Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

1,1'-(Propane-1,3-diyl)bis(3-phenylurea)

Pramod Pansuriya, Hariska Naidu, Holger B. Friedrich and Glenn E. M. Maguire*

School of Chemistry, University of KwaZulu-Natal, Durban 4000, South Africa Correspondence e-mail: maguireg@ukzn.ac.za

Received 20 July 2011; accepted 30 August 2011
Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.033 ; w R$ factor $=0.092$; data-to-parameter ratio $=16.9$.

The title compound, $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$, has crystallographic inversion symmetry. In the crystal structure, intermolecular hydrogen bonding between adjacent urea groups gives rise to infinite polymeric chains diagonally across the $b c$ plane. With a centroid-centroid distance of 3.295 (2) $\AA, \pi-\pi$ stacking is present in the crystal along the same plane.

Related literature

For applications of ureas, see: Park et al. (2011); Ahmed et al. (2011); Sharma et al. (2010); Vos et al. (2010); Dawn et al. (2011). For related structures, see: Koevoets et al. (2005).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2} & a=33.811(7) \AA \\
M_{r}=312.37 & b=4.598(1) \AA \\
\text { Monoclinic, } C 2 / c & c=9.891(2) \AA
\end{array}
$$

$\beta=98.957(4)^{\circ}$
$V=1518.9(6) \AA^{3}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Bruker Kappa DUO APEXII diffractometer
Absorption correction: multi-scan (TWINABS; Sheldrick, 2007) $T_{\text {min }}=0.955, T_{\text {max }}=0.998$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.092$
$S=1.05$
1930 reflections
114 parameters
$\begin{aligned} \mu & =0.09 \mathrm{~mm}^{-1} \\ T & =173 \mathrm{~K}\end{aligned}$
$T=173 \mathrm{~K}$
$0.50 \times 0.21 \times 0.02 \mathrm{~mm}$

1930 measured reflections 1930 independent reflections 1811 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.042$

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.27 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 N \cdots \mathrm{O} 1^{\mathrm{i}}$	$0.834(18)$	$2.124(18)$	$2.8742(14)$	$149.7(13)$
$\mathrm{N} 2-\mathrm{H} 2 N \cdots 1^{\mathrm{i}}$	$0.864(18)$	$2.119(18)$	$2.8904(14)$	$148.4(15)$

Symmetry code: (i) $x, y-1, z$.
Data collection: APEX2 (Bruker, 2006); cell refinement: SAINT (Bruker, 2006); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97.

The authors wish to thank Dr Hong Su from the the University of the Cape Town for his assistance with the data collection and refinement and the National Research Foundation c^{*} change for support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5067).

References

Ahmed, N., Geronimo, I., Hwang, I., Singh, N. J. \& Kim, K. S. (2011). Chem. Eur. J. 17, 8542-8548.
Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
Dawn, S., Dewal, M. B., Sobransingh, D., Paderes, M. C., Wibowo, A. C., Smith, M. D., Krause, J. A., Pellechia, P. J. \& Shimizu, L. S. (2011). J. Am. Chem. Soc. 133, 7025-7032.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. \& Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.

Koevoets, R. A., Versteegen, R. M., Kooijman, H., Spek, A. L., Sijbesma, R. P. \& Meijer, E. W. (2005). J. Am. Chem. Soc. 127, 2999-3003.
Park, J., Lang, K., Abboud, K. A. \& Hong, S. (2011). Chem. Eur. J. 17, 22362245.

Sharma, S. K., Wu, Y., Steinbergs, N., Crowley, M. L., Hanson, A. S., Casero, R. A. Jr \& Woster, P. M. (2010). J. Med. Chem. 53, 5197-5212.

Sheldrick, G. M. (2007). TWINABS. University of Göttingen, Germany.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Vos, M. R. J., Leclère, P. E. L. G., Meekes, H., Vlieg, E., Nolte, R. J. M. \& Sommerdijk, N. A. J. M. (2010). Chem. Commun. 46, 6063-6065.

supplementary materials

1,1'-(Propane-1,3-diyl)bis(3-phenylurea)

P. Pansuriya, H. Naidu, H. B. Friedrich and G. E. M. Maguire

Comment

Bis-ureas have been employed as ligands for metal complexes used in hydrolytic kinetic resolution of epoxides (Park et al., 2011) and as chromogenic and fluorogenic receptors (Ahmed et al., 2011). These molecules have also been found to be useful as epigenetic modulators (Sharma et al., 2010), in surfactant self-assembies (Vos et al., 2010), and photo dimerizing agent for coumarins (Dawn et al., 2011).

The closest reported structures are 3,3'-bis-phenyl-(butylene-1,4)-bisurea and 3,3'-bis-phenyl-(heptylene-1,7)-bisurea (Koevoets et al., 2005). In the butylene derivatives a transoid arrangement is evident whereas the heptylene molecule adopts a cisoid arrangement of the two urea groups. The title compound has an odd number of carbons in its aliphatic chain (propylene). This leads to a cisoid arrangement of the two urea groups (Fig. 1).

The asymmetric unit of the title compund, $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$, contains half molecule of 1,1'-(propane-1,3-diyl)bis(3phenylurea) and the complete molecule is generated by inversion symmetry (i): 1-x, y, 1.5-z. Intermolecular hydrogen bonding between adjacent urea groups $\mathrm{N} 1-\mathrm{H} 1-\mathrm{O} 1,2.8742$ (14) \AA and $\mathrm{N} 2-\mathrm{H} 2-\mathrm{O} 1,2.8904$ (14) \AA gives rise to infinite polymeric chains across the $b c$ plane (Fig. 2), The spacing between the two hydrogen-bonded urea groups is $4.59 \AA$ in the title compound, while it is $4.64 \AA$ for the even butylene spacer and $4.63 \AA$ for the odd heptylene spacer. With a centroid distance of less than $3.5 \AA, \pi-\pi$ stacking is present in the crystal along the same plane.

Experimental

A solution of phenyl isocyanate ($6.76 \mathrm{~g}, 50 \mathrm{mmol}$) in diethylether (15 ml) was added dropwise at $15{ }^{\circ} \mathrm{C}$ to a vigorously stirred solution of anhydrous propane-1,3-diamine $(7.41 \mathrm{~g}, 100 \mathrm{mmol})$ in isopropyl alcohol (100 ml) over a period of 30 min . The reaction mixture was stirred for 2 hrs at room temperature and quenched with water (200 ml). The reaction mixture was maintained overnight at room temperature. Then the reaction mixture was acidified with conc. HCl to pH 2.6 . The solvents were evaporated under vacuum, the residue was suspended in hot water for 30 min and the resulting precipitate was filtered. The product was washed with ice cold water and dried. The yield was $2.70 \mathrm{~g}(40 \%)$.

Crystals suitable for single-crystal X-ray diffraction were grown in methanol: methylenechloride (1:2) at room temperature. M.p. $=504 \mathrm{~K}$.

Refinement

All non-hydrogen atoms were refined anisotropically. All hydrogen atoms, except the H atoms H 1 N and H 2 N on N 1 and N 2 , were positioned geometrically with $\mathrm{C}-\mathrm{H}$ distances ranging from $0.95 \AA$ to $0.99 \AA$ and refined as riding on their parent atoms with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$. The positions of H 1 N and H 2 N were located in the difference electron density maps and refined independently.

supplementary materials

Figures

Fig. 1. The molecular structure of the title compound with atomic numbering scheme. The hydrogen atoms have been omitted clarity. Displacement elipsoids are drawn at 40% probability. The symmetry code is (i): 1-x,y, 1.5-z.

1,1'-(Propane-1,3-diyl)bis(3-phenylurea)

Crystal data

$\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{2}$
$M_{r}=312.37$

Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=33.811$ (7) \AA
$b=4.598(1) \AA$
$c=9.891(2) \AA$
$F(000)=664$
$D_{\mathrm{x}}=1.366 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: 504 K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1930 reflections
$\theta=2.4-28.5^{\circ}$
$\mu=0.09 \mathrm{~mm}^{-1}$

$$
\begin{aligned}
& \beta=98.957(4)^{\circ} \\
& V=1518.9(6) \AA^{3} \\
& Z=4
\end{aligned}
$$

$T=173 \mathrm{~K}$
Plate, colourless
$0.50 \times 0.21 \times 0.02 \mathrm{~mm}$

Data collection

Bruker Kappa DUO APEXII
diffractometer
Radiation source: fine-focus sealed tube
graphite
$0.5^{\circ} \varphi$ scans and ω scans
Absorption correction: multi-scan
(TWINABS; Sheldrick, 2007)
$T_{\text {min }}=0.955, T_{\text {max }}=0.998$
1930 measured reflections
1930 independent reflections
1811 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=28.5^{\circ}, \theta_{\text {min }}=2.4^{\circ}$
$h=-44 \rightarrow 44$
$k=0 \rightarrow 6$
$l=0 \rightarrow 13$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.092$
$S=1.05$
1930 reflections
114 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0565 P)^{2}+0.4485 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.27 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $\left(A^{2}\right)$

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
O1	$0.42150(2)$	$0.94129(16)$	$0.45600(10)$	$0.0258(2)$	
N1	$0.39232(3)$	$0.5132(2)$	$0.37683(12)$	$0.0243(2)$	

H1N	$0.3915(4)$	$0.335(4)$	$0.3917(18)$	$0.035(4)^{*}$
N2	$0.44667(3)$	$0.5183(2)$	$0.54828(11)$	$0.0228(2)$
H2N	$0.4448(5)$	$0.331(4)$	$0.5513(17)$	$0.039(5)^{*}$
C1	$0.36029(3)$	$0.6418(2)$	$0.28699(11)$	$0.0204(2)$
C2	$0.36739(3)$	$0.8527(3)$	$0.19350(13)$	$0.0243(2)$
H2	0.3940	0.9150	0.1897	0.029^{*}
C3	$0.33567(4)$	$0.9726(3)$	$0.10557(14)$	$0.0285(3)$
H3	0.3405	1.1188	0.0423	0.034^{*}
C4	$0.29688(4)$	$0.8801(3)$	$0.10954(14)$	$0.0297(3)$
H4	0.2752	0.9631	0.0494	0.036^{*}
C5	$0.28992(4)$	$0.6679(3)$	$0.20069(14)$	$0.0303(3)$
H5	0.2633	0.6025	0.2023	0.036^{*}
C6	$0.32140(4)$	$0.5478(3)$	$0.29065(14)$	$0.0267(3)$
H6	0.3164	0.4026	0.3541	0.032^{*}
C7	$0.42011(3)$	$0.6716(2)$	$0.46010(12)$	$0.0194(2)$
C8	$0.47434(3)$	$0.6748(2)$	$0.64875(13)$	$0.0247(3)$
H8A	0.4590	0.8079	0.6998	0.030^{*}
H8B	0.4921	0.7951	0.6007	0.030^{*}
C9	0.5000	$0.4779(3)$	0.7500	$0.0195(3)$
H9B	0.4829	0.3523	0.7980	0.023^{*}
H9A	0.5171	0.3523	0.7020	0.023^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0313(4)$	$0.0117(4)$	$0.0306(4)$	$0.0004(3)$	$-0.0070(4)$	$-0.0002(3)$
N 1	$0.0283(4)$	$0.0126(4)$	$0.0281(5)$	$-0.0010(4)$	$-0.0078(4)$	$0.0011(4)$
N 2	$0.0262(4)$	$0.0130(4)$	$0.0260(5)$	$-0.0007(3)$	$-0.0057(4)$	$0.0003(4)$
C 1	$0.0240(5)$	$0.0158(5)$	$0.0195(5)$	$0.0011(4)$	$-0.0025(4)$	$-0.0027(4)$
C 2	$0.0259(5)$	$0.0235(5)$	$0.0228(6)$	$-0.0003(4)$	$0.0018(4)$	$0.0003(5)$
C 3	$0.0366(6)$	$0.0261(6)$	$0.0215(5)$	$0.0016(5)$	$0.0008(5)$	$0.0045(5)$
C 4	$0.0295(6)$	$0.0282(6)$	$0.0277(6)$	$0.0056(5)$	$-0.0073(5)$	$-0.0024(5)$
C 5	$0.0239(5)$	$0.0311(6)$	$0.0343(7)$	$-0.0022(4)$	$-0.0010(5)$	$-0.0025(5)$
C6	$0.0291(5)$	$0.0237(5)$	$0.0256(6)$	$-0.0042(4)$	$-0.0005(5)$	$0.0014(5)$
C7	$0.0225(5)$	$0.0149(4)$	$0.0201(5)$	$0.0004(4)$	$0.0006(4)$	$-0.0007(4)$
C8	$0.0273(5)$	$0.0148(5)$	$0.0280(6)$	$-0.0005(4)$	$-0.0086(5)$	$-0.0002(4)$
C9	$0.0205(6)$	$0.0147(6)$	$0.0216(7)$	0.000	$-0.0023(6)$	0.000

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{O} 1-\mathrm{C} 7$	$1.2416(13)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.3607(14)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.4187(14)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$0.833(19)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.3492(14)$
$\mathrm{N} 2-\mathrm{C} 8$	$1.4463(14)$
$\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$0.862(19)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.3866(17)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.3898(17)$

$\mathrm{C} 3-\mathrm{H} 3$	0.9500
$\mathrm{C} 4-\mathrm{C} 5$	$1.373(2)$
$\mathrm{C} 4-\mathrm{H} 4$	0.9500
C5-C6	$1.3909(17)$
C5-H5	0.9500
C6-H6	0.9500
C8-C9	$1.5180(14)$
C8-H8A	0.9900
C8-H8B	0.9900

sup-4

supplementary materials

$\mathrm{C} 2-\mathrm{C} 3$	$1.3857(16)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9500
$\mathrm{C} 3-\mathrm{C} 4$	$1.3850(19)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1$	$122.95(9)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$117.3(11)$
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~N}$	$118.5(11)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 8$	$118.57(9)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$119.8(11)$
$\mathrm{C} 8-\mathrm{N} 2-\mathrm{H} 2 \mathrm{~N}$	$121.1(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6$	$119.85(11)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 1$	$120.98(11)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{N} 1$	$119.15(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$119.95(11)$
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.0
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$120.25(13)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.78(11)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.1
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.1
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$120.65(12)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.7
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$53.70(18)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	$-128.16(14)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$1.05(18)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$179.18(11)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.77(19)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-0.2(2)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$1.0(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$-0.34(19)$
Cy 5	

C9-C8 ${ }^{\text {i }}$	1.5180 (14)
C9-H9B	0.9900
C9-H9A	0.9900
C6-C5-H5	119.7
C1-C6-C5	119.51 (13)
C1-C6-H6	120.2
C5-C6-H6	120.2
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 2$	121.22 (10)
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	122.76 (10)
N2-C7-N1	116.02 (9)
N2-C8-C9	113.49 (9)
N2-C8-H8A	108.9
C9-C8-H8A	108.9
N2-C8-H8B	108.9
C9-C8-H8B	108.9
H8A-C8-H8B	107.7
C8 ${ }^{\text {i }}$ - $\mathrm{C} 9-\mathrm{C} 8$	106.78 (12)
C8 $8^{\text {i }}$ - 9 - -H 9 B	110.4
C8-C9-H9B	110.4
C8 ${ }^{\text {i }}$ - $\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	110.4
C8-C9-H9A	110.4
H9B-C9-H9A	108.6
N1-C1-C6-C5	-178.50 (11)
C4-C5-C6-C1	-0.7 (2)
C8-N2-C7-O1	6.54 (18)
C8-N2-C7-N1	-173.82 (12)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	-6.0 (2)
$\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 7-\mathrm{N} 2$	174.39 (12)
C7-N2-C8-C9	174.67 (10)
$\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 8^{\text {i }}$	-177.37 (13)

Symmetry codes: (i) $-x+1, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~N} \cdots \mathrm{O} 1^{\mathrm{ii}}$	$0.834(18)$	$2.124(18)$	$2.8742(14)$	$149.7(13)$
$\mathrm{N} 2 — \mathrm{H} 2 \mathrm{~N} \cdots 1^{\mathrm{ii}}$	$0.864(18)$	$2.119(18)$	$2.8904(14)$	$148.4(15)$

Symmetry codes: (ii) $x, y-1, z$.

Fig. 1

Fig. 2

