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Objective: The aim of this study was to evaluate brain white matter (WM) fibers
connectivity damage in stroke and traumatic brain injury (TBI) subjects by direct
electrophysiological imaging (DELPHI) that analyzes transcranial magnetic stimulation
(TMS)-evoked potentials (TEPs).

Methods: The study included 123 participants, out of which 53 subjects with WM-
related pathologies (39 stroke, 14 TBI) and 70 healthy age-related controls. All subjects
underwent DELPHI brain network evaluations of TMS-electroencephalogram (EEG)-
evoked potentials and diffusion tensor imaging (DTI) scans for quantification of WM
microstructure fractional anisotropy (FA).

Results: DELPHI output measures show a significant difference between the healthy
and stroke/TBI groups. A multidimensional approach was able to classify healthy from
unhealthy with a balanced accuracy of 0.81 ± 0.02 and area under the curve (AUC)
of 0.88 ± 0.01. Moreover, a multivariant regression model of DELPHI output measures
achieved prediction of WM microstructure changes measured by FA with the highest
correlations observed for fibers proximal to the stimulation area, such as frontal corpus
callosum (r = 0.7 ± 0.02), anterior internal capsule (r = 0.7 ± 0.02), and fronto-occipital
fasciculus (r = 0.65 ± 0.03).

Conclusion: These results indicate that features of TMS-evoked response are
correlated to WM microstructure changes observed in pathological conditions, such
as stroke and TBI, and that a multidimensional approach combining these features in
supervised learning methods serves as a strong indicator for abnormalities and changes
in WM integrity.
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INTRODUCTION

The disruption of normal patterns of structural brain connectivity is believed to play a central role in
the pathophysiology of many neurological and psychiatric disorders, such as dementia, movement
disorders, stroke, traumatic brain injury (TBI), etc. White matter (WM) pathways consist of
myelinated axonal structures that constitute the connectivity between different brain regions.
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Axonal injury and degeneration may occur even in the absence of
tissue disruption. Therefore, patients may experience significant
impairment despite the absence of abnormal findings on
conventional CT or MRI. Moreover, focal imaging abnormalities
that can be detected using CT and MRI are poor predictors of
outcome (Niogi and Mukherjee, 2010; Adalbert and Coleman,
2013; Wang et al., 2016; Salvadores et al., 2017).

Axonal injury is a key determinant of clinical outcome in cases
of brain injury and has been shown to be an important factor
determining long-term motor, cognitive, and neuropsychiatric
disability following brain injury (Mac Donald et al., 2007; Di
Paola et al., 2010; Moura et al., 2019). Diagnostic tests that
can discriminate significant axonal injury and degeneration are
needed in order to accurately assess injury severity and effectively
determine treatment and follow-up pathway.

WM pathways determined through diffusion tensor imaging
(DTI) are traditionally considered to be the biophysical
representation of axonal bundles and their myelin sheets.
DTI streamlines between cortical and subcortical gray matter
(GM) regions of interest (ROIs) can be used as a measure
of the magnitude and strength of connection between ROIs
(Basser et al., 1994; Le Bihan et al., 2001). Analyzing changes
in brain connectivity using DTI tractography is widely used
to evaluate axonal injury that is a hallmark of stroke and
TBI (Arfanakis et al., 2002; Lo et al., 2010), in which WM
tracks can be injured directly or indirectly through Wallerian
degeneration (the anterograde distal degeneration of injured
axons accompanied by demyelination) (Chen et al., 2017; Moura
et al., 2019). DTI metrics are used to address specific or diffused
WM damage that is frequently affected by stroke lesions in order
to describe stroke focality and severity and predict rehabilitation
potential (Puig et al., 2013; Puig et al., 2020). In TBI patients,
a consistent reduction in fractional anisotropy (FA) has been
typically found in areas affected by traumatic axonal injury
(TAI). These regions include the subcortical WM of the frontal
and temporal regions, the splenium of the corpus callosum, the
posterior limb of the internal capsule, and the cerebral peduncles
(Nakayama et al., 2006; Benson et al., 2007; Xu et al., 2007;
Greenberg et al., 2008).

Combining transcranial magnetic stimulation (TMS) with
electroencephalogram (EEG) is extensively used to study and
assess cerebral reactivity and connectivity (Rossini et al., 2015;
Ferreri et al., 2017; Tremblay et al., 2019). TMS is a non-
invasive brain stimulation method that allows the study of human
cortical function in vivo (Ilmoniemi et al., 1999; Hallett, 2007).
TMS enables the modulation and exploration of brain functional
status. Studies integrating TMS with EEG (TMS-EEG) have
shown that TMS produces waves of activity that reverberate
throughout the cortex and that are reproducible and reliable
(Casarotto et al., 2010; Farzan et al., 2010; Kerwin et al., 2018),
thus providing direct information about cortical excitability and
connectivity with excellent temporal resolution (Ilmoniemi et al.,
1997; Shafi et al., 2012; Chung et al., 2015; Pennisi et al., 2016;
Bordet et al., 2017). TMS-EEG has been used to causally probe
the dynamic effective connectivity of human brain networks
(Rogasch and Fitzgerald, 2013; Ferreri et al., 2014; Kugiumtzis
and Kimiskidis, 2015).

Direct electrophysiological imaging (DELPHI) is a new
clinical methodology for evaluating fundamental physiological
properties of brain network function by automatically combining
TMS stimulation and EEG monitoring (Zifman et al., 2019).
The DELPHI software algorithm extracts direct stimulation-
related properties of brain network function, characterizing a
profile of brain functional pathophysiology including properties
of network integrity and plasticity.

Several studies have explored the correlation of TMS-evoked
response to WM fibers and GM changes, indicating that this
method may be useful for probing neurological disease and
conditions that manifest changes in white or GM ROI’s (Kirton
et al., 2010; Lanza et al., 2013; Pennisi et al., 2015).

The current study tests DELPHI technology and output
parameters as a clinical tool for evaluation of specific neuronal
tracks connectivity and displays its strong correlation to
structural changes in WM fibers. The study population includes
stroke and TBI patients that represent the population with
connectivity disruption caused predominantly by WM changes
and healthy controls.

MATERIALS AND METHODS

Clinical Data Collection and Analysis
The study was carried out in accordance with the
recommendation of the Shamir Medical center review
board. The protocol was approved by the local institutional
“Ethical Committee” as a retrospective study of data. All
participants underwent the exact same MRI scan and DELPHI
evaluation protocols.

Study Population
The study focused on two main groups: (a) healthy controls (HC)
and (b) subjects diagnosed with WM injury-related conditions
either (b1) ischemic stroke (cortical and subcortical) or (b2)
TBI. All stroke/TBI subjects were considered to be at post-
sub-acute stage of the injury, post-injury rehabilitation, and
discharged from hospitalization. All subjects included in the
study had updated documented medical history, demographics,
clinical MRI evaluation, DTI scan, and DELPHI (TMS-EEG)
scan performed within 2 weeks of each other. Healthy subject
group inclusion criteria (a) were as follows: (1) age over 18 years,
(2) no neurological or psychiatric disorder documented in
medical history or self-report, (3) absence of any significant
abnormal findings in clinical MRI evaluation, such as brain
tumors, subdural hematoma, and other brain structural lesions
related to diagnosed brain disease other than common age-
related changes, and 4. no psychoactive or other brain directed
medications. Stroke subject group (b1) inclusion criteria were
as follows: (1) age over 18 years, (2) history of ischemic stroke
over 6 months and less than 5 years prior to MRI, DTI,
and TMS-EEG scans (post-sub-acute stage and rehabilitation),
(3) injury was detectible by clinical MRI scan, and (4) no
other psychiatric or neurological comorbidities. TBI subject
group (b2) inclusion criteria were as follows: (1) age over
18 years, (2) history of TBI over 6 months and less than
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TABLE 1 | (A) Demographics of stroke and age-matched HC subjects. Age
distribution was not significantly different (p > 0.05). (B) Overview of general injury
location detected by clinical MRI.

(A)

Stroke Healthy

N 39 41

Age (Mean ± SD) 66.6 (±7.4) 63.8 (±8.1)

Male 28 32

Female 11 9

Left hand-dominance 5 3

Time from injury (Mean ± SD, in years) 2.4 (±2)

(B)

Area n of patients

Left Right Both

Cortical 2 1 1 –

Cortical + subcortical 9 4 2 3

Subcortical/Deep 18 9 5 4

Cerebellum/Brain stem 10 3 3 4

Total 39

TABLE 2 | (A) Demographics of TBI and HC subjects. Age distribution was not
significantly different (p > 0.05). (B) Overview of general injury location detected
by clinical MRI.

(A)

TBI Healthy

N 14 29

Age (Mean ± SD) 32.5 (±5.9) 34.1(±5.6)

Male 11 17

Female 3 12

Left hand-dominance 2 2

Time from injury (Mean ± SD, in years) 3.6 (±1.4)

(B)

Area n of patients

Left Right Both

Cortical 2 1 0 1

Cortical + subcortical 6 1 0 5

Subcortical/Deep 3 1 0 2

Cerebellum/Brain Stem 3 0 0 3

Total 14

5 years prior to MRI, DTI, and TMS-EEG scans (post-sub-
acute stage and rehabilitation), (3) injury was detectible by
clinical MRI scan, and 4. no other psychiatric or neurological
comorbidities. Demographic information of the study groups is
listed in Tables 1, 2. Due to the age differences of the TBI and
stroke populations, the healthy population was divided into age-
matched groups to serve as a valid control group for each of the
WM conditions populations.

DTI Imaging
All subjects underwent brain MRI scan and DELPHI evaluation
not more than 2 weeks apart. Imaging was performed with
a 3 Tesla system (MAGNETOM Skyra; Siemens Healthineers,
Erlangen, Germany) with 20 channels receiver head coil. Thirty
diffusion-weighted images were scanned with different gradient
directions (b = 1,000) and one volume without diffusion
weighting, with the following parameters: TR = 10,300 ms,
TE = 89 ms, voxel size = 1.8 × 1.8 mm, matrix = 128 × 128, no.
of slices = 63, slice thickness = 2.2 mm.

DTI Analysis
DTI analysis was performed on the FA map calculated by Siemens
post-processing software. For each subject, the WM atlas (ICBM-
MORI white matter atlas (Mori et al., 2008) was registered
to the FA map using SPM (version 12; The Wellcome Centre
for Human Neuroimaging, UCL Queen Square Institute of
Neurology, London, United Kingdom) and manually validated.
Mean values for FA higher than 0.2 were calculated in WM
regions according to the atlas (Wakana et al., 2004, 2007;
Hua et al., 2008).

TMS-EEG
TMS was performed with a MagPro R30 stimulator
(MagVenture, Denmark) and an MCF-B65-HO figure-8
Coil (MagVenture, Denmark). 32-Channel EEG data were
obtained using TMS compatible BrainAmp DC amplifier (5 kHz
sampling rate, ± 16.384 mV measurement range, analog low
pass filter 1 kHz; Brain Products GmbH, Germany). These
were connected to the waveguardTM EEG cap (ANT Neuro,
Netherland) with Ag-AgCl electrodes. The reference and
ground electrodes were affixed to the ear lobes. EEG data
were recorded using a BrainVision Recorder software (Brain
Products GmbH, Germany).

Experimental Procedure
TMS coil was positioned over the left cortical motor (M1)
region, at 45◦ toward the contralateral forehead according to the
guidelines (Rossini et al., 2015). Single pulse (<0.3 Hz frequency
and 1 Hz inhibitory frequency) stimulation was performed at 80%
from rest motor threshold (RMT) intensity. Data acquisition,
preprocessing, and cleaning of the TMS-evoked response include
rejection of bad channels and epochs containing large artifacts,
followed by bandpass FIR filter (0.5–45 Hz) as detailed by
Zifman et al. (2019). A thin (0.5 mm) foam pad was attached
to the TMS coil to minimize electrode movement and bone-
conducted auditory artifact. Participants were instructed to keep
their eyes closed throughout the examination to reduce ocular
artifacts. The operator of the system conversed with subjects
between the short stimulation protocol blocks in order to avoid
drowsiness. Electrodes data were grouped to regional recording
hotspots for analysis and statistical purposes: frontal: F3, F5—
ipsilateral and F4, F6—contralateral to stimulation; parietal:
C3, C5, CP1—ipsilateral and C4, C6, CP2—contralateral to
stimulation; temporal CP5, CP3, CF5—ipsilateral and CP6, CP4,
FC6—contralateral to stimulation; and occipital cortex: O1,
PO3—ipsilateral and O2, PO4—contralateral to stimulation.
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DELPHI Physiological Network Profile
Analysis Parameters
DELPHI analyzes the regional and network TMS-evoked
potential (TEP) measured as EEG patterns of single and history-
dependent events as described by Zifman et al. (2019). TEP
response refers to 20–300 ms after TMS stimulation and was
described by four parameters: (1) the slope of early response,
between 60 and 100 ms, referred to as early phase deflection
(EPD); (2) the slope of late response, between 100 and 180 ms,
referred to as late phase deflection (LPD); (3) waveform
adherence (WFA) refers to the entire TEP response adherence
to mean healthy age-related signal collected from previous
studies; and (4) the normalized difference ratio between mean
field potential of single pulse response (MFPsingle) and mean
field potential of inhibitory frequency of stimulation (MFPi),
indicating network short-term plasticity (STP) calculated as
(MFPsingle − MFPi)/(MFPsingle + MFPi). All data processing and
feature extraction were performed automatically by the DELPHI
software algorithm.

Classification
Linear Support Vector Machine (SVM) classifier, with 50
permutations of stratified 5-fold cross-validation and class prior
probabilities set to reflect realistic balanced proportions, was
used for classification of population with WM-related conditions
(TBI and stroke) and age-matched healthy population by
DELPHI output measures as features vector. Linear SVMs are
known as stable classifiers with low complexity that enables
accommodation to outliers and are relatively insensitive to
overtraining and curse-of-dimensionality (Lotte et al., 2007,
2018; Li et al., 2014). In order to achieve maximal signal-to-
noise ratio (SNR) and decrease the feature vector length, only
electrode hotspots that are closest to the stimulation site were
used in the model construction (left/right temporal and parietal
hotspots) as they are known to be the most reliable and are
traditionally used in TMS-EEG studies (Lioumis et al., 2009;
Ilmoniemi and Kicić, 2010). Feature vector included all four
DELPHI output measures. After training the model on the train
data set, the model’s classification performance was assessed
on the test data set by extracting balanced accuracy, sensitivity
(true positive rate), specificity (true negative rate), mean, and
standard deviation (STDV) values over all permutations. Receiver
Operating Characteristic (ROC) curve was constructed by
plotting the mean true positive rate (sensitivity) against the
mean false positive rate (1 - specificity) with the various cut-
off thresholds.

Regression
WM ROIs FA was calculated for major fiber tracks, and a
multivariate linear regression model was created to predict
ROI’s FA high-dimensional data using DELPHI features vector
(described above) in all study populations sets pooled together
(healthy, stroke, and TBI populations) (Healy, 1980). The model
was used with 50 permutations of 5-fold cross-validation, and
prediction performance was assessed by Pearson’s correlation

coefficients and root-mean-square error (RMSE), mean, and
STDV over all permutations.

Statistical Analysis
Statistical data analysis to account for the differences between
the groups was performed by two samples t-test, followed by the
Bonferroni–Holm method for multiple comparisons correction.
Corrected p-values are depicted in text, and the significance of
the results following multiple comparisons correction is depicted
by asterisks: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ns—non-
significant. All data statistical analysis was made using MATLAB
(R2020a; The Mathworks Inc., MA, United States).

RESULTS

The current study focuses on TMS-EEG neurophysiological
insight into brain network function and connectivity by
correlating TMS-evoked EEG response to WM fibers integrity.
For this reason, a heterogenic group of subjects who sustained
structural connectivity injuries in potentially different areas
were randomly selected. The study groups include post-
rehabilitation, ischemic stroke subjects with lesions of different
sizes, post-rehabilitation TBI subjects, and healthy subjects.
Tables 1A,B, 2A,B summarize age, gender, hand dominance, and
general brain region of injury.

Evaluation of WM Changes in Stroke/TBI
ROI-based comparison of WM tracks FA displayed, as expected,
significantly reduced mean FA and elevated STDV for the
majority of measured WM fibers both in the stroke group
compared with HC and in the TBI group compared with age-
matched HC (Table 3). The significant reduction of FA values in a
wide range of ROIs is consistent with the heterogenicity of study
population injuries and variability of fiber damage locations and
sizes in both stroke and TBI.

DELPHI Network Functional Analysis of
Healthy vs. Stroke/TBI
Evaluating network function using DELPHI output parameters
revealed a significant difference between the study groups.
Significant differences were observed between stroke and age-
matched HC for WFA in all regional hotspots (Figure 1A). EPD,
which describes the early phase of response, did not display
significant differences between the groups (Figure 1B); however,
LPD displayed a significant difference for parietal hotspots
(Figure 1C). STP index did not display significant differences
(Figure 1D). DELPHI evaluation of TBI population compared
with age-matched HC revealed a significant decrease in WFA
in all recording hotspots (Figure 2A). EPD displayed significant
differences in the left temporal and parietal areas, proximal to the
stimulation area (Figure 2B). LPD and STP did not display any
significant change (Figures 2C,D). A multidimensional approach
combining DELPHI output measures using a linear SVM
classifier is depicted in the model’s cross-validated classification
performance. DELPHI TMS-EEG output parameters were able
to differentiate HC from stroke subjects, at balanced accuracy,
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TABLE 3 | ROI-based FA analysis of stroke and TBI compared with age-matched HC.

ROI HC Stroke p-value (corrected) HC TBI P-value (corrected)

Mean STD Mean STD Mean STD Mean STD

Middle cerebellar peduncle 0.32 0.11 0.32 0.09 0.97 ns 0.28 0.11 0.32 0.1 0.28 ns

Pontine crossing tract 0.41 0.03 0.35 0.04 0 *** 0.42 0.04 0.34 0.05 0 ***

Corpus callosum Genu 0.52 0.04 0.4 0.06 0 *** 0.57 0.03 0.39 0.09 0 ***

Body 0.56 0.03 0.44 0.07 0 *** 0.59 0.02 0.36 0.1 0 ***

Splenium 0.6 0.04 0.49 0.09 0 *** 0.62 0.03 0.39 0.11 0 ***

Corticospinal tract Left 0.43 0.04 0.38 0.05 0 *** 0.41 0.04 0.37 0.06 0.05 *

Right 0.43 0.04 0.38 0.05 0 *** 0.42 0.04 0.38 0.06 0.05 *

Medial lemniscus Left 0.43 0.04 0.37 0.05 0 *** 0.42 0.04 0.37 0.06 0.03 *

Right 0.43 0.05 0.37 0.05 0 *** 0.42 0.05 0.36 0.06 0.01 *

Inferior Cerebellar peduncle Left 0.4 0.04 0.36 0.05 0 *** 0.4 0.04 0.36 0.05 0.04 *

Right 0.41 0.04 0.36 0.05 0 *** 0.4 0.03 0.36 0.06 0.03 *

Superior Cerebellar
peduncle

Left 0.49 0.03 0.41 0.06 0 *** 0.48 0.04 0.38 0.08 0 ***

Right 0.5 0.03 0.41 0.06 0 *** 0.48 0.04 0.38 0.07 0 ***

Anterior limb of internal
capsule

Left 0.51 0.04 0.4 0.07 0 *** 0.53 0.02 0.41 0.07 0 ***

Right 0.53 0.04 0.44 0.06 0 *** 0.54 0.03 0.46 0.08 0 ***

Posterior limb of internal
capsule

Left 0.57 0.03 0.47 0.09 0 *** 0.58 0.02 0.48 0.12 0 **

Right 0.57 0.03 0.5 0.07 0 *** 0.59 0.03 0.51 0.1 0 **

Retrolenticular internal
capsule

Left 0.54 0.03 0.46 0.08 0 *** 0.55 0.02 0.44 0.09 0 ***

Right 0.53 0.03 0.47 0.06 0 *** 0.54 0.02 0.47 0.07 0 ***

Anterior corona radiata Left 0.43 0.03 0.35 0.05 0 *** 0.46 0.02 0.39 0.06 0 ***

Right 0.44 0.04 0.36 0.05 0 *** 0.47 0.03 0.4 0.05 0 ***

Superior corona radiata Left 0.47 0.03 0.38 0.09 0 *** 0.48 0.03 0.43 0.06 0.02 *

Right 0.46 0.03 0.4 0.06 0 *** 0.47 0.03 0.43 0.06 0.02 *

Posterior corona radiata Left 0.46 0.03 0.37 0.08 0 *** 0.46 0.03 0.41 0.06 0 **

Right 0.46 0.04 0.4 0.05 0 *** 0.47 0.03 0.41 0.05 0 ***

Thalamic radiation Left 0.53 0.04 0.4 0.11 0 *** 0.55 0.03 0.42 0.12 0 ***

Right 0.54 0.06 0.46 0.08 0 *** 0.56 0.03 0.43 0.1 0 ***

Sagittal stratum Left 0.5 0.02 0.4 0.08 0 *** 0.52 0.03 0.39 0.11 0 ***

Right 0.54 0.03 0.46 0.07 0 *** 0.55 0.02 0.46 0.07 0 ***

External capsule Left 0.48 0.02 0.38 0.07 0 *** 0.49 0.02 0.4 0.07 0 ***

Right 0.47 0.03 0.4 0.06 0 *** 0.49 0.02 0.41 0.06 0 ***

Cingulum Left 0.55 0.04 0.43 0.08 0 *** 0.54 0.04 0.35 0.11 0 ***

Cingulategyrus

Right 0.51 0.04 0.41 0.07 0 *** 0.51 0.03 0.34 0.1 0 ***

Cingulum Left 0.49 0.04 0.41 0.07 0 *** 0.49 0.03 0.35 0.09 0 ***

Hippocampus

Right 0.46 0.05 0.41 0.07 0 *** 0.47 0.03 0.37 0.07 0 ***

Fornix Left 0.49 0.03 0.39 0.07 0 *** 0.52 0.03 0.36 0.09 0 ***

Right 0.49 0.04 0.41 0.05 0 *** 0.52 0.04 0.39 0.09 0 ***

Column and body 0.42 0.03 0.35 0.04 0 *** 0.43 0.03 0.35 0.05 0 ***

Superior longitudinal
fasciculus

Left 0.5 0.03 0.37 0.11 0 *** 0.52 0.03 0.38 0.09 0 ***

Right 0.48 0.04 0.39 0.09 0 *** 0.51 0.03 0.38 0.07 0 ***

Superior fronto occipital
fasciculus

Left 0.5 0.06 0.33 0.09 0 *** 0.54 0.03 0.38 0.1 0 ***

Right 0.5 0.07 0.36 0.08 0 *** 0.54 0.03 0.41 0.11 0 ***

Uncinate fasciculus Left 0.49 0.05 0.42 0.11 0 *** 0.5 0.05 0.37 0.1 0 ***

Right 0.54 0.04 0.46 0.06 0 *** 0.53 0.04 0.42 0.07 0 ***

Tapetum Left 0.53 0.12 0.31 0.14 0 *** 0.6 0.05 0.32 0.14 0 ***

Right 0.38 0.1 0.31 0.11 0 ** 0.49 0.11 0.32 0.15 0 **

***p < 0.001; **p < 0.01; *p < 0.05; ns, non-significant.
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FIGURE 1 | DELPHI output measures of HC vs. the stroke group at different recording sites. (A) WFA, (B) EPD, (C) LPD, (D) STP. Fl, frontal left; Fr, frontal right; Pl,
parietal left; Pr, parietal right; Tl, temporal left; Tr, temporal right; Ol, occipital left; Or, occipital right. Mean values (thick lines) and SE (narrow lines) are depicted.
Significant differences between populations are indicated by asterisks.

FIGURE 2 | DELPHI output measures of HC vs. the TBI group at different recording sites. (A) WFA, (B) EPD, (C) LPD, (D) STP. Fl, frontal left; Fr, frontal right; Pl,
parietal left; Pr, parietal right; Tl, temporal left; Tr, temporal right; Ol, occipital left; Or, occipital right. Mean values (thick lines) and SE (narrow lines) are depicted.
Significant differences between populations are indicated by asterisks.
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FIGURE 3 | Classification performance of WM-related conditions using DELPHI output measures. Classification of stroke (A) and of TBI (B) and age-matched HC
using DELPHI output measures as feature vector. Classification performance is depicted by the ROC curve and standard statistical measures, and balanced
accuracy (accuracy), sensitivity, specificity, and AUC values are detailed in the figure.

sensitivity, and specificity rates of 0.81 ± 0.03, 0.83 ± 0.05, and
0.8 ± 0.04, respectively. ROC area under the curve (AUC) was
0.87 ± 0.02 (Figure 3A). For TBI and HC, AUC was 0.87 ± 0.03,
and classification balanced accuracy, sensitivity, and specificity
rates were 0.82 ± 0.05, 0.83 ± 0.03, and 0.81 ± 0.08, respectively
(Figure 3B). Pooling together all WM injury subjects (stroke and
TBI) displayed a classification balanced accuracy of 0.81 ± 0.02,
sensitivity rate of 0.82 ± 0.03, specificity of 0.8 ± 0.03, and AUC
of 0.88 ± 0.01.

Prediction of WM Abnormalities Using
DELPHI
Next, we evaluated the capacity of DELPHI (TMS-EEG) output
measures to predict WM-related connectivity abnormalities
captured by DTI–FA values, using a multivariate linear regression
model. All study groups were pooled together (HC, stroke,
and TBI), and WM ROIs FA was calculated for major fiber
tracks. Cross-validated results of the multivariate model exhibit
high correlation between DELPHI output parameters and DTI–
FA values of WM fibers. Highest correlations were observed
for left and frontal tracts (Table 4), most significantly for
frontal commissural fiber—corpus callosum (r = 0.7 ± 0.02,
RMSE = 0.07) (Figure 4A), left projection fiber—anterior
corona radiata (r = 0.66 ± 0.02, RMSE = 0.04) (Figure 4B),
and left association fiber—superior fronto-occipital fasciculus
(r = 0.65 ± 0.02, RMSE = 0.09) (Figure 4C).

DISCUSSION

In the present study, we evaluated the performance of DELPHI
output parameters as biomarkers for structural and functional
brain connectivity abnormalities, captured by WM tracks
integrity measures, in stroke and TBI patients. Study results
demonstrate the changes between HC and TBI or stroke
populations for DELPHI output measures. The most significant

difference of both stroke and TBI patients from healthy age-
matched controls was demonstrated by WFA that represents
the general waveform of single pulse TEP response. Both
EPD and LPD were most significantly changed between the
HC and TBI/stroke groups in parietal and temporal hotspots,
most probably due the higher SNR in the hotspots that are
proximal to the stimulation area or contralateral to it. LPD
was significantly changed in the stroke group alone, whereas
EPD was significantly different in TBI alone. This may originate
from the differences in age groups, as the TBI group and
control are significantly younger, or might possibly arise from
different natures of injuries that for stroke might be more
focal and for TBI more diffused. These differences should be
further explored and may potentially provide additional insight.
The fact that WFA alone was significantly affected in both
the TBI and stroke groups for all recording hotspots may
indicate the notion that different injuries (location, sizes, etc.)
are represented in different phases or latencies (late/early) of the
TEP response and therefore were not as significantly noticeable
in the EPD and LPD but rather in the WFA parameter that
represents the entire response pattern capturing all possible
changed parameters of the signal. DTI analysis demonstrated
that, as expected, WM integrity was significantly compromised
in both the TBI and stroke groups compared with HC in most
ROIs. This is most probably due to the variability in injury
locations and sizes. A multidimensional approach utilizing linear
SVM model, which incorporates all DELPHI output measures,
displays high classification performance of healthy vs. TBI or
stroke populations with a balanced accuracy of 0.81 ± 0.02
and AUC of 0.88 ± 0.01. Moreover, a multivariate linear
regression model revealed high correlation between DELPHI
output measures and various WM fibers, which is consistent
with the decrease of FA values in a wide range of ROIs in
the stroke and TBI groups, compared with HC. Interestingly,
higher sensitivity to WM integrity was observed in fibers that
are in closest proximity to TMS stimulation site (M1L), namely,
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TABLE 4 | WM ROIs FA values prediction by multivariate linear regression model of DELPHI output measures.

ROI R RMSE

Mean STDV Mean STDV

Corpus callosum Genu 0.7 0.02 0.07 0.002

Body 0.58 0.03 0.08 0.003

Splenium 0.52 0.03 0.09 0.003

Corticospinal tract Left 0.34 0.04 0.05 0.002

Right 0.37 0.04 0.05 0.001

Medial lemniscus Left 0.35 0.04 0.05 0.002

Right 0.36 0.04 0.05 0.002

Cerebellar peduncle Inferior Left 0.4 0.03 0.05 0.001

Right 0.37 0.04 0.05 0.001

Cerebellar peduncle Superior Left 0.5 0.03 0.06 0.002

Right 0.53 0.03 0.06 0.002

Anterior limb of internal capsule Left 0.7 0.02 0.06 0.001

Right 0.44 0.03 0.06 0.002

Posterior limb of internal capsule Left 0.55 0.04 0.07 0.003

Right 0.37 0.04 0.06 0.002

Retrolenticular part of internal capsule Left 0.57 0.03 0.06 0.002

Right 0.48 0.03 0.05 0.002

Anterior corona radiata Left 0.66 0.02 0.04 0.001

Right 0.56 0.02 0.05 0.001

Superior_corona_radiata Left 0.55 0.04 0.06 0.003

Right 0.29 0.05 0.06 0.002

Posterior corona radiata Left 0.56 0.03 0.06 0.002

Right 0.37 0.04 0.05 0.002

Thalamic radiation Left 0.61 0.03 0.08 0.003

Right 0.46 0.04 0.08 0.003

Sagittal stratum Left 0.59 0.02 0.07 0.002

Right 0.37 0.04 0.06 0.002

External capsule Left 0.57 0.03 0.06 0.002

Right 0.42 0.03 0.05 0.001

Cingulum cingulate gyrus Left 0.5 0.03 0.08 0.003

Right 0.51 0.03 0.07 0.002

Cingulum hippocampus Left 0.48 0.03 0.07 0.002

Right 0.19 0.05 0.07 0.002

Fornix Left 0.6 0.03 0.07 0.002

Right 0.4 0.03 0.07 0.002

Column and body 0.64 0.02 0.04 0.001

Superior longitudinal fasciculus Left 0.62 0.03 0.08 0.003

Right 0.52 0.03 0.07 0.002

Superior fronto occipital fasciculus Left 0.65 0.02 0.09 0.003

Right 0.47 0.03 0.09 0.003

Uncinate fasciculus Left 0.35 0.04 0.09 0.003

Right 0.28 0.04 0.07 0.002

Tapetum Left 0.48 0.03 0.15 0.005

Right 0.32 0.04 0.13 0.005

Models performance is depicted by Pearson’s correlation coefficient (R) and root-mean-square error (RMSE).

the highest values were recorded in the frontal and left fibers,
which are proximal to the TMS stimulation site. These data
support DELPHI (TMS-EEG) as a tool for neurophysiological
evaluation of network connectivity and its potential as an
affordable, safe and available tool for monitoring and evaluating
brain network structural and functional abnormalities in specific

neuronal circuits. These results are supported by previous studies
(Manganotti et al., 2015; Lanza et al., 2017; Hordacre et al.,
2019) and indicate that in order to get a more comprehensive
and localized evaluation of functional and structural brain
connectivity, integrity, and plasticity, at least two contralateral
stimulation sites are required. Moreover, direct TMS stimulation
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FIGURE 4 | Prediction of WM abnormalities using DELPHI multivariate linear regression model on the pooled study groups collected data. Predicted FA values
(Y-axis) were plotted against the true FA measured values (X-axis) for exemplary fibers. (A) Frontal commissural fiber—corpus callosum. (B) Left projection
fiber—anterior corona radiata. (C) Left association fiber—superior fronto-occipital fasciculus.

of frontal, medial, and posterior areas may increase TMS-
EEG sensitivity to both structural and functional ROIs. TMS-
EEG technology has been shown to provide insight into the
evaluation and monitoring of functional effective connectivity in
various brain disorders, such as Alzheimer’s disease (AD), stroke,
and TBI prognosis and rehabilitation prediction (Bortoletto
et al., 2015; Manganotti et al., 2015; Tremblay et al., 2019).
Our study supports the clinical utility of TMS-EEG in brain
disorders of functional and structural effective connectivity,
displays high sensitivity of DELPHI neurophysiological measures
to WM-related structural connectivity changes as measured
with DTI, and supports specific fiber localization correlated
to the stimulation area. It is important to note that the
current study classifiers did not consider age-related WM
and GM changes, such as minor lacunar infracts, lesions,
and brain atrophy, that may affect “brain health” status in
the HC group; however, these measures were addressed in
the regression model with FA analysis of WM fibers for
all study groups. Further studies are required to address
the functional sensitivity of changes in neuronal circuits and
explore the potential predictive value of this tool for the early
detection, predictive recovery, and prognosis of WM-related
brain abnormalities and diseases. Future studies should include
populations suffering from brain abnormalities that may or
may not be detected by conventional clinical MRI/CT scans in
order to establish detection of subtle WM changes in clinical
conditions, such as mild TBI, cerebral small vessels disease
(CSVD), etc., and record clinical measures of cognitive and
physiological performance. The current study supports previous
studies that display TEP as a biomarker for brain excitability
and functional connectivity (Bagattini et al., 2019; Opie et al.,
2019; Rossini et al., 2020). Here, we provide further evidence
for the physiological relevance of probing specific networks
(such as the motor network that was stimulated in the current
study) with TMS-EEG technology in order to record structural
or functional WM abnormalities in brain injuries or other
diseases. These results demonstrate the potential clinical value
of DELPHI output measures in differentiating brain-related
diseases and abnormalities, providing a reliable, safe and easy-
to-use tool for monitoring WM-related connectivity changes

associated with brain-related abnormalities, such as brain injuries
and degeneration.

CONCLUSION

The ability to facilitate between clinical observations, structural
and functional brain connectivity, and network physiology is
crucial in order to achieve an optimal clinical care. The data
presented in this study support the concept that TMS-EEG
physiological measures provide specific accessible insight into
the human connectome that may help to narrow the gap
between anatomical data, effective network function, and clinical
observations, thus, providing a clinical tool for monitoring brain
network function and brain health.

The DELPHI automated acquisition and analysis system can
be used in order to monitor brain health throughout aging and
may enable the early detection of abnormal pathophysiological
changes leading to neurodegeneration.
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