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Mapping the cardiac vascular niche in heart failure
Fabian Peisker 1,11, Maurice Halder 1,11, James Nagai 2,3, Susanne Ziegler1, Nadine Kaesler1,4,

Konrad Hoeft1, Ronghui Li2,3, Eric M. J. Bindels 5, Christoph Kuppe 1, Julia Moellmann6, Michael Lehrke6,

Christian Stoppe7, Michael T. Schaub 8, Rebekka K. Schneider 9, Ivan Costa 2,3,12 &

Rafael Kramann 1,9,10,12✉

The cardiac vascular and perivascular niche are of major importance in homeostasis and

during disease, but we lack a complete understanding of its cellular heterogeneity and

alteration in response to injury as a major driver of heart failure. Using combined genetic fate

tracing with confocal imaging and single-cell RNA sequencing of this niche in homeostasis

and during heart failure, we unravel cell type specific transcriptomic changes in fibroblast,

endothelial, pericyte and vascular smooth muscle cell subtypes. We characterize a specific

fibroblast subpopulation that exists during homeostasis, acquires Thbs4 expression and

expands after injury driving cardiac fibrosis, and identify the transcription factor TEAD1 as a

regulator of fibroblast activation. Endothelial cells display a proliferative response after injury,

which is not sustained in later remodeling, together with transcriptional changes related to

hypoxia, angiogenesis, and migration. Collectively, our data provides an extensive resource of

transcriptomic changes in the vascular niche in hypertrophic cardiac remodeling.
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Heart failure (HF) is a leading cause of morbidity and
mortality worldwide1. Coronary microvascular dysfunc-
tion is an important mechanism in cardiac pathophy-

siology during HF, where diffuse capillary loss and adverse
remodeling of intramural cardiac arterioles throughout the left
ventricular myocardium triggers hypoxia and fibrosis2. The vas-
cular and perivascular niche of the mammalian heart harbors, in
addition to the endothelium, important mesenchymal cell types
including mural cells (vascular smooth muscle cells (VSMC) and
pericytes) as well as fibroblasts3. The localization and hetero-
geneity of these cell types throughout the vascular network of the
heart—from large arteries and arterioles to small capillaries and
then toward the venous system—is only partially known. In
particular, detailed insights into how the perivascular niche
changes during cardiac remodeling in HF is lacking. Fibrosis is
present in almost every form of heart disease and several studies
indicate a perivascular origin of fibrosis driving myofibroblasts4.
Prior to fibrosis, angiogenesis is an early attempt of the injured
heart to compensate for increased oxygen consumption of
hypertrophic cardiomyocytes which later transitions into capil-
lary loss, cell death and replacement fibrosis5. Mural cells are of
key importance in the vascular niche as they provide stability and
elasticity to blood vessels and regulate flow by their contractile
properties with an important role for myocardial perfusion in
homeostasis in congestive HF6. Various studies have demon-
strated plasticity of stromal and endothelial cells particularly in
disease7–11. However, due to the strong heterogeneity of the
vascular niche, the individual contributions of different vascular
and perivascular cell types to cardiac remodeling remain unclear.

The goal of this study is to dissect the heterogeneity and
individual contribution of stromal and endothelial cell types to
cardiac remodeling in HF by combining inducible genetic fate
tracing with single-cell RNA sequencing and confocal imaging.
For this we use various mouse lines for genetic fate tracing of
cardiac endothelial, pericyte, VSMC and fibroblast lineages. This
approach enables us to capture and map cell type specific tran-
scriptomic changes over two independent time points in hyper-
trophic left ventricular remodeling. Our data indicate that all
cardiac fibroblast populations shift toward an extracellular matrix
(ECM) expressing profile after injury. However, one specific
fibroblast subtype marked by Thbs4 expression shows significant
expansion, likely differentiated from a broader pool of fibroblasts
and expresses distinct ECM signature. Endothelial cells respond
after injury by increased proliferation, but fail to sustain angio-
genesis in later remodeling. Taken together, we provide an
extensive overview of cell type specific transcriptomic changes in
the cardiac vascular niche in hypertrophic remodeling.

Results
Fate tracing and scRNA-seq mapping of the vascular niche in
early heart failure. The vascular and perivascular niche of the
heart harbors various cell types that are critical for the cardiac
function in homeostasis and disease. However, their hetero-
geneity, crosstalk and fate during HF remains partly unclear.
Here, we combined inducible genetic lineage tracing with high-
resolution confocal imaging and scRNA-seq, to trace vascular and
perivascular cell types of the heart in murine pressure overload
induced HF. Various transgenic CreER;Rosa26tdTomato (tdTom)
mouse lines that recombine in different cell populations of the
vasculature and perivasculature were pulsed with tamoxifen to
induce recombination (fibroblasts: Collagen Type I Alpha 1
Chain—Col1a1CreER; fibroblasts and mural cells: Platelet
Derived Growth Factor Receptor Beta—PdgfrβCreER; Gli1+

progenitors: Glioma-Associated Oncogene 1, Gli1CreER; endo-
thelium: Cadherin 5, Cdh5CreER; VSMC and pericytes: Myosin

Heavy Chain 11—Myh11CreER and Chondroitin Sulfate Pro-
teoglycan 4 ((Cspg4), Ng2CreER). After a 21 day washout period,
the mice were subjected to either sham or transverse aortic
constriction (TAC) surgery (Fig. 1a, b). Mice were killed either 2
(all lines) or 4 weeks (Gli1CreER;tdTomato and Cdh5CreER;td-
Tomato) after surgery. We observed increased heart weight
(Fig. 1c), interstitial fibrosis (Fig. 1d) and functional decline
measured by echocardiography (in Gli1CreER;tdTomato and
Cdh5CreER;tdTomato lines, Supplementary Fig. 1a) as hallmarks
of cardiac remodeling in this model. We used the apical half of
the left ventricle (including apex, anterior-, lateral-, posterior-wall
and septum) to generate a single-cell suspension with subsequent
FACS enrichment for tdTom+, viable (DAPI−) cells for scRNA-
seq (10x Genomics). The basal part of the left ventricle was used
for confocal imaging analysis (Fig. 1e).

The fate traced cells showed partially distinct and partially
overlapping localizations (Fig. 1f and Supplementary Fig. 1b–h).
In homeostasis tdTom+ cells from Col1a1, Gli1 and Pdgfrβ
lineage were located in the perivascular and adventital region of
arteries or in the cardiac interstitium adjacent to endothelial cells
of myocardial capillaries. While PdgfrβCreER also recombined in
the VSMC layer only few VSMC were labeled in the Gli1CreER
mice. Cdh5CreER showed strong and specific recombination of all
cardiac endothelial cells including endothelium of large vessels
and capillaries. Both Myh11CreER and Ng2CreER labeled cells
within the VSMC layer of larger vessels and further interstitial
cells adjacent to myocardial capillary endothelium as expected.
We did not observe strong localization changes of fate traced cells
2 weeks after TAC surgery. However, we noticed focal expansion
of cells from Col1a1, Gli1 and Pdgfrβ lineage following injury,
with Pdgfrβ lineage derived cells showing the clearest expansion,
in line with an early interstitial fibrosis (Fig. 1f and Supplemen-
tary Fig. 1g, h).

We generated in total 14 individual single-cell libraries from
sorted tdTom+ cells of each transgenic line and pooled 3–5 mice
for each library. All transgenic lines were used to generate a
library from either sham or TAC after 14 days and in addition we
generated libraries from Gli1CreER;tdTomato and Cdh5CreER;td-
Tomato mice 28 days after TAC (Fig. 1b–e). After filtering the
individual datasets for cell quality, we integrated all libraries using
batch correction by Harmony12 (Supplementary Fig. 2a). Har-
mony outperformed other integration methods in multiple recent
benchmarking studies13,14, and performed well for our dataset.
Filtering for tdTom mRNA expression ensured solely inclusion of
genetically traced cells (Supplementary Figs. 2b and 3a). The final
dataset of the full integration included 77602 high quality tdTom
expressing cells and unbiased clustering detected seven distinct
major clusters (Fig. 2a). We clearly identified the three major cell
types of the cardiac vascular niche: fibroblasts (Dcn+, Col1a1+,
Pdgfrα+), endothelial cells (Kdr+, Pecam1+), and mural cells
(Rgs5+, Kcnj8+, Vtn+). Mural cells included pericytes (Abcc9+,
Colec11+) and VSMC (Acta2+, Tagln+) (Fig. 2b and Supple-
mentary Fig. 3b). We additionally detected a few small clusters
identified as Schwann cells (Kcna1+, Plp1+), lymphatic endothe-
lial cells (Ccl21a+, Mmrn1+), proliferating endothelial cells
(Top2a+, Pecam1+) (Supplementary Fig. 3c, d) and one distinct
cluster characterized by a strong interferon response signature
(Itif1+, Itif3+) (Fig. 2a, b). Interestingly, this signature led to joint
clustering of otherwise distinct cell types, including fibroblasts,
endothelial cells and pericytes suggesting that the interferon
response genes influenced the clustering stronger as compared to
cell identity. Moreover, subclusters of fibroblasts and endothelial
cells defined by interferon response genes have been described in
other scRNA-seq studies of the murine heart15–17.

We next compared the contribution of all genetically fate
traced cell populations to each major cell type identified in the
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Fig. 1 Fate tracing of the vascular niche after TAC induced injury. a Experimental timeline of genetic labeling of specific cell types using tamoxifen,
3-week washout period, surgery time point (transverse aortic constriction (TAC) or sham) and duration until harvest. The TAC procedure is illustrated.
b Overview of genetic Cre driver mouse lines and animal numbers per group. c Heart weight to tibia length ratio between TAC and sham groups. Each dot
represents an individual mouse (mean ± SD; number of independent mice per group is displayed in b; *p < 0.05; unpaired t-test, two-sided). Source data are
provided as a Source Data file. d Representative pictures of picro-sirius red staining for TAC (14 and 28 days) and sham hearts, one per genotype (scale bar
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Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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scRNA-seq analysis (Fig. 2c, d). The fibroblast cluster primarily
consisted of cells originating from the Col1a1, Gli1 or Pdgfrβ line-
age, while endothelial cells were primarily Cdh5 lineage derived
and mural cells from Myh11, Ng2, Gli1 and Pdgfrβ lineage
(Fig. 2c, d). Schwann cells were solely Ng2 lineage derived
(Fig. 2c, d). Interestingly, the fibroblasts that were derived from
different fate traced lineages were all evenly distributed within the
fibroblast cluster, suggesting similarity despite using different
markers for fate tracing. We did not observe any major cell type
to be exclusive or have a bias for either sham or TAC (Fig. 2e). In
addition, we observed higher Pdgfrβ mRNA expression within the
mural cell cluster (Figs. 1f and 2f).

We would like to point out that the Pdgfrβ lineage derived cells
considerably expanded around larger myocardial vessels follow-
ing TAC, while we did not observe such expansion of Myh11 or
Ng2 fate traced cells in this location (Fig. 1f and Supplementary
Fig. 1f). This suggests that the expanding cells in TAC are
primarily of fibroblast and not of mural cell origin. Most
genetically fate traced cells still showed expression of their marker
gene used for the Cre recombination (Fig. 2f). Only for Myh11,

we primarily observed mRNA expression in VSMC while the
Myh11CreER fate traced cells contributed to both VSMC and
pericytes (Fig. 2c, d, f and Supplementary Fig. 3b). This can be
explained by the fact that scRNA-seq data is sparse and biased to
detection of highly expressed genes, while theMyh11 Cre driver is
strong and also recombines in cells with a low Myh11 gene
expression. Additionally, Myh11CreER lineage tracing was
recently shown to label pericytes even in the smallest capillaries
of the retina18. Taken together, we were able to map cells from all
major vascular and perivascular cell types of the murine heart in
homeostasis and pressure overload induced HF at unprecedented
resolution.

Heterogenous fibroblast populations show plasticity in cardiac
remodeling and drive fibrosis. Cardiac fibrosis is the process of
ECM deposition within the heart and occurs after virtually any
injury to the heart. Fibrosis leads to cardiac dysfunction by
increasing stiffness and also triggering contractile dysfunction
and electric instability4. In order to identify and characterize the
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major cellular source of myocardial ECM after injury, we utilized
an ECM score that contains mRNA expression of all known ECM
collagens, glycoproteins and proteoglycans19,20. This approach
clearly identified fibroblasts as the cell type with the highest ECM
gene expression in our mouse model, in particular with regards to

collagens and proteoglycans (Fig. 3a and Supplementary Fig. 3e).
We thus focused first on the fibroblasts and clustered these cells
separately to increase resolution and gain a deeper understanding
of the heterogeneity and regulation of matrix producing cells in
cardiac remodeling. This led to the identification of six
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reproducibility, see “Methods”.
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subclusters with a total of 54,905 fibroblasts, which showed
considerable differences in gene expression suggesting potentially
biological meaningful heterogeneity (Fig. 3b and Supplementary
Fig. 2a, c). We defined the following fibroblast subtypes for further
analysis: fibroblast 1 (Fib1; higher in collagens, e.g., Col4a1/2+),
Atf3 fibroblasts (Atf3-Fib; Atf3+, Cxcl1+,Mt1+), fibroblast 2 (Fib2;
CD248+, Ackr3+), fibroblast 3 (Fib3; Fgl2+, Inmt+), ECM fibro-
blast (ECM-Fib; Postn+, Comp+) and interferon fibroblast (IntFib;
Ifit1+, Ifit3+) (Fig. 3b–d). The three integrated lineages (Gli1,
Pdgfrβ and Col1a1) contributed to all subsets almost equally with
two exceptions. The Pdgfrβ lineage contributed more to the IntFib,
whereas the Gli1 lineage contributed more to the ECM-Fib (Fig. 3c
and Supplementary Fig. 4a). Gene set enrichment analysis (GSEA)
based on the subtype marker genes (Fig. 3d) suggested shared
basic functions for all fibroblast subtypes, whereas Atf3-Fib mar-
ker genes were particularly associated with stress response and
apoptosis, IntFib with interferon response and ECM-Fib with a
more pronounced ECM production (Fig. 3e and Supplementary
Data 1).

To verify these data with an orthogonal method and dissect if
there are specific localizations of these identified fibroblast
subtypes, we performed in situ hybridization of specific marker
genes on left ventricular tissue. Separate co-stainings for Ifit1, Fgl2
and Atf3 with tdTom, confirmed the co-expression of these
marker genes in Gli1 or Pdgfrβ lineage derived cardiac fibroblasts
(Supplementary Fig 4b). For Ifit1, we observed tdTom co-staining
in focal interstitial areas (Supplementary Fig. 4b). Fgl2 and Atf3
were expressed in fibroblasts throughout the left ventricular tissue
with no noticeable enrichment in areas of fibrosis or larger vessels
(Supplementary Fig 4b). Atf3 has already been described as a
marker gene for cellular stress response induced by different
stimuli21. More specifically within the heart, Atf3 was reported to
be elevated toward the terminal stage of the mitochondrial
integrated stress response, suggesting the Atf3-Fib subtype might
be involved in this response22.

We next asked whether fibroblast subtypes differ in their
abundance in cardiac homeostasis and injury (Fig. 3f and
Supplementary Fig. 4c, d). Interestingly, ECM-Fib continuously
increased significantly after TAC, while IntFib initially increased
after 14 days and then decreased again at 28 days. For the
remaining subtypes we did not observe significant changes in our
composition analysis, except for a decrease of Fib3 after 14 days
(Fig. 3f and Supplementary Fig. 4d). Analysis of cell cycle
associated gene expression yielded no detection of fibroblast
proliferation, suggesting that ECM-Fib might expand through
differentiation rather than proliferation (Supplementary Fig. 4e).
A similar finding was reported by McLellan and colleagues in a
murine model of Angiotensin 2 induced cardiac remodeling
(AngII model)23.

To further analyze whether fibrotic ECM deposition is
primarily driven by specific fibroblast subtypes, we compared
ECM expression across fibroblast subtypes. The ECM score was
largely similar in all fibroblast subpopulations in homeostasis,
while after TAC specifically the ECM-Fib cluster showed the
highest ECM score, followed by Fib1 and IntFib (Fig. 3g and
Supplementary Fig. 4f). Comparing particular collagens including
different functional groups of collagens24, revealed Fib1 and
ECM-Fib as highest collagen expressing fibroblasts (Fig. 3h and
Supplementary Fig. 4g, h). ECM-Fib showed strong expression of
fibrillar collagens (e.g., Col1a1/2) 14 days after TAC, which
declined at 28 days. Fib1 on the other hand primarily expressed
network forming (e.g., Col4/6 subtypes) and multiplexin collagens
(e.g., Col15a1) after injury.

By correlating gene expression values to the ECM score in
fibroblasts, we identified genes and cellular processes that are
potentially involved in the regulation of ECM expression (Fig. 3i).

Interestingly, we found Meox1 among the 100 highest correlating
genes, which was recently published as an important regulator of
fibroblast activation25,26. In addition, several integrin subtypes
showed a high correlation and GSEA based on correlating genes
detected multiple cell adhesion related GO terms (Fig. 3j). Several
studies have demonstrated the importance of integrins as
mediators of organ fibrosis and αv-integrin as a potential target
to prevent fibrosis progression27,28. In Summary, we were able to
define fibroblast heterogeneity in our dataset, detect subtype
specific changes in tissue abundance and ECM expression during
cardiac remodeling.

Differential gene expression analysis reveals Thbs4 as marker
of injury-related ECM-Fib. To further explore heterogeneity of
fibroblast subtypes during cardiac remodeling, we explored dif-
ferences in gene expression (using MAST29), comparing each
subtype between sham, TAC 14 days and TAC 28 days. After
clustering significantly upregulated genes, we performed GSEA
based on the identified distinct upregulated expression clusters
(Fig. 4a). The differential gene expression analysis indicated partly
overlapping responses of fibroblast subtypes to injury (Fig. 4a).
Genes in cluster 1 were upregulated 14 days after TAC and
functionally associated with collagen remodeling and PDGFRβ
signaling, whereas genes in cluster 5 and 7 were upregulated after
28 days and associated with response to external stimuli, cell-cell
junction and actin binding for all fibroblast subtypes. Among the
genes found to be upregulated by multiple subtypes, we found
Postn, Pdgfrβ, Tgfβ1, Thbs1 and several collagens among others
(Fig. 4a), that have been described previously to be involved in
fibrotic cardiac remodeling30. Overall, these genes likely reflect a
more general transcriptomic response across fibroblast popula-
tions. Interestingly, we observed specific patterns of unique dif-
ferentially expressed genes (DEG) for ECM-Fib (cluster 2), Fib1
(cluster 3), Fib2 (cluster 4) and IntFib (cluster 6). These gene
clusters were mostly associated with different ECM related gene
sets for Fib1, Fib2 and ECM-Fib, while IntFib showed specific
upregulation interferon-beta response related genes (Fig. 4a).

Since ECM-Fib represented the most injury-related fibroblast
population with an increasing transcriptional response after TAC
14 and 28 days, we analyze the DEG of this subtype for highly
specific genes (Fig. 4b and Supplementary Fig. 5a). Thbs4, Lox,
Ddah1 and Cthrc1 were among the top DEG for this cluster and
had been reported as specific for injury-related fibroblasts
before23,30,31. Particularly, Thbs4 was highly specific for activated
ECM-Fib after injury (Fig. 4c). We validated this finding by
immunostaining and observed that THBS4 indeed specifically
marked a subpopulation of tdTom+ PdgfrβCreER cells (Fig. 4d).
Moreover, THBS4 expression was strict to cardiac injury, while
absent in non-injured hearts (Fig. 4d). THBS4+-tdTom+ cells
showed focal expansion in line with development of patchy
interstitial cardiac fibrosis following TAC. This finding was
similarly observed in Gli1CreER and Col1a1CreER mice (Supple-
mentary Fig. 5b). Involvement of THBS4 in human fibrotic hearts
has been reported and was recently described as a marker of
activated and injury-related fibroblast by two single-cell scRNA-
seq studies of human heart disease32,33. We validated the
presence of THBS4 expression in PDGFRα+ fibroblasts in a
tissue sample from a human HF patient by in situ hybridization
(Supplementary Fig. 5c).

Acute and chronic injury-related differences in cardiac fibro-
blast subtypes. We next compared our fibroblast subtypes to
subtypes defined in the recently published datasets from refs. 15,23

by correlation (Supplementary Fig. 6a, b). We were able to
identify three conserved subtype clusters existing in all three
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datasets: (1) fibroblasts of high ECM expression: ECM-Fib,
FibThbs4/FibCilp, matrifibrocytes (MFCs); (2) interferon
responsive fibroblasts: IntFib, Fib8, interferon response fibroblast
(IFNr); (3) Ly6a+/CD248+ fibroblasts: Fib2, Fib5, progenitor-like
state fibroblast. Integration of the datasets validated this finding as
correlating subtypes clustered together (Supplementary Fig. 6c, d).
At this point it became apparent that one fibroblast subtype is

missing from our dataset, due to dissimilarity in study design.
Wif1+/Dkk3+ fibroblast seem to be located specifically in the
region of heart valves, the part of the heart which in our study was
only used for imaging, while Forte et al. and McLellan et al. used
whole hearts (Supplementary Fig. 6e–h). Heart valve associated
fibroblasts, marked by Wif1/Dkk3 expression, have also been
suggested as a separate subtype by refs. 3,15.
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One other important observation of our integration approach
was the different occurrence of Thbs4+ high ECM expressing
fibroblasts and Acta2+ myofibroblasts, with the latter clearly
found early after myocardial infarction (MI)15, though not in the
TAC (our data) nor AngII model23 (Supplementary Fig. 6i–l).
This suggests a strong diversity in injury dependent activation of
fibroblasts. Myofibroblasts seem to be required mainly in acute
ischemic injury with subsequent replacement fibrosis, since
contractile myofibers might be needed to contract the large
wounds after MI while they might not be required in interstitial
fibrosis caused by increased afterload.

Signal pathway and TF activity prediction identifies TEAD1 as
pro-fibrotic regulator. Signaling pathway analysis indicates high
JAK-STAT signaling in the IntFib cluster in sham that further
increased in TAC (Fig. 4e and Supplementary Fig. 5d). Moreover,
following TAC we observed increased hypoxia and VEGF sig-
naling, as well as TGFβ signaling across fibroblast-types with the
strongest activity in the ECM-Fib population (Fig. 4e).

TF activity estimation suggests stronger changes at 28 days
after TAC as compared to day 14 or sham (Fig. 4f). This also
corresponds to the larger number of DEG at the later time point
(gene cluster 7, Fig. 4a). IntFib were estimated to have high
activity of IRF1/9 and STAT1/2, in line with the interferon
responsive gene expression profile and JAK-STAT activity of this
subtype34. MEF2A and TEAD1, were among the TF with the
highest change in activity comparing sham and TAC 28 days time
point. MEF2A is known as a key regulator of myogenesis35 and a
mediator in cardiac remodeling36. We further observed increased
TEAD1 activity (Fig. 4f), which is an important cofactor
downstream of the hippo pathway37. Several studies investigated
the role of hippo pathway activity in cardiac disease38–40, with
one recent study specifically showing its importance for pro-
fibrotic fibroblasts activation41. We next correlated TF activity
with the ECM score to identify TFs that might regulate ECM
expression (Fig. 4g). This analysis pointed toward TF that have
been previously described in fibrosis such as MEIS142, RUNX243

and NCOA344. We again found TEAD1 highly associated with
ECM expression. A focused visualization of the TF activity score
per fibroblast subtype, clearly indicated a higher predicted
TEAD1 activity in ECM-Fib and two interesting genes involved
in TEAD1 activity (Mical245, Palld46), were found to be
specifically expressed and upregulated in ECM-Fib (Fig. 4h and
Supplementary Fig. 5e, f).

To validate a potential role of TEAD1 in fibroblasts we next
generated a murine cardiac Gli1+ fibroblast cell line by sorting
(FACS) of tdTom+ cells from Gli1CreER;tdTomato mice 2 weeks

after tamoxifen pulse with subsequent SVLargeT immortalization
(Fig. 4i). Retroviral overexpression of Tead1 induced a strong
expression of Acta2, Col1a1 and Fn1, independent of TGFβ
stimulation indicating a direct effect of TEAD1 on pro-fibrotic
differentiation (Fig. 4j and Supplementary Fig. 5g).

Matrix producing fibroblasts originate from a large fibroblast
pool. We identified ECM-Fib as a fibroblast subtype with the
highest matrix related gene expression and strongest expansion
after TAC (Fig. 3f). Interestingly, our data suggested that a small
fraction of these cells were already present in homeostasis prior to
injury (sham) (Fig. 3f and Supplementary Fig. 4d). To exclude
that this finding was an integration artifact, we separately clus-
tered fibroblasts from only our sham samples as well as fibroblasts
from the control data from refs. 15,23 (Supplementary Fig. 7a).
Transferring the cluster labels from the complete annotation and
comparison to the expression pattern of Postn clearly shows a
population of fibroblasts in the control datasets, which resembles
ECM-Fib (Supplementary Fig. 7a). In addition, in situ hybridi-
zation experiments identified Postn expressing fibroblasts (Pdgfrα+)
in sham hearts (Supplementary Fig. 7b). This provides strong evi-
dence of a, albeit minor, non-activated ECM-Fib population present
in homeostasis that lacks Thbs4 expression.

As described earlier, we did not identify proliferating
fibroblasts 14 or 28 days after TAC, suggesting that differentia-
tion could be the major process causing the ECM-Fib expansion
after injury (Supplementary Fig. 4e). However, we cannot
exclude that proliferation of pre-existing ECM-Fib occurs
outside of the time-points covered by our scRNA-seq analysis.
Analysis of RNA velocity in our fibroblast data separated by
time point indicated the Fib1 cluster as a potential origin of
ECM-Fib (Fig. 5a and Supplementary Fig. 7c). This was further
highlighted by the calculated latent time for each condition,
where transcriptional changes are first prominent in Fib1 at the
14 day time point and later (TAC 28) in ECM-Fib (Fig. 5b and
Supplementary Fig. 7d). High latent time values also occur in
Atf3-Fib, Fib2 and later in Fib3. Fib2 likely represents a
fibroblast subtype, which has been described as a potential
fibroblast progenitor (Ly6a+/CD248+)15,47,48. However, our
RNA velocity analysis did not indicate a transcriptional shift
from this cluster to any other. Therefore, we focused on a
potential differentiation path from Fib1 to ECM-Fib using
monocle 3 to calculate trajectories and select a path between
these two clusters (Fig. 5c and Supplementary Fig. 7e). Buechler
et al. recently reported a fibroblast population marked by
Col1a15 as a cross-organ intermediate fibroblast subtype,
between a potential Pi16+ progenitor population and different

Fig. 4 Mapping transcriptomic changes in fibroblast subtypes of highest ECM producing fibroblast, ECM-Fib. a Hierarchical clustered gene expression
heatmap of differentially expressed genes (DEG) analyzed per cluster and condition, combined with gene set enrichment analysis. DEG were identified using
MAST (only upregulated genes with adjusted p value <0.01 and logFC > 0.3). Top five enriched gene sets (hypergeometric test, one-sided) per gene cluster on
the right. Dot size refers to overlap of tested genes and gene set (precision). b DEG of ECM-Fib comparing sham and TAC 14 days visualized in a volcano plot,
displaying cluster specific (red) and non-specific (blue) DEG. c Violin plot comparing Thbs4 expression across all fibroblast subtypes per condition (*: adjusted p
value <0.01, differential gene expression analysis by MAST). d Confocal XY scans of entire cross sections of PdgfrβCreER;tdTomato hearts stained for THBS4
(scale bars 500 µm, inserts 50 µm). e Signal pathway activity prediction of fibroblast subtypes based on pathway responsive genes (PROGENy). Color indicates
relative predicted activity per pathway. f Transcription factor (TF) activity prediction based on TF regulons (DoRothEA) for fibroblast subtypes. Color indicates
relative predicted activity per TF. g Correlation of TF activity scores to ECM score. Top 10 highest correlating TF displayed. Color indicates relative predicted
activity per TF. Fibroblasts sorted by ECM score from low to high on the x-axis. h Violin plot of predicted TEAD1 transcription factor activity across fibroblast
subtypes (all conditions combined). Integrated boxplots show center line as median, box limits as upper and lower quartiles. ECM-Fib shows significant
differences to all other subtypes (*p < 0.001, two-sided Wilcoxon rank sum test, unpaired, Bonferroni adjusted p value). i Schematic overview of cardiac
fibroblast cell line generation. j Bar graphs of relative gene expression of Tead1, Acta2 and Col1a1 measured by RT-qPCR. Data points represent normalized
expression by 2–ΔΔCt method (mean ± SD, n= 3 independent experiments per group, *p value < 0.05; **p value < 0.01; ***p value < 0.001; ns not significant;
one-way ANOVA with Tukey’s post hoc). Source data are provided as a Source Data file. For details on statistics and reproducibility, see “Methods”. The Figure
was partly generated using Servier Medical Art, provided by Servier, licensed under a Creative Commons Attribution 3.0 unported license.
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Fig. 5 Analysis of potential fibroblast differentiation trajectories. a Velocities derived from the dynamical model for subclustered fibroblasts (TAC day
28) visualized as streamlines in a UMAP embedding. b UMAP embedding of fibroblast, separated per condition with calculated latent time (from
scVelo113). c Supervised trajectory from Fib1 to ECM-Fib estimated with Monocle 3. Color indicates calculated pseudotime. d Density plots for cell density
per pseudotime of different groups of fibroblasts. Upper panel, Fib1 and ECM-Fib density per pseudotime, lower panel density of all fibroblasts separated by
condition. e Heatmap of genes with a changing expression pattern over the calculated pseudotime in c and associated pathway activities. The heatmap was
clustered into five gene clusters by hierarchical clustering and the gene clusters were sorted according to pseudotime. Enriched pathways were mapped
with EnrichR103 using Bioplanet65 pathways database as a resource. Dot color indicates significance (−log10(p value)), dot size refers to overlap of tested
genes and gene set (count). f Smoothened gene expression for Cald1, Mical2, Palld, Col4a2 and Col3a1 over pseudotime (x-axis) separated by condition:
Sham, TAC 14 days and TAC 28 days (gray error band: 95% confidence interval). g Ligand receptor interactions based on CrossTalkeR between selected
subclusters defined in this study separate for each time point. Color indicates weight of interaction. h Bar graph showing changes in interactions, comparing
sham and TAC (left TAC 14 days, right TAC 28 days). Increase in interactions indicated in red, decrease in blue. For details on statistics and reproducibility,
see “Methods”.
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specifically differentiated subtypes48. Col1a15 was found as the
highest enriched marker gene for Fib1 (Fig. 3d), providing
further evidence for Fib1 as ECM-Fib precursor. As ECM-Fib
continuously increased in number after TAC (Fig. 3f), they
potentially represent a more terminal differentiated subtype and
therefore were selected as the endpoint of the trajectory. The
calculated pseudotime of the trajectory path displays ECM-Fib
enrichment toward later pseudotime (Fig. 5d), which is in line
with the significant continuous expansion of this subtype after
TAC (Fig. 3f). To understand the Fib1 to ECM-Fib differentia-
tion trajectory we next sorted genes along this differentiation
pseudotime by their expression change (Fig. 5e). Along the
differentiation trajectory, early DEG were associated with ECM-
receptor interaction and TGFβ signaling as well as focal
adhesion, while late in this trajectory expressed genes were
associated with dilated cardiomyopathy, syndecan 4 pathway,
translation and the BDNF signaling pathway (Fig. 5e). A unique
group of genes with a high expression profile at the start and end
of the trajectory, was associated with the AP-1 and ATF2
transcription factor network and hypertrophy pathway (Fig. 5e).
Looking into individual genes, we found TEAD1 activity
associated genes Cald1, Mical2 and Palld mid-to-late expressed
in pseudotime (Fig. 5f). Interestingly, we observed a high number
of ECM related genes changing expression over pseudotime with a
shift in the expression of collagen subtypes from network
collagens to fibrillar collagens (Fig. 5e, f and Supplementary
Fig. 7f, g). This indicates a strong change in the ECM related
expression profile of Fib1 while differentiating into ECM-Fib. Of
note, the differentiation trajectory described above should be
interpreted as a model, which is supported by our data.

Cellular crosstalk of the vascular niche. To understand the
cellular receptor-ligand interactions within the vascular and
perivascular niche we utilized CrossTalkeR49. Here, we focused
our analysis on selected subtypes of the niche and excluded
clusters containing low cell numbers and clusters with minor
transcriptional changes after TAC. Interestingly, at day 14 and 28
after TAC we observed heavy crosstalk between ECM-Fib and
Fib1 and other cardiac cell types such as VSMC and endothelial
cells (Fig. 5g–i). Since ECM-Fib were the major fibrosis driving
cells in our dataset and also showed the heaviest crosstalk after
injury, we next focussed on this fibroblast type. PI3K-AKT sig-
naling and focal adhesion related genes were highly enriched in
crosstalk pathways of ECM-Fib with other cell types at day 14
after TAC as compared to sham (Supplementary Fig. 7h). At
28 days after TAC, ECM-Fib crosstalk with other cardiac cell
types involved these two pathways and also ECM receptor
interaction, MAPK, RAP1, RAS and Relaxin signaling (Supple-
mentary Fig. 7h). PI3K-AKT has a known key role in
angiogenesis50 and the focal adhesion complex is the major
interactor with the ECM. We already described changes in ECM
expression by fibroblasts and it is likely that EC sense these
changes in ECM composition involving the focal adhesion
complex51. Therefore, we next turned toward the endothelium to
understand heterogeneity and transcriptomic changes of this key
vascular cell type in cardiac homeostasis and HF.

Endothelial heterogeneity in murine heart. Changes in endo-
thelium function or even loss are known to negatively impact HF
disease progression52. Since Cdh5CreER did specifically label the
cardiac endothelium (Fig. 2a–d), we now focused on analyzing
the single-cell gene expression data generated from these mice
separately. Stringent filtering resulted in a total of 14,595 high
quality EC transcriptomes for analysis (Fig. 6a and Supplemen-
tary Fig. 8a). We identified the following endothelial subtypes:

capillary EC (CapEC), capillary artery EC (CapA-EC), capillary
vein EC (CapV-EC), stressed EC (StrEC), angiogenic EC
(AngEC), interferon EC (IntEC), artery EC (ArtEC), lymphatic
EC (LymEC), cycling EC (CyclEC), DNA replicating EC (RepEC)
and endocardial EC (EndoEC). Our annotation was based on the
top 20 marker genes per endothelial subtype specifically for heart
and is consistent with the extensive murine EC atlas from ref. 53

(Fig. 6b). Most EC clusters in our dataset were easily identified
based on this published atlas, however, we noticed differences for
some populations (Fig. 6b). StrEC were found to be associated
with response to stress and showed significant enrichment for
stress induced genes like Hspa1a, Fos and Fosb (Fig. 5c, d and
Supplementary Data 1). The clusters RepEC and CyclEC were
annotated according to their high DNA synthesis (S) phase score
in RepEC, high G2M phase scores in CyclEC (Supplementary
Fig. 8b, c) and their marker genes (Mcm3, Mcm5, Top2a; Fig. 6d).
For the EndoEC population, we observed a distinct expression of
Npr3, a specific endocardial marker gene (Fig. 6e, f)54. Addi-
tionally, we found a high expression of Vwf, a well-known broad
marker of EC, also expressed in the endocardial layer55.

No evidence for endothelial cell contribution to the mesench-
ymal lineage after TAC. Interestingly, endothelial cells appear to
have the potential to upregulate collagen expression during car-
diac remodeling and have been suggested as a major source of
fibrosis driving cardiac myofibroblasts via endothelial mesench-
ymal transition (EndoMT)11. However, in our dataset all Cdh5
fate traced cells showed tremendously lower ECM gene expres-
sion as compared to all fibroblast populations and also pericytes
(Fig. 3a and Supplementary Fig. 3e). Furthermore, the overall
ECM gene expression in these cells did not increase substantially
after TAC (Supplementary Fig. 3e). We did not observe strong
similarities of Cdh5 fate traced cells with the fibroblast clusters in
the full integration of all mice since no Cdh5-tdTom+ cell was
observed close to the fibroblast populations (Fig. 2c, d). Similarly,
no fibroblasts were found in the Cdh5 fate traced populations
(Fig. 6a–d). We further did not observe enrichment of a recently
reported transient mesenchymal activation (EndMA)10 gene set
in endothelial cells after TAC (Supplementary Fig. 8d). Taken
together these findings indicate no evidence for EndoMT/EndMA
in the context of our 4-week TAC model.

Angiogenic endothelial cells expand in response to cardiac
remodeling. Composition analysis showed an increase in CyclEC
and RepEC numbers at day 14 after TAC, with a subsequent
decrease of both populations at the later time point at even sig-
nificantly lower numbers as compared to sham (Fig. 6g and
Supplementary Fig. 8e). This suggests an initial pro-angiogenic
phase of the injured heart in response to increased oxygen and
metabolic demand5, which is not sustained at the later time point.
Quantification of Ki-67 tissue expression in Cdh5 lineage tracing
hearts confirmed this finding (Fig. 6h). RNA in situ hybridization
experiments for the AngEC marker gene Apln showed enriched
expression in a region of cardiac fibrosis, in line with an angio-
genic response of EC particular in areas of injury (Supplementary
Fig. 8f). Interestingly, while we observed a clear trend toward
decreased capillary numbers this did not reach significance
(Supplementary Fig. 8g). The observed decrease of proliferation
EC after the initial phase might be related to the finding of a
recent study, which demonstrated an abortive angiogenic
response in the heart56. We also observed a loss of EndoEC and
LymEC in our composition analysis (Fig. 6g). The loss in EndoEC
can be explained by EndoEC damage as a result of the stress
induced on the heart, which was demonstrated in a rat HF
model57. The decreasing proportion of LymEC could have
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influenced HF progression in our model. This is described in a
recent preprint reporting poor cardiac lymphangiogenesis accel-
erating HF development58.

Cardiac injury induces hypoxia related regulatory programs in
EC. We next analyzed our EC data for changes in transcription
factor and signal pathway activity after TAC. For both analyses

we focused on CapEC, CapA-EC, CapV-EC, AngEC and ArtEC.
TF activity prediction analysis indicated an increased activity in
HIF1α, KLF5, KLF9, REST, and MYC, which was most promi-
nent in ArtEC (Fig. 6i and Supplementary Fig. 9a). KLF5 has
complex regulatory functions in endothelial cells, which
depending on specific conditions, include proliferation and pro-
inflammatory signaling59. Interestingly, KLF5 overexpression is
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described to compromise microvascular EC proliferation60.
HIF1α and MYC are closely related transcription factors under
hypoxic conditions61. In contrast to the predicted activity, we
found a lack of Hif1α expression in ArtEC, while HIF1α induced
genes known to be expressed in hypoxia, e.g., Eno162, were clearly
expressed (Supplementary Fig. 9b). Interestingly, HIF1α has also
been described as a negative regulator of TGFβ signaling in
TAC63 and we observed decreased SMAD3 TF activity. This is in
contrast with the predicted increase in TGFβ pathway activity in
ArtEC, potentially by non-canonical activation (Fig. 6i, j)64.
SNAI2 was reported as an important positive regulator of
angiogenesis65 and showed decreased activity particularly 28 days
after TAC, in line with reduced angiogenesis at this time point as
described above (Fig. 6g, h). Signal pathway activity prediction
indicated increased TGFβ and hypoxia pathway activity (Fig. 6j
and Supplementary Fig. 9c). Additionally, VEGF, WNT, EGFR
and MAPK signaling pathways were increased particularly in
AngEC following TAC (Fig. 6j and Supplementary Fig. 9c). VEGF
is a known master regulator of angiogenesis66 and direct target of
HIF1α67.

In order to identify other injury-related transcriptomic changes
in EC, we next performed differential gene expression analysis,
gene clustering and GSEA (Fig. 6k). Overall, there were more
pronounced changes at the 28 day time point (Supplementary
Fig. 9d). The DEG were in a large part associated with regulation
of cell migration and motility (gene cluster 3 and 4), as well as
blood vessel developmental and growth factor response (gene
cluster 2). Since migration is essential for angiogenesis68, we next
compared the different EC populations in regard to expression of
a gene set of positive cell migration regulators and detected
increased expression following TAC particularly in ArtEC (Fig. 6l
and Supplementary Fig. 9e). Since we observed prominent
transcriptomic changes of ArtEC as well as strong alterations of
their cellular interactions (Fig. 5h), we focused our ligand
receptor (LR) interaction analysis on this population (Fig. 6m
and Supplementary Fig. 9f). This analysis suggested increased
PI3K-AKT, MAPK, RAS, and RAP1 signaling between ArtEC and
fibroblasts (Fig. 6m). Intracellular signaling involving MAPK has
been described to be involved in cell migration69 and can even be
activated by mechanical forces70. The transcriptional changes
particularly detected in ArtEC can potentially be explained by
direct effects of the TAC model on coronary arteries, where
hemodynamic changes induce endothelial damage followed by
fibrotic remodeling71. The significantly diminished proliferative
EC populations at 28 days after TAC together with the detected
transcriptional changes at this time point could contribute to the
mismatch in capillary density to cardiomyocyte size, which is

thought to be involved in cardiac hypertrophic remodeling and
HF72,73.

Pericytes contribute to increased ECM deposition in cardiac
remodeling. Mural cells of the vascular wall consist of pericytes
and VSMC. Cellular heterogeneity of these two cell types and
their close relation have become more into focus of recent
research3,74, however their exact role and heterogeneity during
HF remains mostly unknown. We were able to cover 7309 mural
cells by lineage tracing derived fromMyh11CreER, Ng2CreER and
partially from PdgfrβCreER mice (Fig. 2a–f and Supplementary
Fig. 10a). We excluded Gli1 lineage derived mural cells from
analysis, as the number of cells from the Cre driver was extremely
low (Fig. 2c, d). We identified eight distinct subclusters within
this mural population (Fig. 7a). Based on marker gene expression
and related enriched gene sets we defined three VSMC and four
pericyte subclusters (Fig. 7b–d and Supplementary Data 1).
Beside classical mural cells, we also found a cluster of Schwann
cells (Sw). These cells were mostly derived from the Ng2 lineage
(Fig. 6e). Besides being a well-known marker for pericytes in the
adult heart and other organs74, NG2 is known to be expressed in
the adult central nervous system explaining its name neural glial
antigen 275. We observed no significant transcriptomic changes in
the Sw cluster after injury (Supplementary Fig. 10b). The VSMC
subtypes 1 and 2 were transcriptionally highly similar and dif-
fered mostly by different levels of contractile gene expression,
with VSMC2 expressing less Acta2, Tagln and Myh11 (Fig. 7b).
We found a subcluster of stressed VSMC and stressed pericytes,
which showed beside their cell type specific marker gene
expression similar gene expression profiles associated with the
AP-1 complex and stress response (Fig. 7d). Similar to Atf3-Fib,
we observed minor Atf3 expression also in mural cells (Supple-
mentary Fig. 10c). Pericyte 1 (Peri1), pericyte 2 (Peri2) and
interferon pericytes (IntPeri) expressed described pericyte mar-
kers Kcnj8, Abcc9, Colec1176 (Fig. 7b). The interferon response
signature of IntPeri was similar to the expression signature in
IntFib and IntEC (Figs. 3d and 6d). We validated the presence of
Ifit1 expressing pericytes byin situ hybridization (Supplementary
Fig. 10d). Peri1 and Peri2 differed mostly by differences in
expression levels of marker genes which were associated with
more ECM interaction for Peri1 (Fig. 7b–d) and processes
involving potassium channel regulation for Peri2 (Supplementary
Fig. 10e). ECM related functions of Peri1 could potentially point
toward a stronger functional focus for structural support of the
microvasculature in this pericyte subtype77, while the regulation
of potassium channel activity was recently described to be
important for the regulation of blood flow in the brain

Fig. 6 Exploration of TAC induced effects on cardiac EC. a UMAP of 14,595 subclustered Cdh5CreER;tdTomato fate traced endothelial cells (EC) after
integration from all conditions. Cluster annotation: Capillary (CapEC), capillary artery (CapA-EC), capillary vein (CapV-EC), stressed (StrEC), angiogenic
(AngEC), interferon (IntEC), artery (ArtEC), lymphatic (LymEC), cycling (CyclEC), DNA replicating (RepEC) and endocardial (EndoEC). b Left, gene
expression heatmap of 20 marker genes per EC atlas subtype53 (x-axis). Right, Cdh5 lineage derived dataset annotation and subcluster proportion. c Top
five representative gene sets enriched (hypergeometric test, one-sided) in marker genes per EC subtype. Dot size refers to overlap of tested genes and
gene set (precision). Full list in Supplementary Data 1. d Top five expressed marker genes per cluster. Dot size refers to proportion of cells expressing the
gene per cluster. e Violin plot of Npr3 and Vwf expression in EC subtypes. f UMAP visualization of Npr3 expression. g Normalized proportion of EC per
subcluster (*: false discovery rate (FDR) <0.05 and absolute log2 fold change >0.58, see also Supplementary Fig. 8d). h Cardiac Ki-67 quantification,
values are expressed as percentage Ki-67+-tdTom+ of all tdTom+ cells (mean ± SD; n= 3 sham, n= 3 TAC 14 days, n= 4 TAC 28 days, independent
replicates; *p value <0.05; one-way ANOVA). Source data are provided as a Source Data file. Right, representative images (scale bar 50 µm). i TF activity
prediction based on TF regulons (DoRothEA) for selected EC subtypes. j Signal pathway activity prediction of selected EC subtypes based on pathway
responsive genes (PROGENy). k Gene expression heatmap of hierarchical clustered, differentially expressed genes (DEG) combined with gene set
enrichment analysis (GSEA). DEG were identified using MAST (only upregulated genes with adjusted p value <0.01 and logFC >0.3). Right, top five
enriched gene sets (hypergeometric test, one-sided) per gene cluster. Dot size refers to overlap of tested genes and gene set (precision). l UMAP
visualization of positive cell migration regulation scores. m GSEA of changing interactions between sham and TAC 28 days involving ArtEC. Color indicates
up/down significance odds. For details on statistics and reproducibility, see “Methods”.
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microvasculature18. Comparison of mural subtype contribution
per condition to each subcluster revealed a significantly higher
proportion of IntPeri in TAC (Fig. 7f and Supplementary
Fig. 10f). In line with this observation, proliferative expansion or
substantial loss of mural cells was not recognized by confocal
imaging following TAC (Myh11CreER;tdTomato, Fig. 1f and
Supplementary Fig. 1e). Since THBS4 was a good marker for
regions of injury associated ECM-Fib, we performed

THBS4 staining on tissue sections from our Myh11 and Ng2 fate
tracing hearts to be able to specifically focus on areas of inter-
stitial fibrosis (Fig. 7g and Supplementary Fig. 10g). We were not
able to observe any expansion or loss of tdTom+ cells in these
fibrotic THBS4+ regions.

After applying the ECM scoring to the mural cell subclusters,
we observed a higher collagen score for pericytes compared to
VSMC, as well as an overall higher ECM score (Fig. 7h, i). This
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Fig. 7 Mural cell heterogeneity and changes in TAC induced cardiac remodeling. a UMAP of 7309 subclustered mural cells after integration of
PdgfrβCreER, Myh11CreER, Ng2CreER derived cells from all conditions. Cluster annotation: pericyte 1 (Peri1), pericyte 2 (Peri2), vascular smooth muscle cell
(VSMC 1), VSMC 2, stressed VSMC (StrVSMC), stressed pericyte (StrPeri), interferon pericyte (IntPeri) and Schwann cells (Sw). b Dot plot of top five
expressed marker genes per cluster. Dot size refers to proportion of cells expressing the gene per cluster. c UMAP embedding showing gene expression of
selected marker genes:Myh11, Acta2, Notch3, Kcnj8, Abcc9, Colec11. d Top two representative gene sets enriched (hypergeometric test, one-sided) in marker
genes per mural subtype. Dot size refers to overlap of tested genes and gene set (precision). Full list in Supplementary Data 1. e Normalized contribution of
each fate traced genotype to the corresponding cluster. f Normalized proportion of mural cells per subcluster from sham and TAC condition samples (*:
false discovery rate (FDR) <0.05 and absolute log2 fold change >0.58, see also Supplementary Fig. 10f). g Confocal immunofluorescence image of
Myh11CreER tagged TAC heart stained for THBS4 (scale bar 50 µm). h UMAP embedding with ECM score per cell. i Violin plot of summarized ECM scores
per condition and subcluster (all three fate traced fibroblast genotypes combined). Integrated boxplots show center line as median, box limits as upper and
lower quartiles. Peri1 and Peri2 show a significant difference between sham and TAC (*p < 0.001, two-sided Wilcoxon rank sum test, unpaired, Bonferroni
adjusted p value). j Top significant enriched gene sets associated with either shared or unique differentially expressed genes (DEG) per subtype. Dot size
refers to overlap of tested genes and gene set (precision). k Signal pathway activity prediction of selected EC subtypes based on pathway responsive genes
(PROGENy). l Gene set enrichment analysis (GSEA) of changing interaction involving Peri1 and Peri2. Color indicates up- or down significance odds. For
details on statistics and reproducibility, see “Methods”.
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score was higher in cells from the TAC condition, indicating that
pericytes start producing collagen similar to fibroblasts. However,
we need to point out that the total ECM score of mural cells
compared to fibroblast populations was clearly lower (Supple-
mentary Fig. 3e). In line with this finding, differential gene
expression analysis detected collagens as highest upregulated
genes in TAC for Peri1 and Peri2 (Supplementary Fig. 11a, b).
Overall pericytes showed a stronger reaction to TAC with more
genes being up and downregulated compared to VSMC
(Supplementary Fig. 10b). GSEA of DEG also suggested mainly
terms associated with increased ECM expression in both pericyte
subtypes (Fig. 7j). We next performed RNA in situ hybridization
to validate pericytes as contributors to matrix production after
injury. Co-staining of the pericyte marker Kcnj8 with Col1a1 in
injured hearts identified only a very low number of Col1a1 co-
expressing Kcnj8+ pericytes (Supplementary Fig. 11c), suggesting
that pericytes might not contribute much to fibrillar matrix
expression. Analysis of pathway activity focused on the major
pericyte and VSMC clusters revealed strong association with a
specific upregulation of TGFβ and JAK-STAT signal pathway
activity (Fig. 7k and Supplementary Fig. 11d).

In our subsequent analysis for changes in receptor-ligand
interaction in mural cells, we focused on signaling from and to
Peri1 and Peri2, as these cells showed the most transcriptomic
changes (Fig. 7l). Cellular crosstalk between pericytes and
endothelial cells have been implicated to have an important role
in angiogenesis78,79. This analysis revealed changes in signaling
between pericytes, endothelial cells and fibroblasts, involving
notch signal pathway, PI3K-AKT and focal adhesion (Fig. 7l).
Overall, the results suggest a role of pericytes in the regulation of
angiogenic processes in the context of cardiac remodeling.

Discussion
We have here combined inducible genetic fate tracing with high-
resolution confocal imaging and scRNA-seq to dissect changes
and heterogeneity in the vascular and perivascular niche during
HF. Fate tracing experiments using six different Cre drivers
revealed changes in localization and transcriptome of fibroblasts,
endothelial and mural cells in an early phase of hypertrophic
cardiac remodeling.

Integration of scRNA-seq data obtained from these fate tracing
experiments clearly demonstrated which cell types are labeled by
each Cre driver and the plasticity of endothelial, mural and
fibroblast populations in pressure overload induced cardiac
remodeling. PdgfrβCreER, Gli1CreER and Col1a1CreER all
recombined within all fibroblast subtypes with the latter two
being fibroblasts specific and PdgfrβCreER being the broadest
mesenchymal Cre driver tested that also recombined in mural
cells, in line with previous studies80,81. As expected Cdh5CreER
was EC specific, while Myh11CreER and Ng2CreER specifically
labeled mural cells. It should be noted that Ng2CreER, albeit being
mural cell specific, was significantly less efficient for labeling
cardiac mural cells as compared to Myh11CreER. This suggests
that Myh11CreER is a better tool for further lineage tracing stu-
dies of cardiac mural cells.

We have previously reported that Gli1 marks cardiac myofi-
broblast precursors that possess mesenchymal stem cell (MSC)
characteristics in the dish and that genetic ablation of these cells
ameliorates cardiac fibrosis and stabilizes cardiac function after
ascending aortic constriction82. Our scRNA-seq data here indi-
cates that Gli1CreER mice recombine in the various cardiac
fibroblast populations. This raises the question whether all car-
diac fibroblasts would possess potential MSC characteristics in
the dish and whether a difference between fibroblasts and MSC-
like cells exists.

A recent study by Soliman et al. reports a distinct heterogeneity of
cardiac fibroblast, where a large population of PDGFRα+/SCA-1+

cells display MSC-like progenitor features47. These progenitors
generate PDGFRα+/SCA-1− fibroblasts upon injury. Our single-cell
data identified two different fibroblast populations with enriched
Sca-1 (gene symbol: Ly6a) expression, Fib2 and IntFib. Both sub-
types seem to be conserved independent of injury models as they
were also found by refs. 15,23. In contrast to the loss of PDGFRα
+/SCA-1+ fibroblasts after injury as reported by Soliman et al., Sca-
1 high Fib2 did not decrease after injury in our study and
others15,23. Interestingly, Tang et al. reported that Sca-1 fate traced
PDGFRα+ cells expand in the injury region after MI83. Our tra-
jectory interference analysis suggested a more general pool of
fibroblasts as potential progenitors, mostly consisting of the Fib1
type, however, this computational model needs to be considered
carefully. The progenitor role of cardiac fibroblasts remains con-
troversial and more experiments are needed to dissect the pro-
genitor potential of the different cardiac subtypes.

Our data confirms that fibroblasts are the major source of
fibrosis in the murine heart following pressure overload4. Fur-
thermore, all fibroblast subtypes seem to get activated and
increase their ECM gene expression contributing to scar forma-
tion, however we identified ECM-Fib as the highest ECM gene
expressing population. We think subtypes similar to ECM-Fib
were found by previous single-cell sequencing studies15,23.
McLellan et al. describe FibThbs4 and FibCilp as injury-related
subtypes with increased ECM remodeling related gene expression.
Forte et al. found a fibroblast subtype that occurred only at later
stages of cardiac remodeling 14 days after MI, which they termed
MFCs according to an earlier described fibroblast type84, found in
the maturing scar. Taken together, it seems plausible that these
results all describe a similar subtype of fibroblasts, which occurs
in non-acute cardiac remodeling and is characterized by higher
expression of ECM related genes.

We did not observe specific expression of Acta2 for the ECM-
Fib subtype or any other fibroblast subtype in our study even
when integrating with data from other murine heart disease
models15,23, indicating that in our injury model no classic myo-
fibroblasts developed. We propose that depending on the type of
cardiac injury the requirement of contractile proteins is needed in
scar forming myofibroblasts. This might be particularly impor-
tant following MI to quickly close the large defect of the left
ventricular wall in replacement fibrosis while in interstitial
fibrosis following pressure overload this might not be an
important feature of myofibroblasts. For many years the term
myofibroblast was used for the major matrix producing fibrosis
driving cell types. However, data presented here and various other
scRNA-seq datasets across major organs15,19,23,84,85 indicated
that the major matrix producing cell types are often not expres-
sing classical myofibers (Acta2) and thus the terminology needs
to be adapted.

Comparison of DEG of all fibroblast subtypes revealed a gen-
eral transcriptional change including upregulation of Postn. Postn
was previously described as a myofibroblast marker86. Our data
suggest that Postn expression increases in all fibroblast clusters
including the ECM-Fib population, suggesting Postn as a broad
marker of fibroblasts activation. In TAC hearts, Thbs4 specifically
marked the ECM-Fib population which was defined by highest
ECM expression in our dataset and we observed extensive
expansion of these cells in focal fibrotic areas of the myocardium.
While ECM-Fib were also present in homeostasis, the lack of gene
expression and presence of THBS4 in areas of homeostatic hearts
indicates this subtype is specifically activated after injury. Our
data indicated that TEAD1 is strongly activated in ECM-Fib after
injury and in vitro validation confirmed that TEAD1 over-
expression can induce fibroblast activation and matrix expression
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in a Gli1+ cell-line. TEAD1 is an important cofactor of the hippo
pathway and it has been shown that Tead1 expression correlates
with expression of Acta2 in murine fibroblasts where the Tead1
motif was enriched particularly post MI41. Several recent studies
focusing on the hippo pathway and its central downstream TF
YAP, describe a complex regulatory role in wound healing and
scar formation by regulating fibroblasts activation87, cardiomyo-
cyte proliferation and differentiation39,88.

Regulation of angiogenesis is an important process in cardiac
remodeling and increased angiogenesis prevents functional
decline in HF89. Increased angiogenesis occurs early during car-
diac remodeling while it later transitions into capillary dysfunc-
tion and capillary loss90. The captured 2-week time point in our
study likely results from the early acute phase of compensatory
mechanisms, in line with the observed expansion of the RepEC
and CyclEC populations, but is not maintained until the 4-week
time point. Proliferation of EC from pre-existing vessels has been
shown to be the major source of cardiac neovascularization54.
However, the poor pro-angiogenic potential of cardiac EC has
previously been demonstrated56 and we found several changes
which might be responsible, including a mixture of pro- and anti-
angiogenic TF and pathway activities. Especially ArtEC seem to
react to TGFβ, which has been described as an anti-angiogenic
factor89. Changes in cellular interaction were highly related to
ECM-Fib and ArtEC including PI3K-AKT signaling and focal
adhesion complex interactions. These functional complexes likely
play a central role in the niche interaction changes, since the
ECM composition is changed by the ECM-Fib, which in turn can
be sensed by the ArtEC. Interestingly, targeting integrin subtypes,
which are the connection between the focal adhesion complex
and the ECM, has already been shown as promising therapeutic
targets in fibrotic remodeling27. The cellular origin of cardiac
myofibroblast has been debated for a while91 and even endothelial
cells via EndoMT have been suggested as a major contributor11.
The plasticity of endothelial and mesenchymal cells during dis-
ease has been demonstrated in several publications7–11. Impor-
tantly, our combined inducible genetic fate tracing and scRNA-
seq data clearly points against plasticity of endothelial and
mesenchymal cardiac cells in murine pressure overload
induced HF.

Mural cells, as one of the major non-myocyte cell types, have
become more into the focus of cardiac research92. We demon-
strate here an unprecedented map of mural cells in HF. Similar to
recently published data3, mural cells seem less heterogeneous
than fibroblasts or EC. Interestingly, we detected a transcriptional
intermediate stage between pericytes and VSMC, which has been
reported recently3. Pericytes have been described as progenitors
of coronary artery smooth muscle cells92. Our data demonstrates
a close transcriptional relationship of these cell types, while we
did not observe previously reported potential differentiation
processes toward other cardiac lineages93. However, we observed
that mural cells increase the expression of ECM related genes
after injury. Especially pericytes express more collagens, which
might be explained by the structural supportive function of
pericytes toward EC in small capillaries48. Since we were only able
to generate a single early time point after TAC and no functional
validation for mural cell contribution to cardiac scar formation,
further studies are needed to validate their contribution to cardiac
remodeling and fibrosis. Furthermore, we need to point out that
we lack the acute phase directly after TAC surgery. In addition,
the time frame of 4 weeks after TAC represents an earlier phase of
hypertrophic remodeling and not the later decompensated phase
of HF94,95. One potential limitation of our study is that in the
PdgfrβCre and Myh11Cre crossings we did not see significant
hypertrophy suggesting a milder phenotype and or variance in
the model. Additionally, we acknowledge that our lineage tracing

based enrichment strategy excluded cardiomyocytes, therefore we
lack analysis of the potential influence from this cell population.
Lastly, trajectory analyses and cell-cell communication analyses
represent computational predictions, thus interpretation must be
considered with caution.

Taken together, our study presents insights into the tran-
scriptomic changes of the heterogeneous perivascular niche of the
murine heart in hypertrophic remodeling. We identified a specific
fibroblast subpopulation that exists during homeostasis acquires
Thbs4 expression and expands after injury. Endothelial cells
showed a proliferative response at our first time point, which was
not sustained in later remodeling, together with transcriptional
changes related to hypoxia, angiogenesis, and migration.

Methods
Ethics. The local ethics committee of the University Hospital RWTH Aachen
approved all human tissue protocols (EK 151/09).

Animals. All animal experiment protocols were approved by the LANUV-NRW
(protocol number 81-02.04.2018.A020) Germany. PdgfrβCreERt2 (i.e.,B6-Cg-
Gt(Pdgfrβ-CreERT2)6096Rha/J, JAX Stock #029684; n= 9, 2 male, 7 female),
NG2CreER (B6.Cg-Tg(Cspg4-Cre/Esr1*)BAkik/J, JAX Stock #008538; n= 6, 6
female), Gli1CreER (Gli1tm3(Cre/ERT2)Alj/J, JAX Stock #007913; n= 14, 7 male, 7
female), Myh11CreER (B6.FVB-Tg(Myh11-Cre/ERT2)1Soff/J, JAX Stock #019079;
n= 6, 6 male) were purchased from Jackson Laboratories (Bar Harbor, ME, USA).
C57Bl6/129SV-Collagen1alpha1-GFP-CreERT2 (Col1a1CreER, n= 10, 4 male, 6
female) was a kind gift of Ivica Grgic (Marburg). Cdh5(PAC)-CreERT2
(Cdh5CreER, Taconic no. 13073; n= 12, 4 male, 8 female) was a kind gift of Rui
Benedito (Madrid). All Cre driver lines were crossbred with Rosa26tdTomato (i.e.,
B6.Cg-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J, JAX Stock #007909) also from Jack-
son Laboratories, to generate the according tamoxifen inducible fate tracing gen-
otype. Mice were housed with two to five animals per cage at a 12 h light-dark cycle
at sustained temperature (20 °C ± 0.5 °C) and humidity (~50% ± 10%) and ad
libitum access to food and water. For inducible fate tracing mice (8 weeks of age) of
all different strains were injected intraperitoneal four times with 3 mg tamoxifen.
After a washout period of 21 days, TAC was performed to induce cardiac hyper-
trophy or sham surgery as a control procedure. In brief, mice were anesthetized
and analgesia applied. After intubation, the chest was opened via the second
intercostal space at the left upper sternal border through a small incision and aortic
constriction was performed by tying a ligature against a 27G needle. Control mice
underwent a sham operation with a skin incision. All mice were sacrificed 14 or
28 days after surgery.

Human tissue sample. The human cardiac specimen was obtained from a 50-
year-old patient who underwent left ventricular assist device surgery due to
ischemic cardiomyopathy. The local ethics committee of the University Hospital
RWTH Aachen approved all human tissue protocols (EK 151/09). All tissue
samples used for this study were obtained with written informed consent from all
patients in accordance with the guidelines of The Declaration of Helsinki 2000.

Echocardiography measurement. Echocardiography was performed on a
Visualsonics Vevo 3100 (FUJIFILM VisualSonics, Canada) in 2% isoflurane
anesthesia. Respiration rate and heartbeat were continuously monitored through-
out via the stage electrodes. Thoracic fur was removed by depilatory cream and
mice were fixed on a heated table (37 °C). The MX550D echocardiography
transducer was used to scan the parasternal long and short axis views in B-Mode,
with a target heart rate of 450–500 bpm. The peak trans-TAC pressure was
measured as previously described95. In brief, color doppler was used to visualize
flow at the constriction and the pulse-wave was measured by doppler. The peak
pressure was calculated using the Bernoulli equation. To acquire 4D imaging data,
the step motor was positioned just below the apex and the motor aligned to take
concentric short axis images in 0.2 mm steps. At each position, a complete cardiac
cycle was recorded using automated ECG and respiratory gating. Ejection fraction
was calculated based on volumetric measurement of the 4D images using Vevo Lab
(v5.5.1, FUJIFILM VisualSonics, Canada).

Single-cell isolation and FACS sorting. Mice were euthanized and the heart was
perfused with 20 ml PBS (Gibco™ PBS, pH 7.4, 10010056). Hearts were removed,
weighed and kept on ice until all hearts were collected for tissue dissociation. To
generate a single-cell solution, hearts were cut transversely where upper half was
used for imaging and lower halves were minced in a petri dish on ice using a
scalpel, and transferred to C-tubes (gentleMACS C Tubes, 130-096-334) containing
with 6 ml digestion medium (RPMI 1640 #31870025 with 0.2 mg/ml Liberase™ TL
Research Grade (Roche, 5401020001 and 60 U/ml DNase I (Sigma D5025)) and
incubated for 15 min at 200 RPM at 37 °C on an orbital shaker. Afterwards C-tubes
were run on the gentleMACS™ Dissociator using the spleen4 program followed by a

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30682-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3027 | https://doi.org/10.1038/s41467-022-30682-0 | www.nature.com/naturecommunications 15

www.nature.com/naturecommunications
www.nature.com/naturecommunications


second 15 min 37 °C incubation on the orbital shaker. The sample was from now
on always kept at 4 °C. Next, the sample was filtered through a 100 µm cell strainer
and cells were washed by centrifugation for 5 min at 300 × g and resuspended in
20 ml ice cold FACS buffer (PBS+ 2% fetal bovine serum). Erythrocytes were lysed
for 5 min on ice (eBioscience 1X RBC Lysis Buffer, in MilliQ water) and the cells
were washed again with 10 ml FACS buffer. For enrichment of lineage traced cells,
the cells were stained with DAPI (Roche, 10236276001) and sorted with a Sony LE-
SH800 for DAPI negative, tdTomato mid-to-high signal (Supplementary Fig. 12).
At least three individual hearts were pooled per condition and genotype.

Fibrosis staining Sirius Red. Fibrotic collagen matrix was stained using picro-
sirius red and representative pictures imaged using brightfield microscopy (Leica).

Immunofluorescence staining. Extracted upper parts of the hearts were fixed for
2 h in 4% paraformaldehyde (Carl Roth) at RT. These parts were then transferred
to 30% sucrose solution in PBS and kept at 4 °C overnight to prevent ice crystal
formation. Samples were then embedded in Tissue-Tek O.C.T. Compound
(Sakura) and quickly frozen and stored at −80 °C until sectioning. In total, 4 μm
cryosections were then washed in PBS and permeabilized in PBST-0.1% (PBS with
0.1% Triton X-100 (Sigma-Aldrich). Blocking was performed in 10% BSA in PBS,
followed by 1 h incubation of primary antibody. Slides were washed three times for
5 min in PBS and incubated afterwards with secondary antibody for 30 min. Lastly,
nuclei were counterstained with 4′,6-diamidino-2-phenylindole (DAPI) staining
(Roche, 1:10,000) and slides were mounted with ProLong Gold (Invitrogen,
P10144). Used antibodies are listed here: Anti-Mouse CD31 (BD Biosciences,
1:100, 553370), Thrombospondin-4 Antibody (Novus Biologicals, 893655, 1:100)
and Ki-67 Monoclonal Antibody (SolA15) (eBioscience, 14-5698-80, 1:100). AF488
donkey anti goat (Jackson Immuno Research, 1:200), and AF647 donkey anti-
rabbit (Jackson Immuno Research, 1:200) and AF647 donkey anti-rat (Jackson
Immuno Research, 1:200).

RNA in situ hybridization staining. RNA in situ hybridization was performed
using OCT embedded tissue samples and the RNAScope Multiplex Detection KIT
V2 (RNAScope, 323100, Advanced Cell Diagnostics, United States) according to
the manufacturer’s protocol. The following probes were used for the RNAscope
assay: Mm-Apln 415371, Mm-Kcnj8 411391, Mm-Abcc9 411371, Mm-Iftit1
500071, tdTomato 317041, Mm-Postn 418587, Mm-Pdgfrα 480661, Mm-Colec11
855961, Mm-Alf3 4268691, Mm-Pdgfrα 480661, Mm-Pdgfrβ 411381, Mm-Col1a1
319371.

Confocal imaging and Ki-67 quantification. Images were acquired utilizing the
Nikon A1R confocal microscope using ×10, ×40 and ×60 objectives (Nikon). Raw
imaging data were processed using Nikon Software or ImageJ. Ki-67 stained hearts
of Cdh5CreER lineage were analyzed using ImageJ, nuclei were assessed on
tdTomato+ and Ki-67+ signal and quantified accordingly.

Generation of murine cardiac Gli1+ fibroblast cell line. Gli1CreER;tdTomato
mice were sacrificed 2 weeks after tamoxifen treatment (Carbolution, CC99648).
Cardiac tdTomato+cells were sorted by FACS and immortalized 14 days later with
pBABE-puro SV40 LT (Addgene: #13970; a gift from Thomas Roberts). Retroviral
particles were produced by transient co-transfection of HEK293T (ATCC,
#CRL3216, Lot:70008735, aliquots from passage 2 were used for the experiments)
cells with pCL-Eco (Addgene plasmid #12371, a gift from Inder Verma). In total,
72 h after transduction of Gli1+ cells, infected cells were selected with 7-day
puromycin titration.

Retroviral overexpression of murine Tead1 combined with TGFβ treatment.
For cloning of pMIG-muTead1 the cDNA of Tead1 was PCR amplified from
murine heart tissue using the primer sequences 5′-CTAGATCTGCCACCATG
GAGCCCAGCAGCTGGAG-3′ and 5′-ATACTCGAGTCAGTCCTTCACAAG
CCTGTAGATATGG-3′. Subsequently, the PCR product was digested with BglII
and XhoI and cloned into pMIG (pMIG was a gift from William Hahn (Addgene
plasmid #9044). Retroviral particles were produced by transient transfection of
HEK293T cells with the packaging plasmid pCL-Eco (Addgene plasmid #12371,
which was a gift from Inder Verma) in combination with pMIG-muTead1 or
empty vector using TransIT-LT (Mirus). Viral supernatants were collected from
HEK293T cells 48–72 h after transfection, clarified by centrifugation, supplemented
with 10% FCS and Polybrene (Sigma-Aldrich, final concentration of 8 μg/ml) and
0.45 μm filtered (Millipore; SLHP033RS). Cell transduction was performed by
incubating immortalized cardiac Gli1CreER;tdTomato labeled fibroblast cells with
viral supernatants for 48 h. Transduction efficiency was analyzed by FACS-analysis
for level of EGFP-expressing cells.

For TGFβ treatment, transduced cells were serum starved for 24 h followed by
treatment with 10 ng/ml TGFβ (PeproTech, 100-21) or PBS control for 24 h. Cells
were harvested and RNA isolated using the RNeasy Mini Kit (Qiagen, 74106) and
reverse transcription performed (High-Capacity cDNA Reverse Transcription Kit,
Thermo Fisher, 4368813). qPCR for Tead1, Gapdh, Atca2, Col1a1 and Fn1 was
performed with SYBR Green Supermix (Bio-Rad, 1725125), using to following

primers: Gapdh forward primer (5′-AAGTGGTGATGGGCTTCCC-3′); Gapdh
reverse primer (5′-GGCAAATTCAACGGCACAGT-3′); Acta2forward primer
(5′-GTCCCAGACATCAGGGAGTAA-3′); Acta2 reverse primer (5′-TCGGAT
ACTTCAGCGTCAGGA-3′); Col1a1 forward primer (5′-TGACTGGAAGAG
CGGAGAGT-3′); Col1a1 reverse primer (5′-GTTCGGGCTGATGTA-3′); Fn1
forward primer (5′-ATCTGGACCCCTCCT-3′); Fn1 reverse primer (5′-GCC
CAGTGATTTCAG-3′); Tead1 forward primer (5′-TCAAGCCGCCATTA
AGGTGT-3′); Tead1 reverse primer (5′-GCAGTAGCCGAGACGATCTG-3′).

Single-cell RNA library generation. In total, 16,000 FACS sorted cells were loa-
ded for each sample (except for Ng2, ~2000 cells per sample) onto a Chromium
Single-Cell B Chip Kit (v3.0, PN-1000073). cDNA libraries were generated fol-
lowing the standard protocol form Chromium Single-Cell 3′ GEM, Library & Gel
Bead Kit v3 (PN-1000075) and sequenced on Illumina NovaSeq sequencer. Median
reads per cell reached 35,220 with a median estimated saturation of 66.35%.

Single-cell RNA data analysis. All steps can be found in the corresponding R
scripts (https://github.com/KramannLab/Murine_heart_map), including detailed
description.

Data processing and filtering. Reads from the sequencing were aligned to the
mouse genome (modified mm10, including tdTomato sequence, see Supplementary
Table 1) using cell ranger v3.0.2. Further analysis was performed using R v4.0.2
(https://www.r-project.org/) including several packages which are mentioned in the
according section and listed in Supplementary Table 2. A schematic overview of the
data analysis strategy is shown in Supplementary Fig. 2a. As an initial step, we
filtered cells with less than 500–1000 features or more than 3000–5000 features,
depending on the distribution of features per cell. For some samples we used a
higher upper limit, as those samples showed an overall higher feature count. For all
samples, cells with >6% of reads mapping to mitochondrial genes were removed.
All cells containing reads for Ptprc (CD45), Hba-a1, Hba-a2, Hbb-bs (hemoglobins)
were removed from further analysis, as those genes indicate contamination by
immune cells and erythrocytes.

Data integration of all datasets. Harmony (v1.0)12 was only used for the inte-
gration of all 14 datasets (Fig. 1 and Supplementary Fig. 2a, b). First all prefiltered
datasets (see section: “Data processing and filtering”) were merged into one Seurat
object and based on this object, the data were normalized (NormalizeData from
Seurat with default settings), variable features calculated (“vst” method), scaled
(ScaleData from Seurat with default settings) and principal components calculated
(RunPCA from Seurat, npcs set to 20). The RunHarmony function was run with
default settings except for epsilon.cluster set to infinite.

Robust lineage tracing was one of the major prerequisites for this project.
Therefore, filtering for cells and clusters displaying a clear expression for tdTomato
on mRNA level was performed carefully. After the integration and batch correction
by harmony, clusters were calculated using the FindNeighbors (reduction based on
harmony, dimensions set to 1:20) and FindClusters (Louvain algorithm, resolution
set to 1.0) function from Seurat. The probability calculation from genesorteR96 was
applied separately for each sample. Parts of a cluster were removed if the
condGeneProb of the cells from an individual sample contributing to the cluster
was below 0.8. All cells with 0 reads for tdTomato were also removed
(Supplementary Fig. 2b).

As a further quality step, the number of features (genes) per cell were plotted as
a violin plot grouped by cluster. We removed clusters with low feature count and/
or higher read fractions for mitochondrial and ribosomal genes. Two clusters
showing mixed marker expression of mural cells, endothelial cells and fibroblast
were removed, as they are potentially doublets (Supplementary Fig. 2b).

Cell type specific data integration and further filtering. For the focused analysis
per major cell type (fibroblast, endothelial, mural cells) we performed integration
based on Seurat method using canonical correlation analysis (Supplementary
Figs. 2a, c, 8a and 10a)97,98. Following the standard integration workflow from
Seurat, each prefiltered dataset (see section: “Data processing and filtering”) was
normalized (NormalizeData from Seurat with default settings) and the 2000 most
variable features were calculated using the vst method. Integration features were
selected with the FindIntegrationAnchors (using dims set to 1:20) function.
tdTomato was manually excluded from the generated list of 2000 features. The
datasets were then integrated with IntegrateData (using dims set to 1:20). After this
integration, Clusters were calculated at a resolution of 0.5. Here we observed small
clusters of zero to low tdTomato expression, which were not sufficiently excluded
by the FACS sorting, probably due to doublets of a tdTomato positive and a
tdTomato negative cell. For each cluster, the conditional probability of observing
tdTomato (condGeneProb) was calculated with the sortGenes function from the
package genesorteR v0.4.396. Clusters with a low probability were removed from
further analysis, as those clusters contained contaminating cells. All cells with 0
reads for tdTomato were removed afterwards. Clusters enriched for cells with
relatively low feature count were identified as clusters of low quality cells, with
higher read fractions for mitochondrial and ribosomal genes. These clusters were
also removed from further analysis.
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UMAP. All UMAP representations were calculated using the RunUMAP function
from Seurat. To calculate the UMAP representation based on the Seurat integra-
tion, the following steps were applied. The data were scaled and principal com-
ponents calculated with function from Seurat (default settings). Based on this, the
RunUMAP function was applied with 30 PCA dimensions. For the UMAP
representation using harmony, the RunUMAP function was applied with reduction
set to harmony and dimension to 20.

Annotation. Cluster annotation for the full integration of all 14 samples was only
applied at a low resolution level to identify major cardiac cell types covered by the
lineage tracing. Subclusters of the major cell types were annotated based on
information from literature, functional information from gene sets based on the
marker genes of a subcluster and cell cycle status scoring.

Cluster composition analysis. Testing for significant changes in cluster compo-
sition regarding the contribution of the different conditions was performed by the
scProportionTest package (https://github.com/rpolicastro/scProportionTest).

Gene set enrichment analysis (GSEA). The gprofilter2 package99 was used to
perform GSEA based on marker genes and DEG. The gost function was run with
default settings except for organism set to mmusculus and ordered query as true.
Ribosomal genes were excluded from the gene lists beforehand and only gene lists
with more than 5 remaining genes sorted by adjusted p value were tested. Before
plotting, the identified gene sets were filtered for terms with less than 1000 genes
and only terms from GO100–102, Reactome100–102 and KEGG100–102 were plotted.
For testing pathway enrichment in the pseudotime associated genes, the enrichR
package103 was used with the BioPlanet 2019104 database as reference.

Marker gene identification. Marker genes per subcluster were calculated by the
Seurat function FindAllMarkers, using the method “Model-based Analysis of
Single-cell Transcriptomics” (MAST)29 and min-pct set to 0.3. Enriched gene sets
per set of marker genes were analyzed as described in the GSEA section.

Differential gene expression analysis. DEG were calculated within each indivi-
dual cluster, comparing expression differences between the different conditions
with the FindMarkers function from Seurat, using the method MAST, including
the following settings: min.pct= 0.25, logfc.threshold= 0.3. For all further analysis
based on this result, only DEG with an adjusted p value < 0.01 were included. For
heatmap visualization of DEG, the average expression per gene and clusters was
calculated with the AverageExpression function from Seurat. The resulting gene
expression matrix was clustered by hierarchical clustering into 5–7 clusters (R
package stats, default settings). Enriched gene sets per gene cluster were analyzed as
described in the GSEA section. For volcano plot visualization, each gene was
categorized if it was uniquely found to be differentially expressed in only one
subcluster or if it was differentially expressed in two or more subclusters.

Functional scorings. In this study we performed multiple scoring approaches.
Cells were scored using the AddModuleScore function from Seurat based on the
following gene sets. Different ECM gene sets provided by the matrisome project20.
Cell cycle scoring gene sets provided by Seurat with the CellCycleScoring
function105,106. Different collagen subgroups as described by ref. 24. GO term for
positive regulation of cell migration GO:0030335. EndMA genes as published by
ref. 10.

Signal pathway and transcription factor activity. We used the R package
PROGENy v1.10.0107,108 to estimate signaling pathway activities for each cell and
summarized the scores for each subcluster per condition. In some cases the scoring
was only applied to a subset of subclusters. Transcription factor activities were
estimated with viper 1.22.0109 for each cell or pseudobulked subcluster, based on
the regulons from DoRothEA v1.3.0107,110. Pseudobulking was performed using
the AverageExpression function from Seurat with default parameters. The scores
were summarized per subcluster and most variable TFs selected for plotting.

Processing of public single-cell data. Publicly available datasets from the studies
by refs. 23,15 were downloaded from the respective resource. Datasets were pro-
cessed as close as possible to the description in the methods section of the cor-
responding publication, including data filtering and cluster annotation. We noticed
minor differences in the resulting clusters e.g., McLellan describes 9 fibroblast
subclusters, while we obtained 11 subclusters. We suspect differences in the cell
ranger version and R packages to be responsible for the difference, however the
clusters relevant for the comparison were re-identified in the public data.

Score-gene correlation. The general strategy for the correlation analysis was
adopted from ref. 111 and extended from gene-gene to score-gene correlation.
Therefore, instead of correlating a single gene to all other genes, we correlated the
ECM score (see section function scoring) to all genes, in order to identify corre-
lating genes. Genes included in the ECM gene set needed to be excluded from the

correlation, since they provide the basis for the score and would be found as highest
correlating. Similar to the approach described by Mayr et al. we performed mod-
ularity optimization using the Louvain algorithm with the FindClusters function
from Seurat at a relatively high-resolution parameter (set to 10). This generated a
large number of transcriptionally similar cell clusters and averaging gene expres-
sion as well as ECM scores across these meta-cells mitigated the impact of sparse
counts at the single-cell level and increased correlation values. Pearson correlation
with the averages of the meta-cells was used to detect non-ECM genes correlating
in expression to the ECM score. Enriched gene sets within the highest correlating
genes were analyzed as described in the GSEA section.

Score-score correlation. To identify TF activities correlating to an increase in
ECM gene expression, we tested for predicted TF activity scores correlating with
the ECM score. Therefore, we estimated TF activities as described above with viper
and DoRothEA. Average activity scores per meta-cell were calculated and tested by
Pearson correlation against the ECM score. The top 10 correlating TF activity
scores were visualized as a heatmap, sorted by ECM score.

Cluster correlation. To compare fibroblast subclusters from other studies of
murine cardiac diseases models, we downloaded and processed the corresponding
publicly available datasets (see also section “Processing of public single-cell data”).
In order to perform correlation analysis of clusters, we merged the fibroblast data
from our study with the processed and annotated public datasets. Next, we cal-
culated average gene expressions per fibroblast subcluster and obtained a gene
matrix of the 500 most variable genes of the merged dataset (calculated by Find-
VariableFeature, with default). This matrix was used for Pearson correlation ana-
lysis and the resulting coefficient values were plotted as a heatmap.

RNA velocity and trajectory analysis. The command line function from
velocyto112 was used to generate spliced/unspliced expression matrices for each
fibroblast sample based on the cell ranger output. Matrices were loaded into R with
the SeuratWrapper function ReadVelocity. Each sample was filtered for fibroblasts
that remained in the Seurat integration. Furthermore, genes with a high potential to
be stress induced by the cell isolation method were excluded from the matrices.
Matrices were merged per condition (sham, TAC 14 days, TAC 28 days) and
UMAP embedding of the Seurat integration was added to the three resulting
samples. Next, RNA velocity analysis was performed by scVelo113 separately for the
fibroblasts per condition. scVelo was executed with default parameters and
dynamic modeling was used to estimate velocities. Latent time was also calculated
with default parameters.

RNA trajectory analysis was performed by monocle 3114–116. A trajectory was
selected from Fib1 to ECM-Fib and pseudotime calculated starting at Fib1. DEG
across the trajectory were calculated with the graph_test function separately per
condition. The top 500 significant genes of each test were combined and clustered
as described in the DEG section for heatmap visualization. Enriched gene sets per
gene cluster were analyzed as described in the GSEA section. Smooth functions for
the gene expression measures along pseudotime were plotted using the
geom_smooth function (ggplot2 package) with method set to generalized additive
model, default formula and distribution set to negative binomial.

Ligand receptor mediated cell-cell communication. The LR analysis was per-
formed using the CellPhoneDB (CPDB, Version 2.0.5117). Initially, scRNA-seq
matrices were log-normalized and scaled using Seurat functions. The murine gene
names were assigned to respective human orthologous (HUGO annotation) using
biomaRt (Version 1.2.0118,119) and EWCE (Version 0.99.2120). Expression matrices
were splitted according to respective condition (i.e., TAC and sham). Then, CPDB
was executed for each dataset using the “statistical_analysis” method. Aiming to
increase the reliability of LR inference CPDB was fed with a database enhanced by
the combination of five different LR data sources (CPDB117; TalkLR121;
scTensor122; SCA123; iTALK124), interactions that presented at least two consensus
data sources were kept in the final LR database. Using the statistically significant
interactions (p value < 0.05) from CPDB output, ranking and the visualization were
generated by CrossTalkeR49 To perform the annotation of the LR interactions, the
ligands/receptors set was splitted in the following two subsets (1) upregulated (i.e.,
MeanLR > 0) and (2) downregulated (i.e., MeanLR < 0). These subsets contain
exclusive ligands and receptors; the genes which were at the intersection of this
were disregarded. The process results in four distinct gene sets (1) Ligand upre-
gulated, (2) Ligand downregulated, (3) Receptor upregulated and (4) Receptor
downregulated, each gene set was annotated to pathways databases by using the
packages ClusterProfiler125 and ReactomePA126.

Statistics and reproducibility. Unless otherwise stated, statistical significance was
assessed by a two-tailed Student’s t test or one-way ANOVA with Tukey’s or
Dunnett’s multiple comparison with a p value < 0.05 being considered statistically
significant. Statistical analyses were performed using GraphPad Prism 9.0.1. GSEA
is performed with the hypergeometric test for overrepresentation (one-sided),
followed by multiple comparison correction. The individual method of correction
for gProlifer2 (algorithm g:SCS127) and enrichR103 is described in the corre-
sponding publications. All stainings were performed in triplicates.
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Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The single-cell RNA sequencing data generated in this study have been deposited in the
Gene Expression Omnibus database under accession code GSE166403. All other relevant
data supporting the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable
request. Source data are provided with this paper.

Code availability
Custom scripts used in single-cell data analysis are available at: https://github.com/
KramannLab/Murine_heart_map.

Received: 10 March 2021; Accepted: 11 May 2022;

References
1. Arrigo, M. et al. Acute heart failure. Nat. Rev. Dis. Prim. 6, 16 (2020).
2. Camici, P. G., Tschöpe, C., Di Carli, M. F., Rimoldi, O. & Van Linthout, S.

Coronary microvascular dysfunction in hypertrophy and heart failure.
Cardiovasc. Res. 116, 806–816 (2020).

3. Muhl, L. et al. Single-cell analysis uncovers fibroblast heterogeneity and
criteria for fibroblast and mural cell identification and discrimination. Nat.
Commun. 11, 3953 (2020).

4. Travers, J. G., Kamal, F. A., Robbins, J., Yutzey, K. E. & Blaxall, B. C. Cardiac
fibrosis: the fibroblast awakens. Circ. Res. 118, 1021–1040 (2016).

5. Oka, T., Akazawa, H., Naito, A. T. & Komuro, I. Angiogenesis and cardiac
hypertrophy: maintenance of cardiac function and causative roles in heart
failure. Circ. Res. 114, 565–571 (2014).

6. O’Farrell, F. M. et al. Capillary pericytes mediate coronary no-reflow after
myocardial ischaemia. Elife 6, e29280 (2017).

7. Chong, J. J. H. et al. Adult cardiac-resident MSC-like stem cells with a
proepicardial origin. Cell Stem Cell 9, 527–540 (2011).

8. Lovisa, S. et al. Epithelial-to-mesenchymal transition induces cell cycle arrest
and parenchymal damage in renal fibrosis. Nat. Med. 21, 998–1009 (2015).

9. Noseda, M. et al. PDGFRα demarcates the cardiogenic clonogenic Sca1+
stem/progenitor cell in adult murine myocardium. Nat. Commun. 6, 6930
(2015).

10. Tombor, L. S. et al. Single cell sequencing reveals endothelial plasticity with
transient mesenchymal activation after myocardial infarction. Nat. Commun.
12, 681 (2021).

11. Zeisberg, E. M. et al. Endothelial-to-mesenchymal transition contributes to
cardiac fibrosis. Nat. Med. 13, 952–961 (2007).

12. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data
with harmony. Nat. Methods 16, 1289–1296 (2019).

13. Tran, H. T. N. et al. A benchmark of batch-effect correction methods for
single-cell RNA sequencing data. Genome Biol. 21, 12 (2020).

14. Chazarra-Gil, R., van Dongen, S., Kiselev, V. Y. & Hemberg, M. Flexible
comparison of batch correction methods for single-cell RNA-seq using
BatchBench. Nucleic Acids Res. 49, e42 (2021).

15. Forte, E. et al. Dynamic interstitial cell response during myocardial infarction
predicts resilience to rupture in genetically diverse mice. Cell Rep. 30,
3149–3163.e6 (2020).

16. Li, Z. et al. Single-cell transcriptome analyses reveal novel targets modulating
cardiac neovascularization by resident endothelial cells following myocardial
infarction. Eur. Heart J. 40, 2507–2520 (2019).

17. Farbehi, N. et al. Single-cell expression profiling reveals dynamic flux of
cardiac stromal, vascular and immune cells in health and injury. Elife 8,
e43882 (2019).

18. Gonzales, A. L. et al. Contractile pericytes determine the direction of blood
flow at capillary junctions. Proc. Natl Acad. Sci. USA 117, 27022–27033
(2020).

19. Kuppe, C. et al. Decoding myofibroblast origins in human kidney fibrosis.
Nature. https://doi.org/10.1038/s41586-020-2941-1 (2020).

20. Shao, X., Taha, I. N., Clauser, K. R., Gao, Y. T. & Naba, A. MatrisomeDB: the
ECM-protein knowledge database. Nucleic Acids Res. 48, D1136–D1144
(2020).

21. Pakos-Zebrucka, K. et al. The integrated stress response. EMBO Rep. 17,
1374–1395 (2016).

22. Forsström, S. et al. Fibroblast growth factor 21 drives dynamics of local and
systemic stress responses in mitochondrial myopathy with mtDNA deletions.
Cell Metab. 30, 1040–1054.e7 (2019).

23. McLellan, M. A. et al. High-resolution transcriptomic profiling of the heart
during chronic stress reveals cellular drivers of cardiac fibrosis and
hypertrophy. Circulation 142, 1448–1463 (2020).

24. Karsdal, M. A. et al. Collagen biology and non-invasive biomarkers of liver
fibrosis. Liver Int. 40, 736–750 (2020).

25. Alexanian, M. et al. A transcriptional switch governs fibroblast activation in
heart disease. Nature 595, 438–443 (2021).

26. Schumacher, D., Peisker, F. & Kramann, R. MEOX1: a novel druggable target
that orchestrates the activation of fibroblasts in cardiac fibrosis. Signal
Transduct. Target. Ther. 6, 1–3 (2021).

27. Henderson, N. C. et al. Targeting of αv integrin identifies a core molecular
pathway that regulates fibrosis in several organs. Nat. Med. 19, 1617–1624
(2013).

28. Bouvet, M. et al. Anti-integrin α therapy improves cardiac fibrosis after
myocardial infarction by blunting cardiac PW1 stromal cells. Sci. Rep. 10,
11404 (2020).

29. Finak, G. et al. MAST: a flexible statistical framework for assessing
transcriptional changes and characterizing heterogeneity in single-cell RNA
sequencing data. Genome Biol. 16, 278 (2015).

30. Park, S., Ranjbarvaziri, S., Zhao, P. & Ardehali, R. Cardiac fibrosis is associated
with decreased circulating levels of full-length CILP in heart failure. JACC
Basic Transl. Sci. 5, 432–443 (2020).

31. Ruiz-Villalba, A. et al. Single-cell RNA sequencing analysis reveals a crucial
role for CTHRC1 (Collagen Triple Helix Repeat Containing 1) cardiac
fibroblasts after myocardial infarction. Circulation 142, 1831–1847 (2020).

32. Koenig, A. L. et al. Single cell transcriptomics reveals cell type specific
diversification in human heart failure. Nat. Cardiovasc. Res. 1, 263–280 (2022).

33. Rao, M. et al. Resolving the intertwining of inflammation and fibrosis in
human heart failure at single-cell level. Basic Res. Cardiol. 116, 55 (2021).

34. Mogensen, T. H. IRF and STAT transcription factors—from basic biology to
roles in infection, protective immunity, and primary immunodeficiencies.
Front. Immunol. 9, 3047 (2018).

35. Wang, Y.-N. et al. Myocyte enhancer factor 2A promotes proliferation and its
inhibition attenuates myogenic differentiation via myozenin 2 in bovine
skeletal muscle myoblast. PLoS ONE 13, e0196255 (2018).

36. Tobin, S. W. et al. Heart failure and MEF2 transcriptome dynamics in
response to β-blockers. Sci. Rep. 7, 4476 (2017).

37. Santucci, M. et al. The hippo pathway and YAP/TAZ–TEAD protein–protein
interaction as targets for regenerative medicine and cancer treatment. J. Med.
Chem. 58, 4857–4873 (2015).

38. Singh, V. P. et al. Hippo pathway effector Tead1 induces cardiac fibroblast to
cardiomyocyte reprogramming. J. Am. Heart Assoc. 10, e022659 (2021).

39. Ikeda, S. et al. Yes-associated protein (YAP) facilitates pressure
overload–induced dysfunction in the diabetic heart. JACC: Basic Transl. Sci. 4,
611–622 (2019).

40. Perestrelo, A. R. et al. Multiscale analysis of extracellular matrix remodeling in
the failing heart. Circ. Res. 128, 24–38 (2021).

41. Xiao, Y. et al. Hippo pathway deletion in adult resting cardiac fibroblasts
initiates a cell state transition with spontaneous and self-sustaining fibrosis.
Genes Dev. 33, 1491–1505 (2019).

42. Chang-Panesso, M., Kadyrov, F. F., Machado, F. G., Kumar, A. & Humphreys,
B. D. Meis1 is specifically upregulated in kidney myofibroblasts during aging
and injury but is not required for kidney homeostasis or fibrotic response. Am.
J. Physiol. Ren. Physiol. 315, F275–F290 (2018).

43. Mümmler, C. et al. Cell-specific expression of runt-related transcription factor
2 contributes to pulmonary fibrosis. FASEB J. 32, 703–716 (2018).

44. Dees, C. et al. POS0423 NCOA3 amplifies profibrotic transcriptional
programs in systemic sclerosis. Ann. Rheum. Dis. 80, 440.1–441 (2021).

45. Jiang, F. et al. MICAL2 regulates myofibroblasts differentiation in epidural
fibrosis via SRF/MRTF-A signaling pathway. Life Sci. 269, 119045 (2021).

46. Morishige, N. et al. Coordinated regulation of palladin and α-smooth muscle
actin by transforming growth factor-β in human corneal fibroblasts. Invest.
Ophthalmol. Vis. Sci. 57, 3360–3368 (2016).

47. Soliman, H. et al. Pathogenic potential of Hic1-expressing cardiac stromal
progenitors. Cell Stem Cell 26, 459–461 (2020).

48. Buechler, M. B. et al. Cross-tissue organization of the fibroblast lineage.
Nature 593, 575–579 (2021).

49. Nagai, J. S., Leimkühler, N. B., Schaub, M. T., Schneider, R. K. & Costa, I. G.
CrossTalkeR: analysis and visualization of ligand-receptorne tworks.
Bioinformatics 37, 4263–4265 (2021).

50. Karar, J. & Maity, A. PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol.
Neurosci. 4, 51 (2011).

51. Kechagia, J. Z., Ivaska, J. & Roca-Cusachs, P. Integrins as biomechanical
sensors of the microenvironment. Nat. Rev. Mol. Cell Biol. 20, 457–473 (2019).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30682-0

18 NATURE COMMUNICATIONS |         (2022) 13:3027 | https://doi.org/10.1038/s41467-022-30682-0 | www.nature.com/naturecommunications

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE166403
https://github.com/KramannLab/Murine_heart_map
https://github.com/KramannLab/Murine_heart_map
https://doi.org/10.1038/s41586-020-2941-1
www.nature.com/naturecommunications


52. Giannitsi, S., Maria, B., Bechlioulis, A. & Naka, K. Endothelial dysfunction and
heart failure: A review of the existing bibliography with emphasis on flow
mediated dilation. JRSM Cardiovasc. Dis. 8, 204800401984304 (2019).

53. Kalucka, J. et al. Single-cell transcriptome atlas of murine endothelial cells. Cell
180, 764–779.e20 (2020).

54. Tang, J. et al. Genetic fate mapping defines the vascular potential of
endocardial cells in the adult heart. Circ. Res. 122, 984–993 (2018).

55. Fukuchi, M. et al. Increased von Willebrand factor in the endocardium as a
local predisposing factor for thrombogenesis in overloaded human atrial
appendage. J. Am. Coll. Cardiol. 37, 1436–42 (2001).

56. Kocijan, T. et al. Genetic lineage tracing reveals poor angiogenic potential of
cardiac endothelial cells. Cardiovasc. Res. 117, 256–270 (2021).

57. Kuo, H.-F. et al. Endocardial endothelial dysfunction and unknown
polymorphic composite accumulation in heart failure. Biomedicines 9, 1465
(2021).

58. Heron, C. et al. Regulation and impact of cardiac lymphangiogenesis in
pressure-overload-induced heart failure. bioRxiv https://doi.org/10.1101/2021.
04.27.441616 (2021).

59. Xie, Z. et al. Current knowledge of Krüppel-like factor 5 and vascular
remodeling: providing insights for therapeutic strategies. J. Mol. Cell Biol. 13,
79–90 (2021).

60. Wang, X.-H., Yan, C.-Y. & Liu, J.-R. Hyperinsulinemia-induced KLF5
mediates endothelial angiogenic dysfunction in diabetic endothelial cells. J.
Mol. Histol. 50, 239–251 (2019).

61. Doe, M. R., Ascano, J. M., Kaur, M. & Cole, M. D. Myc posttranscriptionally
induces HIF1 protein and target gene expression in normal and cancer cells.
Cancer Res 72, 949–957 (2012).

62. Zheng, F., Jang, W.-C., Fung, F. K. C., Lo, A. C. Y. & Wong, I. Y. H. Up-
regulation of ENO1 by HIF-1α in retinal pigment epithelial cells after hypoxic
challenge is not involved in the regulation of VEGF secretion. PLoS ONE 11,
e0147961 (2016).

63. Wei, H. et al. Endothelial expression of hypoxia-inducible factor 1 protects the
murine heart and aorta from pressure overload by suppression of TGF-β
signaling. Proc. Natl Acad. Sci. USA 109, E841–E850 (2012).

64. Frick, C. L., Yarka, C., Nunns, H. & Goentoro, L. Sensing relative signal in the
Tgf-β/Smad pathway. Proc. Natl Acad. Sci. USA 114, E2975–E2982 (2017).

65. Welch-Reardon, K. M. et al. Angiogenic sprouting is regulated by endothelial
cell expression of Slug. J. Cell Sci. 127, 2017–2028 (2014).

66. Carmeliet, P. & Jain, R. K. Molecular mechanisms and clinical applications of
angiogenesis. Nature 473, 298–307 (2011).

67. Krock, B. L., Skuli, N. & Simon, M. C. Hypoxia-induced angiogenesis: good
and evil. Genes Cancer 2, 1117–1133 (2011).

68. Lamalice, L., Le Boeuf, F. & Huot, J. Endothelial cell migration during
angiogenesis. Circ. Res. 100, 782–794 (2007).

69. Sun, Y. et al. Signaling pathway of MAPK/ERK in cell proliferation,
differentiation, migration, senescence and apoptosis. J. Recept. Signal
Transduct. Res. 35, 600–604 (2015).

70. Yuan, L., Sakamoto, N., Song, G. & Sato, M. Low-level shear stress induces
human mesenchymal stem cell migration through the SDF-1/CXCR4 axis via
MAPK signaling pathways. Stem Cells Dev. 22, 2384–2393 (2013).

71. Marino, A. et al. Pressure overload leads to coronary plaque formation,
progression, and myocardial events in ApoE–/– mice. JCI Insight 4, e128220
(2019).

72. Sano, M. et al. p53-induced inhibition of Hif-1 causes cardiac dysfunction
during pressure overload. Nature 446, 444–448 (2007).

73. Mohammed, S. F. et al. Coronary microvascular rarefaction and myocardial
fibrosis in heart failure with preserved ejection fraction. Circulation 131,
550–559 (2015).

74. Alex, L. & Frangogiannis, N. G. Pericytes in the infarcted heart. Vasc. Biol. 1,
H23–H31 (2019).

75. Karram, K., Chatterjee, N. & Trotter, J. NG2-expressing cells in the nervous
system: role of the proteoglycan in migration and glial-neuron interaction. J.
Anat. 207, 735–744 (2005).

76. Skelly, D. A. et al. Single-cell transcriptional profiling reveals cellular diversity
and intercommunication in the mouse heart. Cell Rep. 22, 600–610 (2018).

77. Bergers, G. & Song, S. The role of pericytes in blood-vessel formation and
maintenance. Neuro-Oncol. 7, 452–464 (2005).

78. Gerhardt, H. & Betsholtz, C. Endothelial-pericyte interactions in angiogenesis.
Cell Tissue Res. 314, 15–23 (2003).

79. Beltrami, A. P. & Madeddu, P. Pericytes and cardiac stem cells: common
features and peculiarities. Pharmacol. Res. 127, 101–109 (2018).

80. Alex, L., Tuleta, I., Harikrishnan, V. & Frangogiannis, N. G. Validation of
specific and reliable genetic tools to identify, label, and target cardiac pericytes
in mice. J. Am. Heart Assoc. 11, e023171 (2022).

81. Guimarães-Camboa, N. et al. Pericytes of multiple organs do not behave as
mesenchymal stem cells in vivo. Cell Stem Cell 20, 345–359.e5 (2017).

82. Kramann, R. et al. Perivascular Gli1+ progenitors are key contributors to
injury-induced organ fibrosis. Cell Stem Cell 16, 51–66 (2015).

83. Tang, J. et al. Fate mapping of Sca1 cardiac progenitor cells in the adult mouse
heart. Circulation 138, 2967–2969 (2018).

84. Fu, X. et al. Specialized fibroblast differentiated states underlie scar formation
in the infarcted mouse heart. J. Clin. Invest. 128, 2127–2143 (2018).

85. Henderson, N. C., Rieder, F. & Wynn, T. A. Fibrosis: from mechanisms to
medicines. Nature 587, 555–566 (2020).

86. Kanisicak, O. et al. Genetic lineage tracing defines myofibroblast origin and
function in the injured heart. Nat. Commun. 7, 12260 (2016).

87. Mascharak, S. et al. Multi-omic analysis reveals divergent molecular events in
scarring and regenerative wound healing. Cell Stem Cell. https://doi.org/10.
1016/j.stem.2021.12.011 (2022).

88. Byun, J. et al. Yes-associated protein (YAP) mediates adaptive cardiac hypertrophy
in response to pressure overload. J. Biol. Chem. 294, 3603–3617 (2019).

89. Gogiraju, R., Bochenek, M. L. & Schäfer, K. Angiogenic endothelial cell
signaling in cardiac hypertrophy and heart failure. Front. Cardiovasc. Med. 6,
20 (2019).

90. Shiojima, I. et al. Disruption of coordinated cardiac hypertrophy and
angiogenesis contributes to the transition to heart failure. J. Clin. Invest. 115,
2108–2118 (2005).

91. Fu, X., Liu, Q., Li, C., Li, Y. & Wang, L. Cardiac fibrosis and cardiac fibroblast
lineage-tracing: recent advances. Front. Physiol. 11, 416 (2020).

92. Volz, K. S. et al. Pericytes are progenitors for coronary artery smooth muscle.
Elife 4, e10036 (2015).

93. Avolio, E. et al. Expansion and characterization of neonatal cardiac pericytes
provides a novel cellular option for tissue engineering in congenital heart
disease. J. Am. Heart Assoc. 4, e002043 (2015).

94. Platt, M. J., Huber, J. S., Romanova, N., Brunt, K. R. & Simpson, J. A.
Pathophysiological mapping of experimental heart failure: left and right
ventricular remodeling in transverse aortic constriction is temporally,
kinetically and structurally distinct. Front. Physiol. 9, 472 (2018).

95. Richards, D. A. et al. Distinct phenotypes induced by three degrees of
transverse aortic constriction in mice. Sci. Rep. 9, 5844 (2019).

96. Ibrahim, M. M. & Kramann, R. genesorteR: feature ranking in clustered single
cell data. Cold Spring Harbor Laboratory 676379. https://doi.org/10.1101/
676379 (2019).

97. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-
cell transcriptomic data across different conditions, technologies, and species.
Nat. Biotechnol. 36, 411–420 (2018).

98. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177,
1888–1902.e21 (2019).

99. Kolberg, L., Raudvere, U., Kuzmin, I., Vilo, J. & Peterson, H. gprofiler2—an R
package for gene list functional enrichment analysis and namespace
conversion toolset g:Profiler. F1000Research 9, 709 (2020).

100. Ashburner, M. et al. Gene ontology: tool for the unification of biology. The
Gene Ontology Consortium. Nat. Genet. 25, 25–29 (2000).

101. Kanehisa, M., Sato, Y., Furumichi, M., Morishima, K. & Tanabe, M. New
approach for understanding genome variations in KEGG. Nucleic Acids Res.
47, D590–D595 (2019).

102. Jassal, B. et al. The reactome pathway knowledgebase. Nucleic Acids Res. 48,
D498–D503 (2020).

103. Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis
web server 2016 update. Nucleic Acids Res. 44, W90–W97 (2016).

104. Huang, R. et al. The NCATS BioPlanet—an integrated platform for exploring
the universe of cellular signaling pathways for toxicology, systems biology, and
chemical genomics. Front. Pharmacol. 10, 445 (2019).

105. Nestorowa, S. et al. A single-cell resolution map of mouse hematopoietic stem
and progenitor cell differentiation. Blood 128, e20–e31 (2016).

106. Tirosh, I. et al. Dissecting the multicellular ecosystem of metastatic melanoma
by single-cell RNA-seq. Science 352, 189–196 (2016).

107. Holland, C. H. et al. Robustness and applicability of transcription factor and
pathway analysis tools on single-cell RNA-seq data. Genome Biol. 21, 36 (2020).

108. Schubert, M. et al. Perturbation-response genes reveal signaling footprints in
cancer gene expression. Nat. Commun. 9, 20 (2018).

109. Alvarez, M. J. et al. Functional characterization of somatic mutations in cancer
using network-based inference of protein activity. Nat. Genet. 48, 838–847
(2016).

110. Garcia-Alonso, L., Holland, C. H., Ibrahim, M. M., Turei, D. & Saez-
Rodriguez, J. Benchmark and integration of resources for the estimation of
human transcription factor activities. Genome Res. 29, 1363–1375 (2019).

111. Mayr, C. H. et al. Integrative analysis of cell state changes in lung fibrosis with
peripheral protein biomarkers. EMBO Mol. Med. 13, e12871 (2021).

112. La Manno, G. et al. RNA velocity of single cells. Nature 560, 494–498 (2018).
113. Bergen, V., Lange, M., Peidli, S., Wolf, F. A. & Theis, F. J. Generalizing RNA

velocity to transient cell states through dynamical modeling. Nat. Biotechnol.
38, 1408–1414 (2020).

114. Trapnell, C. et al. The dynamics and regulators of cell fate decisions are
revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32,
381–386 (2014).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30682-0 ARTICLE

NATURE COMMUNICATIONS |         (2022) 13:3027 | https://doi.org/10.1038/s41467-022-30682-0 | www.nature.com/naturecommunications 19

https://doi.org/10.1101/2021.04.27.441616
https://doi.org/10.1101/2021.04.27.441616
https://doi.org/10.1016/j.stem.2021.12.011
https://doi.org/10.1016/j.stem.2021.12.011
https://doi.org/10.1101/676379
https://doi.org/10.1101/676379
www.nature.com/naturecommunications
www.nature.com/naturecommunications


115. Qiu, X. et al. Single-cell mRNA quantification and differential analysis with
Census. Nat. Methods 14, 309–315 (2017).

116. Qiu, X. et al. Reversed graph embedding resolves complex single-cell
trajectories. Nat. Methods 14, 979–982 (2017).

117. Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R.
CellPhoneDB: inferring cell-cell communication from combined expression of
multi-subunit ligand-receptor complexes. Nat. Protoc. 15, 1484–1506 (2020).

118. Durinck, S. et al. BioMart and bioconductor: a powerful link between
biological databases and microarray data analysis. Bioinformatics 21,
3439–3440 (2005).

119. Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for
the integration of genomic datasets with the R/Bioconductor package
biomaRt. Nat. Protoc. 4, 1184–1191 (2009).

120. Skene, N. G. & Grant, S. G. N. Identification of vulnerable cell types in major
brain disorders using single cell transcriptomes and expression weighted cell
type enrichment. Front. Neurosci. 10, 16 (2016).

121. Wang, Y. talklr uncovers ligand-receptor mediated intercellular crosstalk.
BioRxiv. https://doi.org/10.1101/2020.02.01.930602 (2020).

122. Tsuyuzaki, K., Ishii, M. & Nikaido, I. Uncovering hypergraphs of cell-cell
interaction from single cell RNA-sequencing data. Cold Spring Harbor
Laboratory 566182. https://doi.org/10.1101/566182 (2019).

123. Cabello-Aguilar, S. et al. SingleCellSignalR: inference of intercellular networks
from single-cell transcriptomics. Nucleic Acids Res. 48, e55 (2020).

124. Wang, Y. et al. iTALK: an R package to characterize and illustrate intercellular
communication. Cold Spring Harbor Laboratory 507871. https://doi.org/10.
1101/507871 (2019).

125. Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for
comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).

126. Yu, G. & He, Q.-Y. ReactomePA: an R/Bioconductor package for reactome
pathway analysis and visualization. Mol. Biosyst. 12, 477–479 (2016).

127. Reimand, J., Kull, M., Peterson, H., Hansen, J. & Vilo, J. g:Profiler—a web-
based toolset for functional profiling of gene lists from large-scale
experiments. Nucleic Acids Res. 35, W193–W200 (2007).

Acknowledgements
This work was supported by grants of the German Research Foundation (DFG:
SFBTRR219 322900939, CRU344- 4288578857858, CRU5011- 445703531) by a Grant of
the European Research Council (ERC-StG 677448), a Grant of the Else Kroener Frese-
nius Foundation (EKFS), the Dutch Kidney Foundation (DKF), TASKFORCE EP1805
and by the ERA-CVD MENDAGE consortium (BMBF 01KL1907), the NWO VIDI
09150172010072 and a Grant from the Leducq Foundation all to R.K. Research from
M.H. is in part funded via the European Union’s Horizon 2020 research and innovation
programme under the Marie Skłodowska-Curie grant agreement No 722609. This work
was also supported by the BMBF eMed Consortia Fibromap (to R.K., R.K.S. and I.C.) and
by the German Research Foundation (CRU344, Z) to I.C.

Author contributions
R.K. designed the study and F.P., M.H. and R.K. interpreted the data. F.P., M.H., I.C. and
R.K. designed the data analysis plan. F.P. and M.H. contributed equally to writing the
manuscript and organizing the Figs. I.C., R.K.S., K.H., M.L., C.K. and M.T.S. edited the
manuscript and advised on data interpretation. F.P. carried out most single-cell data
analysis. J.N. carried out cell-cell communication analysis. F.P. and R.L. carried out the
RNA velocity and trajectory analysis. J.M. performed all mouse surgeries. F.P. and M.H.
carried out all single-cell and imaging experiments. N.K. and C.S. provided tissue from
human HF patients. S.Z. designed and cloned plasmids. E.M.J.B. sequenced the single-
cell libraries. F.P., M.H. and R.K. initiated the study. All authors read and approved the
final manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-022-30682-0.

Correspondence and requests for materials should be addressed to Rafael Kramann.

Peer review information Nature Communications thanks Paolo Madeddu, Nikolaos
Frangogiannis and the other anonymous reviewer(s) for their contribution to the peer
review of this work. Peer review reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2022

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-022-30682-0

20 NATURE COMMUNICATIONS |         (2022) 13:3027 | https://doi.org/10.1038/s41467-022-30682-0 | www.nature.com/naturecommunications

https://doi.org/10.1101/2020.02.01.930602
https://doi.org/10.1101/566182
https://doi.org/10.1101/507871
https://doi.org/10.1101/507871
https://doi.org/10.1038/s41467-022-30682-0
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Mapping the cardiac vascular niche in heart failure
	Results
	Fate tracing and scRNA-seq mapping of the vascular niche in early heart failure
	Heterogenous fibroblast populations show plasticity in cardiac remodeling and drive fibrosis
	Differential gene expression analysis reveals Thbs4 as marker of injury-related ECM-Fib
	Acute and chronic injury-related differences in cardiac fibroblast subtypes
	Signal pathway and TF activity prediction identifies TEAD1 as pro-fibrotic regulator
	Matrix producing fibroblasts originate from a large fibroblast pool
	Cellular crosstalk of the vascular niche
	Endothelial heterogeneity in murine heart
	No evidence for endothelial cell contribution to the mesenchymal lineage after TAC
	Angiogenic endothelial cells expand in response to cardiac remodeling
	Cardiac injury induces hypoxia related regulatory programs in EC
	Pericytes contribute to increased ECM deposition in cardiac remodeling

	Discussion
	Methods
	Ethics
	Animals
	Human tissue sample
	Echocardiography measurement
	Single-cell isolation and FACS sorting
	Fibrosis staining Sirius Red
	Immunofluorescence staining
	RNA in�situ hybridization staining
	Confocal imaging and Ki-67 quantification
	Generation of murine cardiac Gli1+ fibroblast cell line
	Retroviral overexpression of murine Tead1 combined with TGFβ treatment
	Single-cell RNA library generation
	Single-cell RNA data analysis
	Data processing and filtering
	Data integration of all datasets
	Cell type specific data integration and further filtering
	UMAP
	Annotation
	Cluster composition analysis
	Gene set enrichment analysis (GSEA)
	Marker gene identification
	Differential gene expression analysis
	Functional scorings
	Signal pathway and transcription factor activity
	Processing of public single-cell data
	Score-gene correlation
	Score-score correlation
	Cluster correlation
	RNA velocity and trajectory analysis
	Ligand receptor mediated cell-cell communication
	Statistics and reproducibility

	Reporting summary
	Data availability
	References
	Code availability
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




