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Negative role of TAK1 in marginal zone B-cell
development incidental to NF-κB noncanonical
pathway activation

Hisaaki Shinohara1 and Tomohiro Kurosaki2,3

The transcription factor nuclear factor-κB (NF-κB) signaling pathway is crucial in B-cell physiology. One key molecule regulating

this pathway is the serine/threonine kinase TAK1 (MAP3K7). TAK1 is responsible for positive feedback mechanisms in B-cell

receptor signaling that serve as an NF-κB activation threshold. This study aimed to better understand the correlation between

TAK1-mediated signaling and B-cell development and humoral immune responses. Here we showed that a B-cell conditional

deletion of TAK1 using mb1-cre resulted in a dramatic elimination of the humoral immune response, consistent with the

absence of the B-1 B-cell subset. When monitoring the self-reactive B-cell system (the immunoglobulin hen egg lysozyme/soluble

hen egg lysozyme double-transgenic mouse model), we found that TAK1-deficient B cells exhibited an enhanced susceptibility to

cell death that might explain the disappearance of the B1 subset. In contrast, these mice gained numerous marginal zone (MZ)

B cells. We consequently examined the basal and B-cell receptor-induced activity of NF-κB2 that is reported to regulate MZ

B-cell development, and demonstrated that the activity of NF-κB2 increased in TAK1-deficient B cells. Thus, our results present

a novel in vivo function, the negative role of TAK1 in MZ B-cell development that is likely associated with NF-κB2 activation.

Immunology and Cell Biology (2016) 94, 821–829; doi:10.1038/icb.2016.44

Activation of the nuclear factor-κB (NF-κB) signaling pathway is
known to play an important role in physiological and pathological
processes including inflammation, immunity and cell survival.1–3 The
phosphorylation and subsequent degradation of the NF-κB inhibitor
IκB induced by the IκB kinase (IKK) complex, which is composed of
the IKK-α and IKK-β kinases and a regulatory subunit of IKK-γ
(NEMO), are central signaling events that lead to the translocation of
the NF-κB subunits NF-κB1, RelA and c-Rel to the cell nucleus. This
so-called canonical pathway is utilized by a variety of cellular stimuli
including proinflammatory cytokines and pathogens. In contrast, the
noncanonical pathway activates the alternate NF-κB subunits NF-κB2
and RelB.
B-cell receptor (BCR) signaling also shares this canonical

cascade that is pivotal for B-cell development, maintenance,
function and pathogenesis.4,5 Consistent with this, genetic mutations
of pathway mediators have been reported in B-cell lymphomas.6 BCR
signaling employs the adapters CARD-containing MAGUK protein 1
(CARMA1, also called CARD11), Malt1 and Bcl-10 that serve as a
scaffold for the signaling modules and which activate the IKK
signalosome through the phosphorylation of CARMA1 by protein

kinase C-β. The signal is further propagated by a member of the
MAP3K (mitogen-activated protein kinase (MAPK) kinase kinase)
family, TAK1 (MAP3K7), that has been characterized as a key
common upstream kinase of IKK in inflammatory and immune
signaling pathways.5,7 The positive feedback loop formed by the
CARMA1/TAK1/IKK signaling cascade has been shown to generate
a unique and dynamic NF-κB activation ‘switch-like’ activity8 that
confers a NF-κB activation threshold that might determine antigen
response.
The molecular functions of TAK1 in vitro have been intensely

investigated using cell lines.9 However, the physiological role and
development of TAK1 in B lymphocytes remains unclear. Two studies
on B-cell conditional TAK1 deletion using CD19-cre elucidated the
development of major peripheral subsets, the humoral immune
response and BCR-induced IKK/NF-κB activation.10,11 One group
showed that the B-1 B-cell population was reduced, whereas the
development of splenic follicular B cells and marginal zone B (MZ B)
cells was normal. BCR-mediated IKK/NF-κB activation was not
altered, although humoral immune responses were impaired.10 In
contrast, another group showed that the development of B-1 B as well
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as follicular B and MZ B cells was reduced in addition to a reduction
in the activation of IKK/NF-κB, although, conversely, the immune
responses were normal.11

We have clearly demonstrated in our previous work that TAK1 is
essential for the canonical NF-κB pathway in BCR signaling using mb1
(Cd79a)-cre,8 an effective deleter that expresses cre recombinase from
the mb1 gene that encodes the Ig-α signaling subunit of the B-cell
antigen receptor.12 Here, we used these mice in conjunction with the
hen egg lysozyme (HEL)-transgenic mouse system to investigate the
effect of TAK1 deletion on the survival of autoreactive B cells and
splenic B-cell subtypes including transitional B-cell subsets, follicular
B cells and MZ B cells. We further investigated the basal and BCR-
induced activity of NF-κB2 to determine the role of the NF-κB2
noncanonical pathway in MZ B-cell development in conjunction with
TAK1-associated canonical NF-κB2 signaling.

RESULTS

TAK1 is indispensable for immune responses
B cells mediate humoral immunity, in which BCR signaling plays a
central role upon encountering an antigen.13 To address the influence
of TAK1 deletion on biological outcomes related to B cells in vivo, we
initially observed basal antibody production following immunization
in TAK1f/fMb1cre/+ (TAK1 B-cell knockout (TAK1-bKO)) or contro1
TAK1+/+Mb1cre/+ (mb-1) mice. The basal levels of a serum immuno-
globulin (Ig) titer of all isotypes in TAK1-bKO mice were lower than
those of control mb-1 mice (Figure 1a). Neither the immune response
to a T-cell dependent antigen (4-hydroxy-3-nitrophenyl (NP) chicken
γ-globulin; NP-CGG/alum) nor a T-cell independent type II antigen
(NP-Ficoll) was eradicated in TAK1-bKO mice (Figure 1b).

TAK1 is required for cellular responses induced by BCR
engagement or lipopolysaccharide or CpG stimulation
We next confirmed cell proliferation, activation markers and survival
in response to mitogenic stimuli. As reported previously,10,11 cell
proliferation and the induction of activation markers in response to
the Toll-like receptor ligand lipopolysaccharide, an oligodeoxy-
nucleotide (CpG-ODN), CD40 stimulation or anti-IgM crosslinking
(Supplementary Figure 1) were significantly blocked in TAK1-bKO
B cells. Consistent with the proliferation results, TAK1-bKO B cells
exhibited impaired survival in response to anti-IgM, lipopolysacchar-
ide or CpG (Figure 2a). On the other hand, stimulation with B-cell
activating factor (BAFF, tumor necrosis factor ligand superfamily,
member 13b) or anti-CD40 resulted in normal cell survival. As BAFF
predominantly induces the activation of the noncanonical NF-κB
pathway and CD40 mediates both the canonical and noncanonical
pathways,14–16 these results suggest that TAK1 is preferentially
required for the canonical NF-κB pathway.

TAK1 deficiency impairs B-1a B-cell development
To understand the role of TAK1 in the development of B cells,
we evaluated the cellularity in TAK1-bKO mice using flow cytometry
(Figures 2b and c). Although the total number of B220-positive cells in
the peritoneal cavity was comparable to that in control mb-1 mice, the
B-1 subset (B220+CD5+) was clearly reduced in TAK1-deficient mice
(Figure 2b upper panel, and Figure 2c). Because the B-1 population
contains the B-1a and B-1b subsets,17,18 we next explored these
specific populations. B cells from the TAKI-bKO and mb-1 peritoneal
cavities were gated into IgMhiIgDlow as B-1 cells and into IgMlowIgDhi

as B-2 cells (Figure 2b, middle panel); in addition, we observed the
expression of B220 and CD5 (Figure 2b, bottom panel). Few B-1a cells
(IgMhiIgDlowB220lowCD5+) in TAK1-bKO mice were found, and

although B-1b cells (IgMhiIgDlowB220+CD5−), B-2 cells (IgMlowIgDhi)
and mature B cells (IgMlowIgDhi B220+CD5−) were observed, their
numbers were not significantly increased upon TAK1 deletion
(Figure 2c). The major role of B-1a cells is to spontaneously secrete
Igs, especially in the circulating IgM;19 thus, the observed impaired
basal Ig titers (Figure 1a) were consistent with the poor development
of B-1a cells in the TAK1-bKO mice. Furthermore, TAK1-bKO
animals failed to respond to immunization (Figure 1b), possibly
because of the absence of B-1a cells as this subset is required for the
rapid and proper production of antibodies to react to T
cell-independent antigens.17

Sensitivity to cell death is increased in TAK1-deficient self-reactive
B cells
B-1 B cells develop, in part, through the positive selection of
self-reactivity.20 To understand the self-reactivity of TAK1-deficient
B cells, we crossed the TAK1-bKO mice with soluble HEL/HEL-Ig
transgenic mice,21 a well-characterized system in which the BCR
transgene recognizes HEL as self. However, a change in the receptor
expression profiles between HEL-Ig and HEL-Ig in the presence of
TAK1-bKO was not observed (Figures 3a and b). The double
transgene (sHEL/HEL-Ig (wHEL)) yielded a phenotype of down-
modulated IgM but retained its expression of the total transgene-
encoded receptor (heavy chain of IgM and IgD (IgH)) as compared
with that of the reported HEL-Ig single transgene-encoded receptor. In
contrast, the combination of defective TAK1 expression with wHEL
exhibited reduced expression of IgM; notably, the total transgene IgH
level was also significantly decreased (Figures 3a and b). To address the
cause of this reduction, we investigated the survival of wHEL B cells.
As shown in Figures 3c and d, the spontaneous cell death of B220+

gated cells (Supplementary Figure 2) in TAK1-deficient wHEL mice
was significantly increased, suggesting that the enhanced susceptibility
of TAK1-bKO mice to cell death reduces the B-1a B-cell subset.

MZ B cells are augmented by TAK1 deletion
We next examined whether TAK1 deletion affected B-cell maturation
in the spleen. The number of splenic B220-positive cells was
comparable between mb-1 and TAK1-bKO mice (Figures 4a and b).
Splenic B cells are mainly composed of three subsets: transitional
(T1–3), MZ and follicular.18,22,23 Transitional B cells are characterized
by the phenotype of their surface receptors: AA4.1 (CD93)+

IgMhiCD23− as T1, AA4.1+IgMhiCD23+ as T2 and AA4.1+IgMlow

CD23+ as T3 cells. The number of T2 and T3 B cells was markedly
reduced in TAK1-bKO mice (Figures 4a and b), whereas the cell
numbers of AA4.1−CD21medCD23+ FoI and IgMhiIgDhiCD21med FoII
were normal. Conversely, AA4.1−CD21hiCD23− MZ B cells were
augmented in TAK1-bKO animals. In addition, the MZ precursor,
defined as IgMhiIgDhiCD21hi, was found in large numbers.

NF-κB2 activity is enhanced in TAK1-deficient B cells
The selective accumulation of MZ B cells in TAK1-bKO mice
prompted us to consider the possibility that the noncanonical pathway
was hyper- or constitutively activated, as it has been previously
reported that constitutive activation of the noncanonical pathway
promotes MZ B-cell development.24 To further explore this
phenomenon, we performed immunoblotting to observe the activity
of the noncanonical NF-κB components NF-κB2 and RelB in response
to BCR engagement (Figure 5a). In mb-1 control cells, the cytosolic
fraction of the NF-κB2 precursor p100 was processed to the activated
p52 form; this was increased by anti-IgM (anti-μ) stimulation
at 5 min, whereas p100 was diminished 10 min after stimulation.
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In TAK1-bKO cells, p100 was apparently decreased before stimulation,
whereas p52 was increased by degrees in response to BCR crosslinking.
Although the p52 in the mb-1 and TAK1-bKO nuclear fractions did
not show these relative particular behaviors, the basal level of p52 and
its DNA-binding potency was clearly enhanced in TAK1-bKO cells
(Figures 5b and c, respectively).
As the loss of canonical NF-κB signaling leads to enhanced

processing of p100,25,26 and RelB is constantly associated with
p100,27 we postulated that the accumulation of nuclear RelB might
be caused by the higher processing of p100 in the absence of TAK1. To
confirm this, we observed the NF-κB-inducing kinase (NIK)-mediated
phosphorylation of NF-κB2 at Ser 866 and 870 that regulates its
processing.28 Notably, NF-κB2 was constitutively phosphorylated and
NIK protein stability was increased in TAK1-bKO mice (Figure 5d).
Furthermore, augmented mRNA expression of Pim2, the specific
target gene of the noncanonical pathway,29 was seen in a previous
report of TAK1-KO microarray analysis.8 To confirm this finding,
we performed quantitative PCR. Accordingly, Pim2 mRNA expression
in TAK1-bKO was found to be increased over basal levels and in
response to BCR stimulation, at least across the examined time span,

compared with the mb-1control (Figure 5e). These lines of evidence
indicated that the lack of TAK1 leads to enhanced activation of the
noncanonical NF-κB2 pathway. In supporting of this model, an
increase in the number of recirculating B cells (B220hiCD43−) in the
bone marrow was also observed in TAK1-bKO mice (Figures 5f
and g), likely because the noncanonical pathway is important for the
regulation of these cells.30 Thus, an accumulation of MZ B cells among
TAK1-deficient B cells was assumed to be caused by enhanced
activation of the NF-κB noncanonical pathway.

DISCUSSION

We previously highlighted the molecular mechanisms of BCR
signaling in vitro, revealing that the CARMA1/TAK1/IKK cascade
forms a positive feedback loop during BCR signaling to produce ‘all or
nothing’ NF-κB activation.5,31–33 This positive feedback is considered
to be an intrinsic B-cell mechanism that determines whether a
threshold should be activated, possibly allowing B cells to discriminate
against self-antigens. The analysis and potential manipulation of this
signaling cascade is a promising approach to develop therapeutic
strategies for autoimmune and immunodeficiency disorders and
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Figure 1 TAK1 is indispensable for immune response. (a) Basal immunoglobulin titers in the sera from mb-1Cre/TAK1+/+ and mb-1Cre/TAK1F/F mice. Each
circle represents an individual mouse. The bar indicates the mean titer of five mice, and the black bar indicates the mean. (b) IgM and IgG3 NP-specific
antibody responses of mb-1Cre/TAK1+/+ and mb-1Cre/TAK1F/F mice immunized with NP-Ficoll (thymus-independent II antigen, TI–II, top) or NP-CGG
(thymus-dependent (TD) antigen, bottom) as measured by NP-specific enzyme-linked immunosorbent assay (ELISA). Mice were subjected to a second
immunization at 6 weeks with soluble NP-CGG (arrow). Results represent the mean± s.d. of five mice for each genotype at each time point. Asterisks
indicate one-way analysis of variance (ANOVA) results where *Po0.05, **Po0.01, ***Po0.005, ****Po0.001 versus mb-1Cre/TAK1+/+.
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cancer. Using this approach, the interrelationships between molecular
mechanisms and physiology are evident; however, the role of TAK1 in
B-cell immunity remains unclear. Here we attempted to more fully
elucidate the effects of efficient deletion of TAK1 in vivo on B-cell
development and the underlying phenomena associated with these
defects.
Upon examination of the phenotype of TAK1-deficient B cells, we

observed that the B-1a B cell subset in the peritoneal cavity was
drastically eliminated in TAK1-bKO mice (Figure 3). Simultaneously,
reduced basal levels of natural IgM antibodies and a loss of TI immune
responses were observed (Figure 1). These results follow logically
because B-1a B cells are thought to be responsible for these
phenomena.19,34–38 B-1 B cells are developed during the process of
so-called ‘positive selection’ that is dependent on self-reactivity and the
BCR signal strength.14,18,20,39 The signaling modules of NF-κB
activation and NF-κB itself appear to be critical for this event.14,40

Accordingly, we demonstrated that the autoreactive B cells of TAK1-
deficient (sHEL/HEL-Ig/mb1-cre/TAK1F/F) B cells enhanced the cell
death ratio compared with autoreactive TAK1-intact (sHEL/HEL-Ig/
TAK1F/F) B cells (Figure 4). This result suggests that a lack of TAK1
results in a failure to obtain optimal activation of NF-κB, leading to a
decline in autoreactive tolerance and a reduced B-1 B-cell subset.

The response to the thymus-dependent antigen involves certain
processes such as T-cell assistance via CD40 signaling.2,4,14 As CD40-
induced functions are largely dependent on the NF-κB canonical
pathway, cell proliferation and the expression of activation markers
significantly decreased in TAK1-bKO animals. However, residual
responses and normal survival of TAK1-bKO B cells are likely because
CD40 employs TAK1-independent multi-pathways including the
NF-κB noncanonical, phosphatidylinositol-3-kinase (PI3K)/Akt and
MAPK pathways, although its biological role in CD40 signaling is
relatively unestablished.41,42 In other processes such as affinity
maturation and germinal center formation, the strength of BCR
toward the canonical NF-κB pathway is important.4,14 Thus, the
severely impaired response to the thymus-dependent antigen in
TAK1-deficient B cells was considered to be in accordance with these
known processes.
Overall, the observations in this study are clearcut compared with

those from previous reports.10,11 Although the exact reasons for the
differences between the study results are not evident, we consider that
a reasonable explanation would be the difference in efficiency of the
gene deletion. We used mb1-cre mice, in which the recombination
efficiency is reported to reach 99% in splenic B cells compared with
∼ 80% obtained with CD19-cre lines.12 In addition, as the difference
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in MZ B cells contrasted substantially between ours and a previous
study,11 the distinct mouse strains and targeting strategies might also
cause inconsistent results. In particular, AB2.2 ES cells with deletion of
the first exon were used in the previous report, whereas we utilized
E14.1 cells with a deletion of the exon containing the kinase domain.
Furthermore, MZ B-cell development is sensitive to perturbation of
CD19/PI3K signaling.43 The synergistic effects of haploinsufficiency
for CD19 and TAK1 reduction might also therefore contribute to the
observed MZ B-cell maturation in the previous study.11

The NF-κB activation signal pathway is generally believed to be also
important for the development of MZ B cells.14 Therefore, in this
study we postulate the possible mechanisms underlying MZ B-cell
accumulation in TAK1-deficient mice based on the studies discussed
below. For example, BAFF transgenic mice were found to demonstrate
a selective increase in the number of MZ B cells through excessive
activation of the noncanonical NF-κB pathway.44–50 In our work,
we did not observe obvious alterations in the survival response to
BAFF stimulation (Figure 2) and the expression of its receptors
(Supplementary Figure 3). Thus, we considered that the BAFF
receptor-mediated signal was unlikely to contribute to the
TAK1-deficient phenotype.
It has been proposed that Bcl-3 negatively regulates

NF-κB-dependent transcription such as proinflammatory gene
expression,2,45 whereas Bcl-3-deficient B cells exhibit an increase in
MZ B-cell numbers.46 Therefore, we examined the effects of TAK1

deletion on Bcl-3 nuclear localization (Supplementary Figure 4). In
response to BCR stimulation, the nuclear translocation of Bcl-3 was
reduced, implying the involvement of TAK1 in the Bcl-3 translocation
signal. However, we failed to determine a link between TAK1-
mediated and Bcl-3 activating signals owing to limited information
on the function of Bcl-3 in B cells or in association with BCR
signaling; in addition, the means by which Bcl-3 controls MZ B-cell
development remain undetermined.45,47

Alternately, we inferred that a possible MZ B-cell expansion under
TAK1 deficiency occurs because the noncanonical pathway might
compensate for severe canonical pathway defects as this has previously
been observed in some cases.14,48,49 In addition, in p100-deficient mice
that lack the inhibitory portion of NF-κB2 but express active p52, the
numbers of MZ and MZ precursor B cells were markedly elevated.24

Furthermore, MZ B cells are able to develop and accumulate in mice
lacking the p50 component of the NF-κB-mediated transcription
complex.50 Here, we showed that the basal and BCR-induced activities
of noncanonical NF-κB signaling were higher in TAK1-deficient B
cells (Figure 5). We also noted an incremental elevation of mRNA
expression of the PIM2 kinase that represents the target gene of the
noncanonical pathway.29 In addition, the numbers of recirculating B
cells, which are thought to be dependent on the noncanonical
pathway,30,51 also increased. Together, these data supported our
concept that a defect of the NF-κB canonical pathway consequent to
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TAK1 deletion causes compensatory noncanonical pathway activation
that promotes MZ B-cell accumulation.
Because BCR induced the activation of noncanonical pathway

components independent of TAK1 (Figure 5), it is possible that
TAK1 has a negative role in the noncanonical pathway as an intrinsic
function. TAK1 has been suggested to negatively contribute to disease
regulation in neutrophils and hepatocytes,52–55 and a regulatory role
of the NF-κB canonical pathway has also been proposed.56,57 In
accordance with this, mutual control between the canonical and
noncanonical pathways has been recently investigated by several
laboratories.25,26,58

In this study, we identified higher levels of nuclear RelB in
TAK1-deficient cells, suggesting a possibility that the defect of the
CARMA1/TAK1/IKK signaling cascade caused by TAK1 deficiency
might lead to a failure of MALT1-mediated RelB cleavage, thereby
resulting in nuclear RelB accumulation. Notably, the inhibition of
MALT1 protease activity further increased the amount of nuclear RelB
(Supplementary Figure 5A). However, the cleaved form of RelB was
normally observed in TAK1-bKO cells (Supplementary Figure 5B). We
note that these results are not mutually exclusive, as RelB cleavage is
not dependent on IKK activity27 and MALT1 protease inactive mutant
mice exhibit a reduced MZ B-cell population59–61.
The loss of IKKγ, IKKβ or NF-κB1 has been shown to be associated

with enhanced NF-κB2 and p100 processing,25,26 similar to that
observed in TAK1-deficient B cells, suggesting that canonical NF-κB
signaling regulates the activation of the noncanonical NF-κB pathway.
This enhanced processing of p100 in IKKγ-deficient cells is well
correlated with NIK (Map3k14) protein abundance.25 A higher
degree of NIK stabilization was also found in TAK1-deficient cells
(Figure 5d). Furthermore, Bcl10 has been implicated in the control of
NIK activation.62 Collectively, we considered that the elevation in p100
processing diminished the function of the inhibitor of NF-κB

(IκBδ),26 thus allowing translocation of RelB to the nucleus, because
p100 has been shown to be consistently associated with RelB.27

Although the mechanisms underlying the molecular linkage
between these signaling modules connecting the NF-κB canonical
and noncanonical pathways should be further investigated, our data
provide information that clarifies the profound role of TAK1 in vivo
and also reveal another aspect of its function, the negative role of
the CARMA1/TAK1/IKK signaling cascade toward the NF-κB
noncanonical pathway. Together, these findings provide important
clues for the derivation of new therapeutic disease strategies and
facilitate our understanding of these complex signal networks.

METHODS

Mice and immunization
TAK1F/F mice and mb-1 cre have been described previously.8,10,12 HEL-Ig
transgenic mice (C57BL/6 MD4) and soluble HEL (sHEL) transgenic mice
(C57BL/6 ML5) were obtained from the Jackson Laboratory (Bar Harbor, ME,
USA). All mice were 8–12 weeks of age. We generated HEL-Ig/TAK1F/F,
HEL-Ig/mb1-cre/TAK1F/F, sHEL/HEL-Ig/TAK1F/F, and sHEL/HEL-Ig/mb1-cre/
TAK1F/F mice. For immunization, mice were administered 100 μg NP-CGG in
alum or 50 μg NP-Ficoll intraperitoneally (Biosearch Technologies, Novato,
CA, USA). For the second immunization, mice were administered 50 μg
NP-CGG intraperitoneally without an adjuvant. Mice were maintained under
specific pathogen-free conditions, and all protocols were approved by the
RIKEN Animal Committee.

Enzyme-linked immunosorbent assay
NP-specific IgM, IgG1 or IgG3 titers were measured using enzyme-linked
immunosorbent assay with NP11-bovine serum albumin-coated plates and
detected with a horseradish peroxidase-conjugated goat antibody against mouse
IgM, IgG1 or IgG3 (Southern Biotech, Birmingham, AL, USA). The wells were
developed with the tetramethylbenzidine substrate (KPL Inc., Gaithersburg,
MD, USA), and the absorbance was measured at 450 nm. Antigen-specific
antibody titers were determined by interpolation of the dilution factor to a
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linear absorbance value from a standard curve generated by serial dilution of
the serum.

Flow cytometry
Mice were killed by CO2 asphyxiation and lymphocytes were isolated from the
spleens and bone marrow from TAK1f/fMb1cre/+ or contro1 TAK1+/+Mb1cre/+

animals. Antibodies for flow cytometric analysis were purchased from
BioLegend (San Diego, CA, USA). Stained cells were analyzed on a FACSCanto
system (BD Biosciences, San Jose, CA, USA).

Cell culture and reagents
Splenic B cells were purified by depleting CD43+ cells with magnetic beads
using AutoMACS (Miltenyi Biotec, Bergisch-Gladbach, Germany). B cells from
mice were cultured in Iscove’s modified Dulbecco’s medium supplemented
with 10% fetal bovine serum and 1% penicillin–streptomycin. The antibodies
for extracellular signal-regulated kinase, NIK, RelB, NF-κB2 and phospho-NF-
κB2 were purchased from Cell Signaling Technology Inc. (Beverly, MA, USA)
and anti-CD40 monoclonal antibody and anti-GAPDH were obtained from BD
Biosciences. Lipopolysaccharide purified from Escherichia coli 055:B5 was
purchased from Sigma-Aldrich (St Louis, MO, USA) and mouse recombinant
BAFF was purchased from R&D Systems (Minneapolis, MN, USA). Anti-
mouse IgM monoclonal antibody was obtained from Jackson Immuno
Research (West Grove, PA, USA). Z-VRPR-FMK (75 μM; AdipoGen Life
Sciences, Liestal, Switzerland) was dissolved in dimethyl sulfoxide and added
to cells 30 min before stimulation.

Proliferation and cell survival assessment
B-cell proliferation was determined using a Cell Counting Kit-8 (Dojindo Labs,

Kumamoto, Japan) following the manufacturer’s protocol, and the absorbance

at 450 nm was measured using a microplate reader (Bio-Rad, Richmond, CA,

USA) as previously described.63 Cell survival was evaluated by flow cytometry

following propidium iodide or 7-amino-actinomycin D staining. The

survival percentage indicated the propidium iodide- or 7-amino-actinomycin

D-negative population.

Western blot analysis
Western blot analysis was performed as described previously.8 For NF-κB2
activity, nuclear and cytoplasmic fractions were prepared following as follows.

Cells were lysed with lysis buffer containing 50 mM Tris-HCl (pH 7.5), 0.5%

Triton X-100, 137.5 mM NaCl, 10% glycerol, 5 mM EDTA and a proteinase

inhibitor cocktail (Roche Diagnostics, Mannheim, Germany). Cell lysates were

incubated on ice for 15 min. Insoluble nuclei were separated by centrifugation

at 12 000 r.p.m. for 15 min at 4 °C. The supernatant was used as the

cytoplasmic fraction. The nuclear pellets were rinsed once with the lysis buffer

and were then resuspended in 1% NP-40 lysis buffer and used as the nuclear

fraction. For whole-cell lysates, cells were solubilized in lysis buffer

(0.5% NP-40, 0.5% Triton X-100, 20 mM HEPES (pH 7.4), 150 mM NaCl,

12.5 mM β-glycerophosphate, 1.5 mM MgCl2, 2 mM EGTA and 10 mM NaF)

supplemented with protease and phosphatase inhibitors (Roche) and the

post-nuclear removal lysate was used.
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NF-κB DNA-binding activity assessment
The DNA-binding activity of NF-κB2 was analyzed using TransAM NF-κB Kits
(Active Motif, Carlsbad, CA, USA) following the manufacturer’s protocol, and
the absorbance at 450 nm was measured using a microplate reader (Bio-Rad).

Quantitative PCR
Total RNA from murine splenic B cells purified by CD43+ cell depletion was
collected using the NucleoSpin RNA kit (Macherey-Nagel GmbH & Co.,
Düren, Germany) and subjected to complementary DNA synthesis and
quantitative PCR using the KOD SYBR qPCR kit (Toyobo Life Science, Osaka,
Japan) according to the manufacturer’s instructions. PCR cycling conditions
were as follows: 40 cycles of 10 s at 98 °C, 10 s at 60 °C and 30 s at 68 °C. The
primers used to detect the transcripts were as follows: Pim2 (5′-CAG CTT TCG
AGG CCG AAT ACC GAC TTG-3′ and 5′-GAA GAG ATC CTG AGC AGG
CAT AG-3′); and Hprt (as a housekeeping gene for normalization) (5′-CAG
CGT CGT GAT TAG CGA TGA TGA ACC-3′ and 5′-CCA TCT CCT TCA
TGA CAT CTC GAG-3′).

Statistical analysis
Data are presented as the mean± s.d. Statistical analysis was performed with
Student’s t-test and one-way analysis of variance using Microsoft Excel Software
(Redmond, WA, USA).
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