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Objective: We aimed to build a ferroptosis-based classifier to characterize the molecular 
features of gastric cancers (GC) and investigate the relationship between different ferroptosis 
patterns and GC tumor microenvironment (TME).
Methods: Based on the genomic and clinical information from TCGA portal and GEO database, 
non-negative matrix factorization (NMF) was used to identify ferroptosis subtypes in GC patients. 
In order to estimate the ferroptosis levels, we established ferroptosis subtype score (FSS) to 
quantify ferroptosis patterns and ferroptosis potential index (FPI) by principal component analysis 
(PCA). The correlations of different ferroptosis patterns with TME cell-infiltrating characteristics 
(including immune cell infiltration, immune checkpoints expression levels, tumor mutational 
burden (TMB) and immunotherapy response) were systematically analyzed.
Results: Two ferroptosis subtypes, C1 (with lower FSS) and C2 (with higher FSS), were 
determined. C2 displayed a significantly lower FPI than C1. Besides, C2 was associated with 
diffuse subtype while C1 with intestinal subtype. As for TME characteristics, C2 was in 
accordance with the immune-excluded phenotype as it showed more active immune and stromal 
activities but lower TMB, less probability of immunotherapy response and poorer prognosis. C1 
was linked to immune-inflamed phenotype as it had lower stromal activities but increased 
neoantigen load, enhanced response to immunotherapy and relatively better prognosis.
Conclusion: The systematic assessment of ferroptosis patterns and ferroptosis 
levels presented in our study implied that ferroptosis serves as an important factor in the 
formation of TME, which may expand the understanding of TME and provide a novel 
perspective for the development of targeted immunotherapeutic strategies for GC patients.
Keywords: ferroptosis, gastric cancer, immune cell infiltration, tumor microenvironment, 
immunotherapy

Introduction
Gastric cancer (GC) is the fifth most common malignancy with a third leading 
reason of cancer-related mortality.1 A high rate of recurrence, metastasis, resistance 
to conventional chemotherapy and toxic side effects are the primary death causes of 
GC patients.2

Over recent years, immunotherapy has bloomed into the new therapeutic fron-
tier of cancer treatment and emerged evident survival benefits in a variety of 
malignancies.3,4 Unfortunately, only a small fraction of patients can benefit from 
it in clinic.5 Therefore, it is urgently needed to discover promising biomarkers with 
the potential to identify GC subgroups that respond to immunotherapy.
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Ferroptosis, a newly discovered form of regulating cell 
death, is driven by the accumulation of lipid peroxidation 
and lethal reactive oxygen species (ROS).6 Several studies 
have indicated a dual role of ferroptosis in antitumor 
immunity. For example, CD8+T cells responding to 
immune checkpoint blockade secrete interferon gamma 
to suppress tumors through the induction of 
ferroptosis.7,8 In contrast, tumor cells undergoing ferrop-
tosis might act as arachidonic acid (AA) donors for the 
transcellular biosynthesis of eicosanoids and participate in 
the production of immunomodulatory AA metabolites, 
exerting an impact on antitumor immunity.9 Besides, the 
increased intratumor production of prostaglandin E2 
(PGE2), a principal mediator of inflammation associated 
with cells undergoing ferroptosis,10 assists tumor escaping 
from immune surveillance.11,12 Collectively, the dual role 
of ferroptosis in antitumor immunity suggests the com-
plexity of their interaction, which indispensably requires 
further exploration.

In this study, based on the genomic and clinical infor-
mation from TCGA portal and GEO database, we identi-
fied two ferroptosis subtypes with distinct prognosis and 
ferroptosis levels in GC and revealed a remarkable corre-
lation between the ferroptosis patterns and TME cell- 
infiltrating characteristics. To evaluate the ferroptosis 
level and quantify the ferroptosis patterns, we established 
the ferroptosis potential index (FPI) and ferroptosis sub-
type score (FSS), both of which were demonstrated as 
precise predictors for the immunotherapy response and 
clinical outcome.

Materials and Methods
The overview of study design is displayed in Figure 1.

Data Collection and Preprocessing
Gene expression data and corresponding clinical informa-
tion of GSE62254,13 GSE15459,14 GSE3494215 and 
GSE5730316 datasets were retrieved from the Gene 
Expression Omnibus database (GEO) and consolidated as 
a GC meta-GEO cohort comprising 626 GC patients, 9 of 
which were removed due to lack of follow-up information 
or 0-day follow-up time. Above four GEO datasets were 
performed on the same microarray platform of [HG-U133 
_Plus_2] Affymetrix Human Genome U133 Plus 2.0 
Array. The batch effects between different datasets were 
reduced by the “combat” algorithm of the “sva” package 
within R.17 The gene expression and corresponding clin-
ical information of stomach adenocarcinoma (STAD) 

samples of TCGA cohort were downloaded from the 
UCSC Xena browser (https://xenabrowser.net/).18 After 
removing samples without follow-up information or with 
a 0-day follow-up duration, 350 STAD samples were col-
lected. The clinical characteristics of the patients included 
are detailed in Table 1. In addition, FerrDb (http://www. 
zhounan.org/ferrdb/)19 collected 259 ferroptosis-related 
genes including driver, suppressor and marker. The con-
fidence levels of genes involved in ferroptosis were 
assigned to 4 degrees including validated, screened, pre-
dicted and deduced. The species involved included human, 
mice, rat and drosophila. To ensure the accuracy and 
stability of the model, 121 human-related and validated 
ferroptosis-related genes were obtained and provided in 
Supplementary Table S1.

Consensus Clustering for 
Ferroptosis-Related Genes
Non-negative matrix factorization (NMF) involves in factor-
ization into matrices with nonnegative entries that can identify 
the original component of the composite data and decompose 
the complex data intuitively.20 NMF clustering of 121 ferrop-
tosis-related gene expression profiles was applied to categorize 
the patients in the meta-GEO and TCGA cohorts into distinct 
subtypes, individually. Using “NMF” package of R, the sam-
ples were decomposed into clusters for k = 2–6 against 50 
random initializations of both the actual and a permuted gene 
expression matrix. The k value reaching the largest difference 
between cophenetic correlation coefficients calculated from 
the actual and permutated data was chosen. Principal compo-
nent analysis (PCA) projected high-dimensional data into low- 
dimensional space and constructs a new linear combination 
with maximum variance to realize data dimension reduction. 
Subsequent PCA was built around the ferroptosis-related gene 
expressions to visualize and validate the subtype distribution.

Dimension Reduction and Generation of 
FPI
To evaluate the ferroptosis level, we adapted a method 
similar to Liu’s research21 to construct the ferroptosis 
potential index (FPI). We downloaded the gene expres-
sion profiling of HepG2 cells treated with ferroptosis 
inducer erastin and inhibitor ferrostatin (GSE104462) 
which was performed using the GPL16791 Illumina 
HiSeq 2500 (Homo sapiens) from GEO database.22 

Spearman correlation analysis was employed to select 
the genes positively and negatively correlated with the 
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ferroptosis level with |r| ≥ 0.9 and p < 0.05, which were 
designated FPI gene signatures A and B, respectively. 
Principal component 1 was chosen as the signature scores 
for FPI gene signatures through PCA. The FPI of each 
sample was calculated by the following formula: 
FPI=∑PC1A-∑PC1B. To verify its effectiveness and 
robustness, FPI of different subgroups in GSE104462 
was compared. Also, an external cohort, GSE112384, 
was downloaded and analyzed as another validation 
cohort. GSE112384 was performed on GPL10558 plat-
form Illumina HumanHT-12 v4.0 expression beadchip, 
consisted of gene expression profiles from IMR32 and 
SKNSH cell lines treated with withaferin A (WA, 
a natural ferroptosis inducing agent in neuroblastoma) 
and DMSO (control).23

Dimension Reduction and Generation of 
FSS
After the decomposition of GC samples, the differentially 
expressed genes (DEGs) between ferroptosis subtypes were 
identified in the meta-GEO cohort with the significance cut-
off criteria set as adjusted p < 0.05 and |logFC| ≥ 0.585, via 
the “limma” package of R. The functions of DEGs were 
annotated based on the Reactome Knowledgebase (https:// 
reactome.org) using the FunRich software (version 3.1.3). 
DEGs with positive and negative correlation to clusters were 
designated FS gene signatures A and B, respectively. The 
Boruta algorithm was conducted to further reduce noise and 
redundant genes.24 To quantify the ferroptosis pattern, we 
applied a method similar to Gene expression grade index25 to 
define the FSS score of each sample: FSS=∑PC1A-∑PC1B.

meta-GEO cohort (n=617)
(GSE62254, GSE15459, 
GSE34942, GSE57303)

Non-negative matrix factorization (NMF)
based on 121 ferroptosis-related genes

Ferroptosis 
subtype 1F

Ferroptosis 
subtype 2F

DEGs between subtypes

Brouta algorithm

PCA algorithm 

PC1A PC1B

FSS=∑PC1A ∑PC1B

Estimate the predictive value for 
immunotherapy in IMvigor210 

and GSE78220  

TCGA-STAD 
(n=350)

Construction and validation 
of FPI model (GSE104462, 

GSE112384)

somatic alterations 
and TMB between 

subtypes

FPI between subtypes

TME between 
subtypes

FS signature 
genes B

FS signature 
genes A

Figure 1 Overview of study design.
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Difference of TME Between Ferroptosis 
Subtypes
To explore the difference of TME between ferroptosis 
subtypes, we used the R “estimate” package26 to calculate 
the stromal score, immune score and ESTIMATE score of 
each included sample and compare them grouped by sub-
types. The correlations between immune-stromal score and 
FSS or FPI were also evaluated using correlation test. To 
assess the relative immune cell infiltration levels, the sin-
gle sample gene set enrichment analysis (ssGSEA) 
programme27 was performed according to the geneset 
provided in the study of Charoentong,28(Table S2). The 
level of immune cell infiltration and gene expression of 9 
immune checkpoints were compared between subtypes.

Collection of Somatic Alteration Data
With the goal of determining the tumor mutation burden 
(TMB) of GC patients in different ferroptosis subtypes, 
their non-synonymous mutations were computed accord-
ing to the corresponding mutation data. The correlations 
between TMB and FSS or FPI were also analyzed using 
correlation test. Then, we compared the somatic alterations 
of GC driver genes which were identified within 
R “maftool” package29 between ferroptosis subtypes. The 
driver genes of top 20 mutation frequency were elected to 
represent the overall mutation level.

Collection of Immunotherapy Gene 
Expression Data
Two independent immunotherapeutic cohorts, IMvigor210 
and GSE78220, were used to estimate the predictive value 
of the FSS and FPI. The gene expression data and clinical 
information of IMvigor210 cohort, which contains urothe-
lial cancer cases received intervention of atezolizumab, an 
anti-PD-L1 antibody, was downloaded from http:// 
research-pub.gene.com/IMvigor210CoreBiologies under 
the Creative Commons 3.0 license.30 As for GSE78220, 
it contains metastatic melanoma cases treated with pem-
brolizumab, an anti-PD-1 antibody, and the expression 
data as well as clinical information were available from 
GEO (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi? 
acc=GSE78220).31 Totally, 298 urothelial cancer cases 
and 26 metastatic melanoma cases received immunother-
apy with complete clinical features were used to investi-
gate whether the FSS and FPI could predict patients’ 
response to immunotherapy via comparison and prognostic 
analysis.

Statistical Analysis
All statistical analyses were conducted using GraphPad 
Prism version 8.0 or R programming. Comparison of con-
tinuous variables between two subgroups was performed 
using Student’s t test (normally distributed) or Mann– 
Whitney U-test (non-normally distributed). The prognostic 
analysis was conducted using the Kaplan–Meier method 
with the significance of differences identified utilizing Log 
rank tests. For FPI and FSS, the “survminer” software 
package in R was used to determine the optimal cut-off 
value. The correlation between ferroptosis subtypes and 
the clinical characteristics was estimated by Chi-square 
analysis. Correlations between two variables were exam-
ined via Spearman or Pearson correlation analysis in 

Table 1 Clinical Characteristic of the GC Patient Used in This 
Study

TCGA Meta-GEO

No. of patient 350 617

Age
<60 112 198

≥60 238 417

Unknown 0 2

Gender
Female 124 206

Male 226 411

Lauren type
Intestinal 73 295

Diffuse 59 261
Mixed 1 59

Unknown 217 2

Grade
G1 9 NA

G2 125 NA
G3 207 NA

GX 9 NA

Stage
I 46 72

II 110 149
III 145 228

IV 35 166

Unknown 14 2

Survival status
OS day (median) 475 956

Ending
Survival 204 307
Death 146 310
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appropriate situations. A two-tailed p < 0.05 was consid-
ered statistically significant.

Results
Generation of FPI
With the aim of understanding the role of ferroptosis 
during gastric carcinogenesis, we built a FPI model to 
estimate the ferroptosis level based on the gene expression 
of a GEO dataset (GSE104462) of liver cancer cell lines 
treated with ferroptosis inducer erastin, or inhibitor ferros-
tatin. PCA was performed to define the FPI of each sample 
as positive principal component 1 minus negative principal 
component 1. As presented in Figure S1A, in comparison 
with controls, FPI was markedly elevated in the erastin 
group (p = 0.0023) while significantly decreased in the 
ferrostatin group (p = 0.0491). To validate this result, we 
calculated the FPI of the neuroblastoma cells, including 
IMR32 and SKNSH cell lines, from another GEO dataset 
(GSE112384), which showed a similar significant increase 
of FPI in the ferroptosis inducer (WA) than control group 
(DMSO) (Figure S1B and S1C). Collectively, these out-
comes implied that the FPI may be a representative of the 
ferroptosis level based upon transcriptome data.

Identification of Two Ferroptosis 
Subtypes in GC by NMF
Based on the expression profiles of 121 ferroptosis- 
related genes in 617 GC samples from the meta-GEO 
cohort and 350 STAD samples from the TCGA cohort, 
we applied NMF consensus clustering to describe the 
patterns of ferroptosis in GC patients. The numbers of 
sample clusters decomposed by NMF depend on 
a desired rank k. For both primary and validation 
cohorts, the optimal k value turned out to be 2, that is, 
assigning them into two ferroptosis subtypes (meta-GEO 
: C1, n = 292 and C2, n = 325; TCGA: C1, n = 228 and 
C2, n = 122). The consensus matrix heatmap with sharp 
and clear edges indicated the stableness and robustness 
for our clustering (Figure 2A). Besides, the scatter dia-
gram plotted by PCA also confirmed the two- 
dimensional distribution patterns (Figure 2B). 
According to the survival analysis (Figure 2C), the meta- 
GEO GC patients of C1 showed longer survival time 
than that of C2 (log rank test, p < 0.0001). Similar 
difference was also observed in TCGA cohort, with C1 
showing better overall survival (OS) than C2 (log rank 
test, p = 0.0133).

The FPI of GC patients were also computed and drew 
in violin plots (Figure 2D). Compared to C1, the FPI of C2 
was elevated in both primary and validation cohorts (meta- 
GEO: Mann–Whitney test, p < 0.0001; TCGA: Mann– 
Whitney test, p < 0.0001). Using the “survival” package 
in R, we grouped the GC patients into high FPI and low 
FPI subclasses according to the optimal cut-off value 
(Figure 2E). The Kaplan–Meier curves revealed that 
patients in low FPI showed better OS than patients in 
high FPI (meta-GEO: Log rank test, p < 0.0001; TCGA: 
Log rank test, p = 0.0089).

Generation of FSS
To quantify the ferroptosis pattern, FSS was constructed. 
Firstly, 1297 DEGs were identified between two subtypes in 
the meta-GEO primary cohort (Table S3). Eight hundred and 
forty-three genes were positively correlated with the ferropto-
sis subtypes (FS signature genes A) while the left 454 genes 
were negatively correlated (FS signature genes B). After utiliz-
ing Boruta algorithm to further reduce noise and redundant 
genes, 91 of FS signature genes A and 46 of FS signature genes 
B were reserved. Figure 3A delineates the transcriptomic pro-
filing of the reserving signature genes in the meta-GEO cohort. 
Applying the screened signature genes obtained from the meta- 
GEO cohort, GC samples in TCGA cohort could be divided 
into C1 and C2 as well (Figure 3B). Functional enrichment 
analysis revealed that FS signature genes A were associated 
with epithelial–mesenchymal transition while FS signature 
genes B showed opposite enriched results (mesenchymal– 
epithelial transition) (Figure 3C). Then, FSS was constructed 
based on the expression profiles of FS signature genes A and 
B obtained from the meta-GEO cohort. FSS of each patient in 
TCGA cohort was also calculated using signatures the same 
with the meta-GEO cohort. As expected, a higher FSS was 
observed in C2 both in meta-GEO and TCGA cohorts (Mann– 
Whitney test, p < 0.0001, Figure 3D). Based on the optimal 
cut-off value, FSS had an ability to distinguish the prognosis of 
patients with GC (meta-GEO: log rank test, p < 0.0001; 
TCGA: log rank test, p = 0.0011, Figure 3E). FSS also exhib-
ited a positive correlation with FPI (meta-GEO: Spearman 
coefficient: R = 0.67, p < 2.2e-16; TCGA: Spearman coeffi-
cient: R = 0.20, p = 0.00017, Figure 3F).

Difference of TME Between Ferroptosis 
Subtypes
According to the ESTIMATE algorithm, compared to 
C1, C2 had a significantly higher level of immune 
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score, stromal score and ESTIMATE score in the meta- 
GEO cohort (Figure 4A) and TCGA cohort (Figure 4B). 
We also unveiled that both FSS and FPI were positively 
correlated with immune score, stromal score and esti-
mate score with all p-value < 0.01 (Figures 4C and D). 
Combining with the ssGSEA outcomes in meta-GEO 
(Figure 4E) and TCGA (Figure 4F) cohorts, C2 had 
a higher abundance in 21 immune cell populations (acti-
vated B cell, CD8 T cell, central memory CD4 T cell, 
effector memory CD4 T cell and CD8 T cell, gamma 
delta T cell, immature B cell, regulatory T cell, 
T follicular helper cell, type 1 and 17 helper cell, 
CD56dim natural killer, eosinophil, immature dendritic 
cell, macrophage, mast cell, MDSC, monocyte, natural 

killer cell, natural killer T cell and plasmacytoid dendri-
tic cell). For immune checkpoint genes, LAG3, CTLA4, 
HAVCR2, CD80, IDO1, TIGIT, PDL1 and CD86 were 
remarkedly overexpressed in C2 while only PDCD1 
showed inconsistent expression trend in these two GC 
cohorts (Figures 4G and H).

The Correlation Between FSS, FPI and 
Somatic Variants
Over past decades, efforts to develop more effective treat-
ment approaches facilitate the wide application of immu-
notherapy (immune checkpoint inhibition) in many 
malignant tumors, including GC. Accumulating evidence 
have illustrated that high tumor mutational burden (TMB), 
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Figure 2 Distribution of Ferroptosis Subtypes using NMF Consensus Clustering. (A) NMF clustering based on 121 ferroptosis-related genes decomposes the samples in 
meta-GEO and TCGA cohorts. The corresponding cophenetic correlation coefficient of k value between 2 and 6 is shown. (B) Scatter diagrams plotted by PCA sustained 
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also known as non-synonymous variants, was closely 
related to tumor CD8+ T-cell infiltration and immune 
response such as activity of anti-PD-1 therapies.32 

Although the TMB was considered with significance in 
predicting clinical response to immune cell infiltration, the 
intrinsic relationship between TMB and ferroptosis needs 
to be elucidated. First, the TMB of GC samples in C1 and 
C2 was compared. As demonstrated in Figure 5A, a higher 
TMB was observed in the TCGA-GC patients of C1 than 
that of C2 (Mann–Whitney test, p < 0.0001). Figures 5B 
and C exhibited that TMB were higher in low FSS or FPI 
than high FSS or FPI (p = 0.0006, p < 0.0001, respectively, 
Mann–Whitney test). After categorizing the patients into 
low TMB (n = 300) and high TMB (n = 43) subclasses 

with the optimal cut-off value, we evaluated their survival 
time using Kaplan–Meier curves, which indicated that 
prognosis of patients with low TMB was better than that 
with high TMB (Log rank test, p = 0.0021; Figure 5D). 
Then, we analyzed the correlation between TMB and FSS 
or FPI. As shown in Figures 5E and F, TMB exhibited 
a significant negative correlation with both FSS (Spearman 
coefficient: R = −0.29, p = 4.2e-08) and FPI (Spearman 
coefficient: R = −0.45, p < 2.2e-16). Moreover, the dis-
tribution of somatic alterations in GC driven genes were 
estimated. We listed the top 20 GC driver genes with 
highest mutation frequency, which showed that the overall 
mutation rate of driver genes in C1 was higher than C2 
(Figure 5G).
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The Correlation Between Clinical 
Characteristics and Ferroptosis Subtypes
The relationship between clinical features and subtypes in the 
meta-GEO and TCGA cohorts was analyzed by Chi-square 
test. Table 2 illustrates that there was no significant difference 
between subtypes in gender both in the meta-GEO and 
TCGA cohorts. In terms of age and tumor grade, C2 tended 
to be diagnosed at a younger age and have a higher tumor 
grade in the meta-GEO cohort (age: p = 0.0077; tumor grade: 
p = 0.0003). As for Lauren type and stage, C2 was inclined to 
have a higher proportion of diffuse-type and associate with 
more advanced-stage in the TCGA cohort (Lauren type: p = 
9.045e-7; stage: p = 0.0052).

Ferroptosis Patterns and Ferroptosis 
Potential Level in the Role of Anti-PD-1/ 
L1 Immunotherapy
The characteristics of FSS and FPI in speculating the thera-
peutic benefit of anti-PD-1 and anti-PD-L1 were further 
investigated. For FSS, both in anti-PD-L1 cohort 
(IMvigor210) and anti-PD-1 cohort (GSE78220), patients 
with low level exhibited significantly clinical benefits and 
a markedly prolonged survival (IMvigor210: Log rank test, 
p = 0.0336, Figure 6A; GSE78220: Log rank test, p = 0.0293, 
Figure 6D). Better therapeutic benefit in patients with low 
FSS compared to those with high FSS were confirmed 
(Figure 6B, C, E and F). Similar outcomes were observed in 
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the FPI (Figure 6G–L). Collectively, FSS and FPI could be 
correlated with response to anti-PD-1/L1 immunotherapy.

Discussion
Although immunotherapy has opened a new frontier in GC 
treatment, only a part of patients could obtain clinical 
benefits, which demanded novel biomarkers enabling to 
predict the response to immunotherapy. Ferroptosis has 
been reported closely related to tumorigenesis and immu-
nity but with a dual role. Therefore, identifying distinct 
ferroptosis patterns is helpful to construct an effective 
immunotherapy strategy.

In the current study, two ferroptosis subtypes (C1 and 
C2) with different prognosis and ferroptosis level in GC 
were identified with a relationship to the characteristics of 
TME. Compared with C1, C2 showed higher immune 
score and stromal score. Besides, C2 had a higher abun-
dance of immune cell infiltration and was significantly 
enriched in epithelial–mesenchymal transition, which sug-
gested a correlation with active immune and stromal activ-
ities. It was reported that immune infiltration in the TME 
is generally characterized into three patterns:33 1) 
Immune-inflamed: dense infiltration of immune cell within 
the tumor ensures the high probability of response to 
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immunotherapy, 2) Immune-excluded: a large number of 
immune cells infiltrated around the tumor but not penetrat-
ing inward lowers the probability of response, 3) Immune- 
desert: lacking of T cells in both tumor cells and peripheral 
matrix leads to immune tolerance or immune ignorance. 
According to the exhibitions that C2 with a higher abun-
dance of immune cell infiltration but lower probability in 
response to immunotherapy and associated with stromal 
activities, it was reasonable to speculate that C2 was in 
accordance with the immune-excluded phenotype. As 
a successful immunotherapy depends on the ability of 
innate and adaptive immune cells to penetrate into the 
tumor parenchyma and eradicate cancer cells,34 in the 
background of immune-excluded phenotype, activated 
immune cells cannot effectively penetrate into the tumor 
parenchyma to interact with tumor cells, resulting in no 
intended targets for immunotherapy. Conclusively, 
although C2 was described with a more active immunity 
and a higher expression of immune checkpoints, it was not 
surprising C2 tended to carry a poorer prognosis. 
Previously, we developed a ferroptosis-related model to 
predict the prognosis of GC and found that the high-risk 
group also exhibited higher Immune Score, Stromal Score, 
and ESTIMATE Score, suggesting higher levels in 
immune cells infiltration and stromal component in the 

TME of high-risk group.35 Additionally, the high-risk 
group was also speculated in accordance with the immune- 
excluded subtype. Therefore, we inferred that C2 patients 
in this study have a high-risk score in the ferroptosis- 
related model. As for C1, it was reasonable to deduce as 
immune-inflamed phenotype because of lower stromal 
activities but increased neoantigen load, enhanced 
response to immunotherapy and relatively better 
prognosis.

In the meta-GEO cohort, we observed that C2 was 
significantly associated with diffuse-type while C1 with 
intestinal-type. The TME characteristic of diffuse-type GC 
is similar to immune-excluded phenotype as it is accom-
panied with extensive stromal fibrosis and abundant extra-
cellular matrix,36,37 which also impede the accessibility of 
T-cells.38 As for intestinal-type, it is considered as the 
result of Correa pathway under chronic inflammation 
stress,39 which increases the infiltration of immunosup-
pressive cells and results T cell exhaustion.40

There also existed a negative correlation between FSS 
and TMB in GC. Previous studies have indicated that gene 
mutations were associated with cancer immunotherapy 
response.41–43 It was also reported that tumors with higher 
levels of TMB are more likely to produce new immuno-
genic neo-antigens, making tumors more susceptible to 

Table 2 Baseline Characteristic of the Patient in Different Ferroptosis Subtypes

Characteristic TCGA Meta-GEO

C1 C2 P value C1 C2 P value

Gender 0.3757 0.6702

Female 77 47 95 111
Male 151 75 197 214

Age 0.0077 0.2257
<60 60 49 87 111

≥60 168 73 205 212

Lauren type 0.4436 9.045e-7

Intestinal 47 26 170 125

Diffuse 33 26 92 169
Mixed 1 0 28 31

Tumor grade 0.0003 NA
G1+G2 103 31 NA NA

G3 120 87 NA NA

Stage 0.3958 0.0052

I+II 108 52 121 100

III+IV 120 70 170 225
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Figure 6 Ferroptosis Patterns and Ferroptosis Potential Level in the Role of Anti-PD-1/L1 Immunotherapy. (A) Kaplan–Meier curves of low and high FSS patient groups in the anti-PD- 
L1 immunotherapy cohort (IMvigor210). (B) The proportion of patients with response to PD-L1 blockade immunotherapy in low or high FSS groups; SD: stable disease, PD: progressive 
disease; CR, complete response; PR, partial response. (C) Distribution of FSS in different anti-PD-L1 clinical response groups. (D) Kaplan–Meier curves of low and high FSS patient groups 
in the anti-PD-1 immunotherapy cohort (GSE78220). (E) The proportion of patients with response to anti-PD-1 immunotherapy in low or high FSS groups. (F) Differences in FSS among 
different anti-PD-1 clinical response groups. (G) Kaplan–Meier curves of low and high FPI patient groups in the anti-PD-L1 immunotherapy cohort (IMvigor210). (H) The proportion of 
patients with response to anti-PD-L1 immunotherapy in low or high FPI groups. (I) Distribution of FSS in different anti-PD-L1 clinical response groups. (J) Kaplan–Meier curves of low and 
high FPI patient groups in the anti-PD-1 immunotherapy cohort (GSE78220). (K) The proportion of patients with response to PD-1 blockade immunotherapy in low or high FPI groups. 
(L) Differences in FPI among different anti-PD-1 clinical response groups. The statistical significance of differences in all survival analysis was determined via the Log rank test.
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immunotherapy.44 Our analysis demonstrated that the FSS 
integrated not only the characteristics of stromal and 
immune TME but also tumor mutation load, which could 
serve as an accurate predictor for patient response to 
immunotherapy and thereby direct the individual immu-
notherapy of GC.

To evaluate the ferroptosis level, we constructed a FPI 
model. Similar to FSS, a higher FPI was observed in C2 
and carried with a poorer prognosis. Besides, the correla-
tions of FPI with the characteristics TME and TMB resem-
ble to FSS. A higher FPI was associated with more active 
immune and stromal activities but a lower probability of 
immunotherapy response. Liu et al21 systematically ana-
lyzed the aberrances and functional implications of ferrop-
tosis in cancer and found that epithelial–mesenchymal 
transition (stromal-related pathway) and IL-6/JAK/STAT3 
(immune-related pathway) signaling were enriched in the 
high-FPI group. Besides, they also demonstrated that 
higher FPI was correlated with a worse survival in glio-
blastoma multiforme (GBM), kidney renal clear cell car-
cinoma (KIRC), kidney renal papillary cell carcinoma 
(KIRP), liver hepatocellular carcinoma (LIHC), and lung 
adenocarcinoma (LUAD). The unconventional phenomena 
that a high ferroptosis level was associated with worse 
status in GC, GBM, KIRC, KIRP, LIHC and LUAD indi-
cated that ferroptosis plays a dual role in tumor immune 
response. Also, regulating the ferroptosis level in TME 
with different strategies may benefit patients and improve 
prognosis.

In our study, C2 corresponding to diffuse-type GC had 
a higher level of FPI compared with C1 corresponding to 
intestinal-type GC. It was reported that low-grade inflamma-
tion could increase the cell population size due to 
a decreased rate of DNA damage-independent apoptosis, 
whereas higher grade inflammation could suppress cell 
growth through an increasing rate of DNA damage-induced 
apoptosis.45 These may be due to different levels of ROS 
corresponding to different grades of inflammation. At low 
levels, ROS could exert a protective effect through activating 
protective signaling pathways against inflammation and 
increase cell proliferation as well as survival but at high 
levels ROS cause DNA damage and trigger apoptosis.46 

Ferroptosis, an iron-dependent form of regulated cell death, 
is also induced by the accumulation of lethal lipid ROS.6 

Diffuse-type GC characterized with highly active 
inflammation47,48 may have a higher level of ROS, which 
induce ferroptosis in a higher proportion of cells, and there-
fore a higher FPI was observed. For intestinal-type GC, it 

undergoes chronic inflammatory process49,50 and is accom-
panied with a relatively lower level of ROS. As a result, the 
proportion of cells that undergo ferroptosis is smaller.

There were some limitations that must be emphasized. 
Firstly, our findings mainly come from retrospective data 
and prospective clinical validation in a larger GC cohort 
receiving immunotherapy is demanded henceforth. 
Secondly, the mechanism of ferroptosis shaping TME 
characteristics in GC was unknown and should be investi-
gated experimentally in the future.

In conclusion, we analyzed the ferroptosis patterns in GC 
and its relationship with TME. The difference of ferroptosis 
patterns possessing significantly different ferroptosis levels 
was associated with the heterogeneity and complexity of 
individual TME. Therefore, the systematic assessment of 
ferroptosis patterns in this study may be helpful for the 
further understanding of TME and guiding immunotherapy.
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