non-dietary routes across permeable membranes such as the muscle
and gills [2]. Therefore levels in fish usually reflect levels found in
sediment and water of the particular aquatic environment from which
they are sourced [3]; and time of exposure [4]. Fish have the ability to
accumulate heavy metals in their tissues by absorption along gill sur-
face and kidney, liver and gut tract wall to higher levels than en-
vironmental concentration [4]. Accumulation of heavy metals by or-
ganisms may be passive or selective; and differences in accumulation of
heavy metals by organisms could be as a result of differences in as-
similation, egestion or both [5]. Non-essential heavy metals such as
Cadmium (Cd), Mercury (Hg) and Lead (Pb) have no known essential

role in living organisms; exhibit extreme toxicity even at very low
(metal) exposure levels and have been regarded as the main threats to
all forms of life especially human health [6,7]. Toxic effects occur when
excretory, metabolic, storage and detoxification mechanisms are no
longer able to counter uptake [8] eventually resulting in physiological
and histopathological changes [2,9–11]. These changes can also be al-
tered by water physico-chemistry [4]. Entry of heavy metals into the
organs of a fish mainly takes place by adsorption and absorption; the
rate of accumulation is a function of uptake and depuration rates [4].
Non-essential metals, aside from being toxic and persistent, are bioac-
cumulated and internally regulated using different strategies such as
active excretion and storage [12]. Significant variations in the levels of
non-essential heavy metals have been reported between organs and
species of fish inhabiting the same freshwater body: Lake Balaton,
Hungary [13]; Iskenderun Bay, Turkey [14]; Three Gorges Reservoir,
China [15]. Elevated levels of toxic heavy metals have been reported
from areas experiencing increasing settlement, traffic and agricultural
activities [5,4]. The levels of non-essential trace elements in fish are
important because fish is an important source of food for the general
human population; fish from freshwater bodies receiving industrial
effluents have been reported to be unfit for human consumption be-
cause of high tissue levels of some heavy metals [16,17,8,18,19]. In
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order to protect aquatic biota, it is necessary to determine contamina-
tion levels of trace elements through chemical biomonitoring and
evaluation of biomarkers that represent early indicators of biological
effects [4]. Certain fish species maybe better bioindicators of specific
heavy metal contamination compared to others [20,21].

The concentrations of heavy metals in fish have been extensively
studied over the past several decades. Research has shown that extent
of accumulation of heavy metals in fish is dependent on the metal types,
fish species, and the tissues respectively [22,23]. Water chemistry [24]
directly affects the accumulation of heavy metal in fish. Sediment is
also know to an important factor heavy metal accumulation in fish, as it
is considered as the major source of contaminants for bottom dwelling
and bottom feeding aquatic organisms [25], which in turn represents
the concentrated source of metals in the diet of fish.

Fish is an important part of the human diet because of its high
nutritional quality [26]. However, nonessential trace elements in the
edible tissues of fish have been detected due to be bioaccumulation in
organism and the highly persistent and non-biodegradable properties
[27,28]. However, fish are relatively situated at the top of the aquatic
food chain; therefore, they normally can accumulate heavy metals from
food, water and sediments [29,30]. The content of toxic heavy metals in
fish can counteract their beneficial effects; several adverse effects of
heavy metals to human health have been known for long time [31].
This may include serious threats like renal failure, liver damage, car-
diovascular diseases and even death [32,33]. Therefore, many inter-
national monitoring programs have been established in order to assess
the quality of fish for human consumption and to monitor the health of
the aquatic ecosystem [34]. According to the literatures, metal bioac-
cumulation by fish and subsequent distribution in organs is greatly
inter-specific. In addition, many factors can influence metal uptake like
sex, age, size, reproductive cycle, swimming patterns, feeding behavior
and living environment (i.e., geographical location) [35,14,30]. Hence,
fishes are considered as one of the best indicator of heavy metal con-
tamination in coastal environment [36,37].

Taihu Lake is the third largest freshwater lake China, is located in
the Yangtze delta plain on the border of the Jiangsu and Zhejiang
provinces of eastern China. It plays an important role in flood control,
water supply, and fisheries [38]. Rapid industrial and economic de-
velopment has occurred around the lake since the 1980s. Yuan et al.
[39] reported that Taihu Lake was moderately polluted by heavy metals
based on their study of sediments whereas increased nutrient inputs
related to population and economic growth have led to eutrophication.
Most pollutants come from rivers discharging into Meiliang Bay and
other parts of the Taihu Lake [40]. The northern and western parts of
Taihu Lake are often covered by algae blooms in summer, autumn and
even spring [41]. A lot of researches have been carried on the pollution
of Taihu Lake and its catchment [42–49], but most of them considers
the issue of sediment pollution. Zhong et al. [50] observed that deni-
trification in the sediment of Meiliang Bay, Taihu Lake. However,
earlier studies in Taihu Lake recorded on the levels of contamination of
heavy metal concentrations, especially chromium, copper and lead
[51,50,52,53,49]. The average concentration of chromium in water
samples during summer was 0.35 μg/L and in winter was 2.84 μg/L.
Copper concentration in water samples was 0.71 μg/L in both the sea-
sons. The average concentration of lead in sediments during summer
was 0.58 μg/g and in winter it was 8.53 μg/g. Since, the study area is
being considered as an important source for fishery, the presence of
toxic heavy metals in water and sediments would be the primary source
for the biomagnifications of metals in fish, invertebrates and other
aquatic plants animals and cause ill effects to those who consume the
contaminated fish [52,54]. The primary goal of this study was to de-
termine the bioaccumulation and seasonal variation of four heavy
metals, including Cr, Cd, Cu and Pb in the fish species C. carpio Lin-
naeus and P. fluvidraco collected from Meiliang Bay, Lake Taihu. We
choose Meiliang Bay as research object, this could help us understand
enrichment behavior of heavy metals in shallow lake ecosystems and
emphasize the need to discard the most polluted tissues of the fish.

Fig 1. Categories of sampling sites based on pollution sources from different land use types in the Meiliang Bay, Taihu Lake, China.
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2. Materials and methods

2.1. Site description

We selected seven sampling sites within Meiliang Bay located in
northern and western parts of Taihu Lake (Fig. 1). The Lake Taihu is the
third largest freshwater lake in China and located between 30° 05′–32°
08′ N and between 119° 08′–121° 55′ E, downstream of the Yangtze
River. It is 68.5 km long and 56 km wide, with an average depth of
2.0 m and an area of 2388 km2 [55,56]. The drainage basin of the lake
is about 36500 km2, and more than 200 brooks, canals and rivers are
connected with the lake [57]. The industry and agriculture in the Taihu
Basin provide 14% of China’s gross domestic product [58]. In the
northern region as well as in several river mouths (at Xia Jiang), an-
other agricultural wastewater capacity of 100 million liters per day
(MLD). Tourist activities and fishing by local fishermen are significant
part of the economy for the local coastal inhabitants, Xihui park, a
world famous tourist spot located in the west of Wuxi, attracts tourists
not only from China but also from different parts of the globe adds its
own stress on the ecosystem. Inputs from the river mouth to the lake are
the routes of urban waste to this coastal environment.

2.2. Field sampling

We conducted ten samples of each fish (C. carpio and P. fluvidraco)
the size of fish we selected was 17–21 cm for all species were collected
at each sampling sites during two seasons summer (June) and winter
(December) by professional fishermen using a multifilament, nylon gill
net and trawl from inside the Meiliang Bay, Taihu Lake during 2016,
according to the National field Manual for the Specification for
Freshwater Monitoring in China. Samples were washed with clean
water at the point of collection, separated by species, placed on ice,
brought to the laboratory on the same day and then frozen at −20 °C
until dissection.

2.3. Biota

Frozen fish samples were thawed at room temperature and dissected
using stainless steel scalpels. One gram of accurately weighed epaxial
muscle on the dorsal surface of the fish, the entire liver, kidney and
intestine and two gill racers from each sample were dissected for ana-
lysis. Dissected samples were transferred to Teflon beaker were per-
formed in an acid digestion to prepare the sample for heavy metal
analysis (Kenstar closed vessel microwave were digested with 5mL of
nitric acid (65%) and after complete digestion the samples were cooled
to room temperature and diluted to 25mL with double distilled water.
All the digested samples were analyzed three times for metals such as

Cd, Cr, Cu and Pb using Atomic Absorption Spectrophotometer (AAS
ZEEnit-700P) and the instrument was calibrated with standard solu-
tions prepared from commercially available chemicals Merck, Germany
[59].

2.4. Statistical analysis

In the present study, Correlation analysis data were generated se-
parately for two fish species (C. carpio and P. fluvidraco). The correla-
tion of this different elements are calculated using the different values
(p < 0.05) for different tissues for two fish samples. All the statistical
analysis has done using SPSS software (version 20).

3. Result and discussion

Escalating human populations and economic development have
significantly contributed to the current worldwide deterioration in
water quality, including seasonal accumulation of heavy metals such as
Cu, Cr, Cd and Pb from Meiliang Bay, Taihu Lake [60,61,49]. Essential
metals and non-essential metals have been demonstrated to accumulate
along the trophic chain in freshwater ecosystems [45,62]. Non-essential
metals are not known to play any metabolic function although, as a
consequence to their bioaccumulation in fish, these metals can be toxic
for humans, even at very low concentrations [63]. The heavy metals
concentration in fish is important both with respect to nature man-
agement and human consumption. The present study documents
bioaccumulation heavy metals in two fish species from Meiliang Bay,
Lake Taihu. However, the concentrations may be raised in coastal
ecosystems due to the release of industrial waste agricultural and
mining activities. As a results, aquatic organisms were exposed to ele-
vated levels of heavy metals Kalay and Canil, 1999; [64]. The aquatic
organisms exposed to heavy metals from the run-off water tend to ac-
cumulated it in their body but fishes are more commonly affected than
other species [65,66].

Copper are recognized as essential elements, required by a wide
variety of enzymes and other cell components having vital functions in
all living things. But excessive Cu intake will damage human health.
Excessive Cu intake will cause poisoning, nausea, acute stomach pains,
diarrhea and fever, etc. The National Research Council has listed the
estimated safe and adequate daily intake of Cu for adults as 1.5–3.0mg
[51]. The mean concentration of Cu in the tissue samples of fishes were
varied between 0.037–0.316mg/kg in summer and 0,017–0.144mg/kg
in winter season respectively. The mean Cu concentration present in
this study was exceeded several folds than the available literature [67]
but not exceeding the permissible level recommended by WHO, FAO
(Table 3) for human consumption. The highest concentration of Cu was
recorded in kidney of P. fluvidraco and lowest was found in muscle of C.

Table 1
Contents (μg/g) of heavy metals in different organs of fish during summer and winter seasons.

Summer Winter

Cd Cu Cr Pb Cd Cu Cr Pb

C. carpio
Muscle 0.042 ± 0.001 0.037 ± 0.002 0.083 ± 0.001 0.087 ± 0.003 0.023 ± 0.001 0.097 ± 0.002 0.092 ± 0.001 0.066 ± 0.003
Gill 0.173 ± 0.041 0.338 ± 0.000 0.118 ± 0.003 0.636 ± 0.038 0.123 ± 0.004 0.144 ± 0.001 0.112 ± 0.003 0.496 ± 0.038
Liver 0.031 ± 0.004 0.06 ± 0.001 0.037 ± 0.001 0.067 ± 0.002 0.023 ± 0.004 0.028 ± 0.001 0.046 ± 0.001 0.042 ± 0.002
Kidney 0.24 ± 0.016 0.076 ± 0.00 0.042 ± 0.001 0.4 ± 0.023 0.22 ± 0.016 0.51 ± 0.001 0.033 ± 0.001 0.23 ± 0.023
Intestine 0.035 ± 0.002 0.078 ± 0.015 0.085 ± 0.002 0.048 ± 0.007 0.026 ± 0.001 0.058 ± 0.015 0.028 ± 0.002 0.028 ± 0.003

P. fulvidraco
Muscle 0.028 ± 0.001 0.034 ± 0.001 0.048 ± 0.001 0.052 ± 0.002 0.023 ± 0.00 0.036 ± 0.005 0.032 ± 0.002 0.036 ± 0.032
Gill 0.022 ± 0.001 0.028 ± 0.002 0.168 ± 0.002 0.182 ± 0.021 0.012 ± 0.001 0.017 ± 0.041 0.157 ± 0.026 0.138 ± 0.005
Liver 0.025 ± 0.014 0.093 ± 0.001 0.316 ± 0.002 0.706 ± 0.056 0.23 ± 0.003 0.055 ± 0.001 0.216 ± 0.001 0.502 ± 0.003
Kidney 0.053 ± 0.016 0.09 ± 0.001 0.253 ± 0.002 0.76 ± 0.056 0.023 ± 0.003 0.06 ± 0.001 0.212 ± 0.028 0.21 ± 0.023
Intestine 0.06 ± 0.012 0.01 ± 0.015 0.133 ± 0.002 0.483 ± 0.037 0.05 ± 0.012 0.03 ± 0.019 0.113 ± 0.012 0.323 ± 0.037

Data are presented as the mean (average of ten samples) value± SD in wet weight.
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carpio. The highest concentration of Cu is mainly due to increased
boating activities, recurrent usage of antifouling paint, oil dropping
from boats and commercial fishing activity in the study area. Cu
showed wild array of essential role in haemoglobin biosynthesis [68]
and also it causes adverse effects of liver and kidney damage [69].
Concentration of Cu found in various literatures are as follows: Bighead
carp (2.06 ppm), Mandarin fish (0.79 ppm) from Pearl River Delta
(PRD), China [70] and Puffer fishes Takifugu oblongus, Lagocephalus
guentheri, Arothron hispidus, Chelonodon patoca and Arothron im-
maculatus collected from Mandapam fish landing center, South east
coast of India [71].

Pb is a nonessential element for living organism and also it possess
various adverse effects such as neuro and nephro toxicity, rapid beha-
vioral malfunction, and decreases the growth, metabolism, and survival
rate, alteration of social behavior in some mammals Garcia-Leston et al.

[72]. Rashed [37] found that elevated Pb level in fishes obtained from
freshwater ecosystem affected by extended agriculture, poultry forms,
textile, industrial and other activities. However, the sediments could be
the major sources of Pb contamination and the bottom feeders may
directly affects with this deposited element in consequence to their
feeding habitat Sarkar et al., 2016. From the literature survey of [73]
Pb is a neurotoxin that causes behavioral deficits in vertebrates, de-
creases in survival and growth rates, causes learning disabilities, and It
may use as a biomarker of resent lead contaminant on polluted en-
vironment and it cause longer chronic effect in children. The World
Health Organization has recommended that dietary Pb should not ex-
ceed 0.3 μg/g (wet weight basis), and with a recommended limit of
450 μg of Pb per day for adults. Cd is not an essential element, and the
World Health Organization/Food and Agricultural Organization
(WHO/FAO) has determined a maximum tolerable daily intake of

Fig. 2. Concentrations of toxic metals (Cd, Cu, Cr and Pb) in different tissues of Cyprinus carpio and Pelteobagrus fluvidraco during summer and winter seasons. Hypothesis testing method
including one-way analysis of variance (ANOVA) followed by least different (LSD). Values are statistically significant at p < .05. Values that do not share the same superscript letter (a-d)
are significantly different.
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55 μg/(person d). The estimated safe and adequate daily dietary intake
of Cr is set at 50–200 μg/d [51].

The metals Cr, Cu, Cd and Pb exceeded the maximum limit re-
commended by international agencies because of the uncontrolled an-
thropogenic activities takes place in the study area. There are numerous
literatures reported that the sediment and water from Meiliang Bay,
Taihu Lake has elevated level of heavy metals when compared to per-
missible limit [74,49]. Developmental activities along the Meiliang Bay
study area are the prime source for elevated level of heavy metals in-
cluding large scale industries, thermal power plants, chemical and
fertilizer industries, textile mills [75] and also attributed by municipal
wastes, mining wastes, aquaculture and agricultural discharges [76]. In
the present study, the level of the Cd, Cr, Cu and Pb bioaccumulation in
kidney, liver, gill, intestine and muscle of C. carpio and P. fluvidraco was
determined during summer and winter seasons and summarized in
Table 1. In general, the bioaccumulation of heavy metals Cr, Cu, Cd,
and Pb in various tissues of freshwater fish’s values during summer and
winter seasons were significantly different showed in Fig. 2. The mean
level of heavy metals concentration recorded for this study is in the
order Pb > Cu > Cr > Cd; and mean concentration of Cd (0.173 μg/
g), Cr (0.118 μg/g), Cu (0.336 μg/g) and Pb (0.636 μg/g) concentrations
appeared considerably higher in gills than in other tissues during
summer respectively. During winter, mean concentration of Cd
(0.22 μg/g), Cu (0.144 μg/g), Pb (0.496 μg/g) and Cr (0.112 μg/g), was
higher in kidney and gills of C. carpio. Whereas, in P. fluvidracomean Cd
(0.053 μg/g), Cr (0.316 μg/g), Cu (0.093 μg/g) and Pb (0.76 μg/g)
concentrations were higher in liver and kidney during summer re-
spectively. During winter, the mean concentrations of Cd (0.23 μg/g),
Cr (0.216 μg/g), Cu (0.06 μg/g) and Pb (0.502 μg/g) appear con-
siderably higher in gills and liver than in other tissues. Based on the
distribution of heavy metals concentration during summer season in
various tissues of C. carpio the sequence seems to be as follows: liver,
Pb > Cu > Cr > Cd; kidney, Pb > Cu > Cd > Cr; gill, Pb >
Cr > Cu > Cd; intestine, Pb > Cu > Cr > Cd and muscle Pb >
Cu > Cr > Cd respectively. The distribution of Pb, Cu and Cr in C.
carpio during summer and winter is of the following order gill >

kidney> intestine > liver > muscle, while the concentration of Cd
indicates the sequence of kidney > gill > muscle > liver >
intestine during summer and kidney > gill > intestine > liver >
muscle during winter seasons. The mean concentration in the liver,
kidney, gill, intestine and muscle of P. fluvidraco is of the following
sequence Pb > Cr > Cu > Cd; Pb > Cr > Cd > Cu; Pb > Cr >
Cu > Cd; Pb > Cr > Cd > Cu and Pb > Cr > Cu > Cd during
summer respectively. The distribution of metals different tissues in P.
fluvidraco during summer is in the following order: liver > kidney >
gill > intestine > muscle for Cu and Pb, and liver > kidney >
gill > intestine > muscle for Cr and Cd. However, during winter the
sequence of distribution of metals was liver > kidney > gill >
muscle > intestine for Cd and for Cr, Cu and Pb the sequence was
liver > kidney > gill > intestine > muscle respectively. In general,
the concentration of heavy metals was lower in the muscle tissues
compared to other organs (liver, kidney, gill and intestine) of both P.
fluvidraco and C. carpio.

Similar results have been reported seasonal distribution of heavy
metals in Cyprinus carpio and Acanthobrama marmid species
[77–79,53,49]. Chromium is an essential heavy metal because metal
amount of trivalent Cr (III) plays an essential role of Cu and Cr may
have toxic effects for humans. Lead is an environmental contaminant
that can cause serious damage to human health. It competes with cal-
cium (Ca2+) at enzymatic locations in organisms. The mail exposure
route of non-occupationally exposed individuals is food consumption
[80]. Like Pb, Cd is also a non-essential element that competes with
calcium (Ca2+) at enzymatic locations in organisms. Cadmium has been
reported to bioaccumulate most significantly in the kidney followed by
liver and gills [81]. The strong affinity for the nonessential trace ele-
ments by the kidney suggests tolerance of organs to chronic and in-
toxication [82]; there by exhibiting great nephrotoxic potentials [83].
Excessive Cd exposure may give rise to renal-, pulmonary-, hepatic-,
skeletal-, and reproductive toxicity effects and cancer. However, the
metal concentration in muscle tissue is important because it is the chief
edible portion of fish that plays an important role in human nutrition,
has been reported to have the lowest concentration of metals except for
cadmium Farkas et al., 2001 compared to other heavy metals Prota-
sowicki and Morsy, 1993; [14,15,84–88].

The gill is an important site for the entry of the heavy metals [89];
and is the first target organ for exposure in fish. The high concentration
of metals in the gills of P. fluvidraco and C. carpio is due to the metals
complexation with the mucus, which is difficult to be removed com-
pletely from the tissue before the analysis. The concentration of metals
in the gill reflects the level of the metals in the waters where the fish
live, whereas the concentration in liver and kidney represents storage of
metals [90,91]. Thus, the gill in fish are more often recommended as
environmental indicator organs of water pollution than any other fish
organs [8,87]. Differences in the levels of heavy metal concentrations
were observed between the P. fluvidraco and C. carpio indicating higher
concentration of heavy metals in all tissues (except in the liver and
kidney of C. carpio). In liver, higher concentrations of Pb were recorded
in P. fluvidraco (0.76 μg/g) than in C. carpio (0.63 μg/g) respectively.
The increased metal bioaccumulation (Cu, Cr, Cd and Pb) in the dif-
ferent tissues of two fishes significantly different for during summer and
winter season and it is shown in Fig. 2; Table 1. The variation in the
level of heavy metals among different species depends upon its feeding
habit, age, size and length of the fish and their habitats [92,93]. The
mean concentration of heavy metals levels in two fish samples found in
our study were lower than the maximum permitted concentrations
proposed by Chinese Food Health Criterion (1994).

The levels of heavy metal in fish also vary with respect to species
and different aquatic environments [94]. Moreover, the affinity for
metal absorption from contaminated water and food may differ in re-
lation to ecological needs, metabolism and the contamination gradients
of water, food and sediment, as well as other factors such as salinity,
temperature and interacting agents [90]. The results of the present

Table 2
Correlation between Contents in tissues of two fish heavy metals from Taihu Lake, China.

Cd Cr Cu Pb

Muscle (n=20) (p < .05)
Cd 1.00
Cr 0.17 1.00
Cu -0.07ns 0.78 1.00
Pb -0.04ns 0.51 0.62 1.00

Gill (n=20) (p < .05)
Cd 1.00
Cr -0.11ns 1.00
Cu -0.11ns 0.95 1.00
Pb -0.61ns 0.06 0.23 1.00

Liver (n= 20) (p < .05)
Cd 1.00
Cr 0.52 1.00
Cu 0.44 0.42 1.00
Pb 0.99 0.56 0.52 1.00

Kidney (n= 20) (p < .05)
Cd 1.00
Cr 0.87 1.00
Cu 0.62 0.65 1.00
Pb 0.99 0.84 0.61 1.00

Intestine (n= 20) (p < .05)
Cd 1.00
Cr 0.69 1.00
Cu 0.57 0.93 1.00
Pb 0.96 0.52 0.36 1.00

p < .05; ns, not significant at significance level 0.05 (2-tailed).
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study illustrate the accumulation patterns of heavy metals in different
tissue of C. carpio and P. fluvidraco in Taihu Lake. Person’s correlation
(PC) matrix for analyzed to compare the total heavy metals accumu-
lation levels in two fish tissues results are presented in Table 2. The
heavy metals in P. fluvidraco muscle, Cu and Pb concentrations were
higher than those observed in C. carpio. Cd, Cr and Cu concentrations
were higher in gill and kidney of P. fluvidraco respectively than the C.
carpio. A large number of studies [95,73,49] have shown that the
bioaccumulation of heavy metal in fish muscle is significantly corre-
lated with fish species. The results observed in this study were in good
agreement with the above consensus. Bioaccumulation was prone to be
strongest in carnivorous species (P. fulvidraco), followed by omnivorous
(C. carpio) species, and it tended to be stronger in bottom-living fish
than that in pelagic fish.

In conclusion, significant differences were identified among muscle,
gill, liver, kidney, and intestine of the fishes (P. fluvidraco and C. carpio)
in view of the bioaccumulation of the selected heavy metals from
Meiliang Bay, Taihu Lake. The concentration of metals like Cu, Cr, Cd
and Pb were found to be higher during summer than the winter season.
The seasonal variation of metals in the fish species might be due to
physicochemical and biotic factors of the lake, which influences the
bioavailability of metals. The heavy metals concentration found in
edible parts of two commonly available fish are not heavily burdened
with metals. The concentrations are below the limited value prescribed
by Chinese Food Health Criterion (1994) and also compared with other
ecosystems shown in Table 3. However, high level of heavy metals was
found in liver, kidney and gill and even though fish liver and gill are

seldom consumed, it may represent good bio-monitor of metals present
in the surrounding environment. The results of this study demonstrate
that the remediation efforts to reduce metal contamination of Taihu
Lake have reduced the bioaccumulation of heavy metals in fish species
this lake and also the potential health hazards associated with their
consumption.
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