Citation: Cell Discovery (2016) 2, 16013; doi:10.1038/celldisc.2016.13

www.nature.com/celldisc

ARTICLE

Intronic cleavage and polyadenylation regulates gene
expression during DNA damage response through U1
snRNA
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The DNA damage response involves coordinated control of gene expression and DNA repair. Using deep sequencing, we
found widespread changes of alternative cleavage and polyadenylation site usage on ultraviolet-treatment in mammalian
cells. Alternative cleavage and polyadenylation regulation in the 3’ untranslated region is substantial, leading to both
shortening and lengthening of 3’ untranslated regions of genes. Interestingly, a strong activation of intronic alternative
cleavage and polyadenylation sites is detected, resulting in widespread expression of truncated transcripts. Intronic
alternative cleavage and polyadenylation events are biased to the 5” end of genes and affect gene groups with important
functions in DNA damage response and cancer. Moreover, intronic alternative cleavage and polyadenylation site activation
during DNA damage response correlates with a decrease in Ul snRNA levels, and is reversible by Ul snRNA
overexpression. Importantly, Ul snRNA overexpression mitigates ultraviolet-induced apoptosis. Together, these data
reveal a significant gene regulatory scheme in DNA damage response where Ul snRNA impacts gene expression via the

Ul-alternative cleavage and polyadenylation axis.
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Introduction

Almost all eukaryotic mRNA precursors undergo
a co-transcriptional modification at the 3’ end,
which includes two coupled steps, cleavage and
polyadenylation [1, 2]. Cleavage/polyadenylation (C/P)
involves recognition of upstream and downstream cis
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elements around the C/P site (known as pA) by the C/P
complex [3, 4]. While a relatively simple signal
sequence in the precursor mRNA is required for the
reaction, many interactions between a large number of
protein factors are necessary for the correct formation
of the C/P complex [3]. In addition to factors in the core
C/P complex, it has been shown that splicing factors
can play roles in 3’ end processing. Ul snRNP (or Ul)
has been implicated in inhibition of C/P via poly(A)
polymerase [5-7]. This mechanism has recently been
suggested to play a key role in controlling transcript
length [8, 9]. In addition, U2 snRNP factors have been
shown to interact with core C/P factors [10].

Well over half of the mammalian genes contain
more than one pA, leading to expression of alternative
cleavage and polyadenylation (APA) isoforms [11].
APA is highly dynamic across tissue types [12, 13], in
cell proliferation and differentiation [14, 15], and in
response to extracellular cues [16]. Most APA sites are
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located in the 3’ untranslated region (3'UTR) of
mRNA [17]. As 3'UTRs contain various cis elements
for post-transcriptional control, such as microRNA
target sites and AU-rich elements, 3'UTR-APA can
significantly impact mRNA metabolism. In addition, a
sizable fraction of genes harbor pAs in introns [17].
Intron-APA can result in change of coding sequences
of mRNA, impacting the proteome. The core
mammalian C/P machinery and additional cis elements
around the pA are responsible for the selection among
APA sites [18-20]. Interestingly, in keeping with U1’s
role in C/P, recent studies have shown that inhibition of
U1 function leads to activation of intron-APA events,
resulting in shorter transcripts [8, 21].

The DNA damage response (DDR) occurs on a
number of environmental exposures, such as ultraviolet
(UV) irradiation, and involves functional and struc-
tural changes in a number of nuclear proteins, resulting
in a coordinated control of gene expression and DNA
repair. One key aspect of the response is the transient
decrease of the cellular levels of mRNA following
UV irradiation and its recovery [22, 23]. Although the
mechanisms involved in this response are still not
completely resolved, it has been determined that the
UV-induced inhibition of both transcription [24] and
mRNA 3" processing [25] are responsible for the
decrease in mRNA levels. Both 3" end formation and
transcription are affected in a similar time frame after
DNA damage, resulting in a general, transient decrease
of the cellular levels of polyadenylated transcripts [25].
mRNA levels of genes involved in DDR appear to be
specifically regulated at the 3-end processing step [26].
Tumor suppressors and DNA repair factors whose
expression is commonly compromised in most cancers,
such as BARDI and p53, have functional interactions
with the 3’ end processing factor CstF-50 and PARN
deadenylase, resulting in the regulation of mRNA 3’
processing during DDR [25, 27-33]. In addition, we
have found that PARN deadenylase has a role in
decreasing the levels of short-lived mRNAs involved
in the regulation of cell growth, differentiation and
DDR, and keeping their expression levels low under
non-stress conditions [30, 33]. The existence of
redundant mechanisms to control mRNA steady-state
levels during DDR highlights the importance of
the transcription/RNA processing machineries in this
response.

Here we explore the mechanisms and consequences
of APA on UV-induced DNA damage. Using 3’ region
extraction and deep sequencing (3’READS), we show
widespread changes of intron-APA and 3'UTR-APA
on UV treatment in mammalian cells. Distinct APA

changes at different time points after UV treatment
affect many genes involved in DDR and cancer.
Intron-APA upregulation correlates with a decrease in
Ul snRNA levels after UV-induced DNA damage.
Importantly, overexpression of Ul snRNA reverses
UV-induced intron-APA and mitigates the apoptosis
caused by UV. Our results indicate that the Ul-APA
axis is an important part of gene regulatory mechanism
in DDR.

Results

Analysis of UV-induced APA by 3’READS

Previous studies indicated that 3’ end processing
is regulated during DDR [25, 27-33]. To examine
how APA is modulated in DDR, we treated colon
carcinoma RKO cells with UV irradiation, followed by
recovery for either 0.5 or 2 h. To determine whether the
effect of UV treatment on APA was general or specific
to certain genetic background, we included in our study
RKO-E6 (low p53 levels) cell line, which is isogenic to
the RKO cell line. To mitigate the effect of differential
regulation of APA isoforms through mRNA decay in
cytoplasm and in keeping with our previous work to
study functional effect of DNA damage using nuclear
RNA and factors [30-34], nuclear RNA was extracted
and subjected to 3’READS (Figure la), a recently
developed deep sequencing method for analysis of APA
isoform expression genome wide [17]. We examined
relative expression of APA isoforms that used pAs
in the 3-most exon, which typically have different
3'UTRs, as well as intronic pAs, which have different
coding sequences and 3’'UTRs (Illustrated in Figure 1b).

To simplify the analysis of APA in 3-most exons,
where a variable number of pAs can exist [11], we
selected top two 3'UTR-APA isoforms for each gene
with the most number of reads and examined their
relative expression. For RKO cells, we identified 1278
and 1317 genes that displayed isoform expression
changes in the 0-0.5h and 0.5-2h time windows,
respectively (Fisher exact test, P < 0.05; Figure lc).
For RKO-E6, we identified 728 and 755 genes with
significant 3'UTR-APA changes in the 0-0.5h and
0.5-2h time windows, respectively (Figure 1d).
The fact that fewer genes underwent 3’'UTR-APA in
RKO-EG6 cells than in RKO cells suggests a potential
role of p53 in impacting the extent of 3'UTR-APA
regulation during DDR. Overall, for both cell lines, the
number of genes which had upregulated distal pA
isoform was similar to that of genes which had
upregulated proximal pA isoform in both windows,
indicating that there was no global direction for
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Figure 1 Regulation of 3'UTR-APA in both RKO and RKO-E6 cells after UV treatment. (a) Experimental design for analysis of
APA in UV-treated cells using 3'READS. (b) Schematic showing two types of APA examined in this study, namely intron-APA and
3'UTR-APA. (c, d) Comparison of 3'UTR-APA in RKO and RKO-E6 cells. Top 2 most abundant 3'UTR isoforms were chosen for
each gene. Log2 ratios of expression are plotted between two isoforms. APA changes were examined in two time windows (0.5 vs
0h, and 2 vs 0.5h) and considered significant when P-value < 0.05 (Fisher's exact test). Blue dots represent genes with
upregulated proximal pA isoform (3'UTR shortened), and red dots represents genes with upregulated distal pA isoform (3'UTR
lengthened). Grey dots are genes that have no significant regulation. Colored lines indicate median values for blue or red dots.
Number of genes with regulated 3'UTR is shown on the right plot. Blue and red dots on the left correspond to genes in blue and
red bars, respectively. (e) Venn diagram comparing significantly regulated 3'UTR-pA isoforms for both RKO and RKO-EG6 cells.
P-value (Fisher’'s exact test) indicates bias of distribution of the numbers in four overlapping areas (underlined). APA, alternative
cleavage and polyadenylation; 3'READS, 3’ region extraction and deep sequencing; UTR, untranslated region; UV, ultraviolet.

3'UTR length changes under these conditions. It is
noteworthy that in both time windows and for both
cells lines, upregulation of proximal pA isoforms was
accompanied with a similar magnitude downregulation
of distal pA isoforms and vice versa (similar x-axis and
y-axis median values for blue and red dots in Figure 1c
and d), indicating that APA isoform expression
regulation was generally due to changes of pA choice
rather than differences in isoform stability (which
would cause different magnitudes of regulation).
Interestingly, the APA pattern in the 0-0.5 h window
was largely different than the 0.5-2 h window for both
cell lines (Figure le); a group of pAs in fact had an
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opposite regulatory trend between the two time win-
dows. This result indicates widespread and dynamic
3'UTR-APA regulation during the progression of
DDR. Consistently, Gene Ontology (GO) analysis
indicated that different biological processes were
affected by 3'UTR-APA in the two windows
(Supplementary Table S1). For example, APA
regulation was significantly enriched for genes asso-
ciated with ‘cell redox homeostasis’, ‘cellular home-

ostasis’ and ‘regulation of cellular component
organization’ in the 0.5-2.0h window, whereas
‘protein localization to endoplasmic reticulum’,

‘negative regulation of transport’ and ‘membrane
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Figure 2 Regulation of intron-APA in both RKO and RKO-EB6 cells after UV treatment. (a, b) Comparison of expression between
intronic pA isoforms and all isoforms using pAs in the 3'-most exon in RKO and RKO-E6 cells. Blue dots correspond to genes with
upregulated proximal pA isoform (intronic pA activation) and red dots correspond to genes with upregulated distal pA isoform
(intronic pA repression). Grey dots are genes that have no significant regulation. Colored lines indicate median values for blue or
red dots. Number of genes with significantly regulated intron-APA events is shown on the right. Ratio of number of genes in the
blue bar to that of genes in the red bar is indicated. (c) Distribution of pAs detected in 3'UTRs or introns in samples from both RKO
and RKO-EB6 cells. Only pAs with read number greater than 5% of all reads of the gene were used. (d) Venn diagram comparing
genes with significantly regulated intronic pA isoforms in two windows in samples from both RKO and RKO-EB6 cells. (e) Venn
diagram comparing significantly regulated APA events in RKO and RKO-EG cells. Significance was determined by RED (relative
expression difference), with the cutoff of >1 or < —1. (left) 3'UTR-APA events. (right) intron-APA events. Statistical analysis of
overlapping genes was performed by the Fisher’s exact test. APA, alternative cleavage and polyadenylation; 3’'READS, 3’ region
extraction and deep sequencing; UTR, untranslated region; UV, ultraviolet.

protein proteolysis’ were found to be associated with
genes with APA regulation in the 0-0.5h window.
Three example genes are shown in Supplementary
Figure S1.

A large fraction of human pAs are located in introns
[35]. We next compared expression of isoforms using
intronic pAs with those using 3-most exon pAs for
RKO and RKO-E6 cells. As with 3'UTR-APA events,
fewer genes underwent intron-APA in RKO-E6
cells than in RKO cells, suggesting a role of p53 in
the regulation (Figure 2a and b). Much to our

surprise, intronic pA isoforms were greatly upregulated
compared with 3-most exon pA isoforms in both cell
lines. This trend was much more conspicuous in the
0.5-2 h window than the 0-0.5 h window, in which 4.3-
and 1.8-fold more genes had upregulated intronic
pA isoforms than had upregulated 3-most exon pA
isoforms, respectively (Figure 2a). A similar trend was
observed for RKO-E6 cells albeit to a lesser extent
(2.8- and 1.5-fold, Figure 2b). In contrast to 3'UTR-
APA regulation, the magnitude of upregulation of
intronic pA isoforms in both cell lines was greater than
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Figure 3 Relationship between intronic APA and gene expression regulation. (a) Gene expression changes vs intron-APA
regulation. The blue line is for genes with activated intronic pAin 2 vs 0.5 h (RED < —1), and green line for other genes. X-axis
indicates log2 ratio of gene expression in 2 vs 0.5 h in RKO (left) and RKO-EG6 (right). Y-axis is cumulative fraction. The median
value of each group is indicated by a dotted vertical line. The P-value is based on comparison of two groups using the
Kolmogorov—Smirnov test. (b) As in a except that gene expression changes are based on 0.5 vs 0 h. Note that intronic regulation
is based on 2 vs 0.5h (RED< —1) as in a. (c, d) Significant functional categories enriched with genes with significant
intronic APA regulation in both RKO and RKO-EB cells (underlined in the Venn diagram in Figure 2e, right panel), as analyzed by
the Ingenuity Pathway Analysis Network (c) and Molecular and Cellular Function terms (d). In the network, red nodes indicate
genes with significant intronic APA regulation. APA, alternative cleavage and polyadenylation.

that of downregulation of 3-most exon pA isoforms
(different x-axis and y-axis median values for blue and
red dots in Figure 2a and b), in line with the fact that
intronic pAs isoforms are typically expressed at much
lower levels than 3'UTR pA isoforms. Consistently,
greater numbers of intronic pAs were detected in 2 h
samples than in 0 or 0.5 h samples by 1.9- and 1.6-fold
for RKO and RKO-EG6, respectively (Figure 2c).
Six example genes are shown in Supplementary
Figure S2. Together, these results suggest that while
p53 expression may impact the extent of APA regula-
tion, it does not affect the direction of regulation.
Similar to the 3'UTR-APA result, genes with
regulated intronic pAs in the two time windows
analyzed are largely different (Figure 2d). GO analysis

Cell Discovery | www.nature.com/celldisc

(Supplementary Table S2) indicated that upregulated
intronic pAs in the 0-0.5h window were enriched for
genes associated with several GO terms, such as ‘reg-
ulation of protein kinase B signaling cascade’ and
‘modification of morphology or physiology of other
organism involved in symbiotic interaction’, and those
in the 0.5-2h window were enriched for genes asso-
ciated with ‘regulation of transcription from RNA
polymerase II promoter’, ‘response to DNA damage
stimulus’, ‘nucleocytoplasmic transport’ and so on. A
significant number of regulated intronic APA events
overlapped between RKO and RKO-E6 cells
(P=2.4 x 107>, Fisher’s exact test, Figure 2e, right
panel), suggesting that the effect of UV treatment on
intronic APA is not cell type specific. Notably, the
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extent of overlap is greater than that for 3’UTR-APA
(P =0.14, Fisher’s exact test, Figure 2e, left panel),
suggesting that intron-APA is less regulated by p53
than is 3'UTR-APA.

We then asked how intron-APA regulation was
related to gene expression (Figure 3a and b,
Supplementary Figure S6). Our data indicate that
genes with intronic pA activation between 0.5 and 2 h
were more likely to be downregulated in the same
period, as compared with other genes (Figure 3a),
suggesting that intronic APA can inhibit gene expres-
sion by generating truncated transcripts. Interestingly,
we also found that the same genes with intronic pA
activation between 0.5 and 2 h were also more likely to
be upregulated between 0 and 0.5 h after UV treatment
(Figure 3b), suggesting that intronic APA might serve
as a mechanism to regulate gene expression of factors
involved in the response, such as POLR2A and cyclin-
dependent kinase inhibitor 1A (CDKNI1A), assuring
that cells react to damage response in a controlled and
timely manner. Consistent with this and the results
shown in Supplementary Table S2, Ingenuity Pathway
Analysis showed that genes with significant intronic
APA regulation in both RKO and RKO-EG6 cells were
associated with pathways highly relevant to DDR
(Figure 3c and d).

Validation of UV-induced APAs detected by 3 READS

To validate our genome-wide analysis, we examined
3'UTR- and intron-APAs for genes following the
strategies shown in Figure 4a. To further confirm that
the effect of UV treatment on intronic APA is not a cell
type-specific effect, we extended our study to colon
carcinoma HCT116 cells. Briefly, after recovery from
UV treatment, nuclear RNA was isolated from
colon carcinoma HCTI16 and RKO cells and
complementary DNA (cDNA) was synthesized by
reverse transcription using oligo(dT) primers. Quanti-
tative reverse transcription-PCR (qRT-PCR) was
performed with these cDNA as template. HCT116
results are shown in Figure 4b and c. Three primers
were used to detect intron-APA products (short
isoform) and full-length mRNAs (long isoform): the
forward primers were located in the upstream exons of
regulated intronic pAs of studied genes and the two
reverse primers corresponded to either the intron con-
taining the pA (for detection of short isoform) or the
downstream exon (for detection of long isoform). A
similar strategy was used to detect 3'UTR-APA pro-
ducts: a common forward primer in the 3'UTR and the
two reverse primers corresponded to either upstream
(for detection of total 3'UTR-APA) or downstream

(for detection of distal-APA isoforms) from the used
pA. The values for the proximal APA were calculated
by subtracting the distal-APA values from the total
3’'UTR-APA values.

As shown in Figure 4b, our analysis for
3'UTR-APAs included genes involved in different
biological pathways (Supplementary Table S1) with
functions in DDR and cancer, such as small nuclear
ribonucleoprotein polypeptide B (SNRPB2) [36, 37],
endoplasmic reticulum protein retention receptor 1
(KDELR1) [38, 39]; Notch homolog 1 translocation-
associated (NOTCHI1) [40, 41] and dual specificity
phosphatase 6 (DUSP6) [42, 43]. Consistent with the
3'READS results (Figure 1c), the analysis of UV-
induced 3'UTR-APA in the 0-0.5h window indicated
that each individual gene did not show a major change
in the distal/proximal ratio. However, UV treatment in
the 0-2 h window induced changes in the usage of pA
for individual genes, favoring either distal (KDELRI,
NOTCHI1 and DUSP6) or proximal (SNRPB2) pAs.
The analysis shown in Figure 1c might represent the
overall behavior of the total genes analyzed, indicating
that there was no global direction of 3'UTR length
changes under these conditions.

Our analysis for intron-APAs included genes with
important functions in DDR and cancer (Figure 4c),
namely cyclin-dependent kinase inhibitor 1A
(CDKNI1A, p21) [44, 45], polymerase (RNA) II (DNA
directed) polypeptide A (POLR2A, RNA polymerase
II) [46, 47], Ephrin B2 (EFNB2) [48, 49], E2F tran-
scription factor 1 (E2F1) [50, 51] and Down syndrome
critical region gene 3 (DSCR3) [52, 53]. Importantly,
based on IPA analysis, CDKNI1A and POLR2A were
at the hub of the networks significantly associated with
intronic pA activation in the 0.5-2h window
(Supplementary Figure S3A and B). Consistent with
the 3’READS analysis results, UV treatment induced
the formation of intron-APA transcripts that were
polyadenylated (Figure 4b and c). Interestingly, the
increase in intron-APA isoforms was observed from 2
to 6 h after UV treatment, but these shorter isoforms
decrease after 10h, reaching the levels of untreated
cells (Figure 4c). Similar results were observed with
RKO cells (not shown), suggesting that UV-mediated
regulation of intronic APA is not a cell type-specific
effect. The transient nature of these intron-APA
isoforms is consistent with previously characte-
rized responses to DNA damage [25, 30]. The
sequences of the second intron was not detected in any
of the mRNAs samples analyzed (Supplementary
Figure S4A), indicating that intron-APA was induced
within the first intron of the target mRNAs. Together,
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Figure 4 Effect of UV treatment on APA. (a) Schematic representation of amplified regions to detect 3'UTR and intronic APA.
HCT116 were treated with UV irradiation and allowed to recover for indicated times, and then harvested. cDNA was prepared
using oligo(dT) primers from nuclear RNA and used for PCR and qPCR reactions with primers specific for intronic APA, full-length
mRNA, and 3'UTR (proximal and distal) APA. (b) gqRT-PCR analysis of HCT116 samples for the effect of UV on 3'UTR pA choice.
The ratio of distal/proximal of each analyzed gene is shown. Samples were prepared as described in a. The qRT-PCR values
were calculated from three independent biological samples by triplicate. (c) Intron-APA is transiently upregulated on UV-induced
DNA damage. Samples were analyzed as in a but the ratio of intronic/full-length of each mRNA is shown. The qRT-PCR values
were calculated from three independent samples. APA, alternative cleavage and polyadenylation; cDNA, complementary DNA;
gRT-PCR, quantitative reverse transcription—PCR; UV, ultraviolet.

these results indicate the UV treatment induce the
usage of intronic pAs of genes involved in DDR,
suggesting a possible role for these intron-APA events
in controlling gene expression during the response.

Features of UV-induced intronic APA events

We next examined features of introns that harbor
activated pAs in DDR in our 3'READS data.
Strikingly, we found the activated intronic pAs are
highly enriched (>1.5-fold above background) in
5’introns, with the most notable enrichment being pAs
in the first intron in the 0.5-2 h window (2-fold above
background) (Figure 5a). Consistently, we found that

Cell Discovery | www.nature.com/celldisc

the distance from the activated pAs in the 0.5-2h
window to transcription start site (TSS) was signifi-
cantly shorter than those in control cells (P =3 % 107"%)
(Figure 5b), a trend not seen for activated pAs in the
0-0.5h window (P =0.4). Further analysis of intron
features indicated that introns harboring activated pAs
are larger and had stronger 5’ splice site (5'SS)
compared with other introns (Supplementary
Figure S5). However, these distinct features were not
significantly different from other first introns. Note
that the upregulated intronic pAs of POLR2A and
EFNB2 are both located in the first intron, and the
APA event of CDKNI1A was either in the first intron or
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a 5" intron depending on the TSS (Supplementary 4 kb from the TSS on the anti-sense strand (Figure 5c).
Figure S2). Interestingly, in addition to the sense  These transcripts were previously named upstream
strand pAs, we also noticed in the 0.5-2h window a  anti-sense RNA (uaRNA) or PROMPTs [54, 55].
general upregulation of transcripts using pAs within ~ Their activation in the 0.5-2h window suggests a
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Figure 5 Regulation of intronic APA and C/P events around transcription start site (TSS) in response to UV. (a) Distribution of
introns with activated pAs in genes. 1, first intron; 2, second intron; M, middle introns; — 2, second to the last intron; — 1, last intron.
Single introns were excluded from this analysis. The number of introns falling into multiple types, for example, both +1 and — 1
types, was evenly divided in calculation. Introns with pAs at 0 h were used as control. Changes of percent of introns with activated
pAs at 0.5 vs 0 h or 2 vs 0.5 h are shown in a table next to the plot. (b) Boxplot showing distance from the transcription start site
(TSS) to intronic pAs. Only the 25th to 75th percentile values are shown. The 0 h data are based on all detected intronic pAs, and
the 0.5vs 0 hand 2 vs 0.5 h data are based on activated intronic pAs. P-values were based on Wilcoxon test comparing the 0.5 vs
0h or 2 vs 0.5 h values with those of control (0 h). (c) Distribution of pAs around the TSS. Top panel: all detected pAs in three
samples are plotted, and are shown as reads per million (RPM) per base. The pAs within 4 kb from the TSS on the anti-sense
strand are called upstream anti-sense RNA (uaRNA) pAs, and those within 4 kb from the TSS on the sense strand are called
sense proximal RNA (spRNA) pAs. For uaRNA pAs, we discarded pAs that were associated with any known genes, and for
spRNA pAs we excluded pAs that were located in the 3'-most exon of genes. Bottom panel: the amounts of uaRNAs or spRNAs
are shown in bar graphs. The ratio of transcript amount in the 2 h sample to that in the 0.5 h sample for spRNA pAs (top) or uaRNA
pAs (bottom) is indicated. (d) Distribution of nucleotides as a function of base position around the pA identified by 3'READS. The
upstream and downstream regions around the pA were analyzed, spanning from =100 nt to 100 nt, with the pA set at 0 nt. The
y-axis indicates frequency of each type of nucleotide at a given position. Top panel: nucleotide frequency around 3'UTR pAs
(14 058 in total). Bottom panel: nucleotide frequency of intronic pAs (6 750 in total). APA, alternative cleavage and
polyadenylation; 3’READS, 3’ region extraction and deep sequencing.
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Figure 6 U1 RNA levels inversely correlate with intronic APA. (a) U1 snRNA levels decrease after UV treatment. HCT116 and
RKO cells were treated with UV irradiation and allowed to recover for the indicated times, and then harvested. Nuclear RNA was
isolated and cDNA was prepared using random primers. qRT-PCR reaction was performed with primers specific for U1 snRNA.
gRT-PCR products of actin were used as endogenous control. The values from each sample were normalized to non-treated
samples. The qRT—PCR values were calculated from three biological samples by triplicate in each determination. (b) Changes in
the levels of spliceosome complex components on UV treatment. HCT 116 cells were treated with UV irradiation and analyzed as
in Figure 4a by gqRT—PCR reaction with primers specific for U2 snRNA, U1A, U1C and U1-70K. The qRT-PCR values were
calculated from three independent samples. (c) Functional depletion of U1 snRNA, but not U2 snRNA, causes an increase in
intronic pA. HCT116 cells were transfected with control or anti-sense morpholino targeting U1 snRNA (U1 AMO) or U2 snRNA
(U2 AMO). cDNA was prepared and used in qRT-PCR assays as in Figure 4c. The gRT-PCR values were calculated from three
biological samples were analyzed by triplicate in each determination. (d) Overexpression of U1 RNA abolishes UV-induced
intronic APA. HCT116 cells were transfected with two concentrations of either control or U1 snRNA expressing vectors and
treated with UV irradiation. Nuclear RNA was used to prepare cDNA, which was used in gqRT-PCR reactions as in Figure 2b. The
gqRT-PCR values were calculated from three independent samples. (e) Overexpression of U1 RNA decreases the levels
of UV-induced apoptosis in HCT116 cells. The DNA fragmentation was calculated from three independent samples.
APA, alternative cleavage and polyadenylation; cDNA, complementary DNA; gqRT-PCR, quantitative reverse transcription—-PCR,;
UV, ultraviolet.

unique mechanism regulating RNAP Il activity around  intronic pAs detected by 3’'READS were genuine pAs
the TSS in this phase of DDR response. We also  with similar surrounding cis elements.

determined the distribution of nucleotides around the

3'UTR and intronic pAs identified by 3READS  Role of Ul RNA levels in intronic APA events during
(Figure 5d). The base composition profiles upstream  DDR

and downstream from the pA for these two groups of The activation of promoter-proximal pAs in 2 vs
pAs were highly similar and consistent with those of  0.5h is reminiscent of APA regulation by Ul snRNP:
known pAs [11], indicating that the 3'UTR and functional depletion of Ul RNA shortens mRNAs due
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to usage of promoter-proximal cleavage and poly-
adenylation signals [9]. Earlier studies have shown a
decrease in U1 and U2 small RNA levels in HeLa cells
on UV treatment [56]. Therefore, we examined whether
intronic APA was triggered by Ul RNA reduction in
response to UV irradiation. First, we detected the
effect of UV treatment on the levels of Ul RNA by
gqRT-PCR using HCT116 and RKO cells (Figure 6a).
Cells were treated with UV irradiation and allowed to
recover for the indicated time points. Consistent with
the studies of Eliceiri and Smith [56], our qRT-PCR
analysis of nuclear RNA samples from these cells
showed a transient decrease in Ul RNA levels on UV
treatment (Figure 6a). Although a decrease in Ul RNA
was detected as early as 0.5 h after UV treatment, the
lowest level of Ul RNA was observed 6 h after UV
treatment for both cell lines. The levels of Ul RNA
increased 24 h after UV treatment, reaching the levels
of untreated cells. Extending those studies, we analyzed
the levels of other components of the Ul and U2
snRNPs by qRT-PCR. After UV treatment, a decrease
was also observed in U2 RNA, UlA and Ul-70K
mRNAs of Ul snRNP (Figure 6b). No significant
changes were observed in U1C levels. Thus, among all
the molecules examined, Ul snRNA levels (Figure 6a)
correlated the best with the changes in intronic/
full-length APA levels (Figure 4c). Previous studies
indicate that Ul snRNPs, such as UlA and U1-70K,
are inhibitors of 3’ end processing and intronic APA
(reviewed in 57). Our studies indicate that the decrease
of these Ul snRNPs early in DDR might increase
intronic APA. However, only Ul snRNA levels cor-
relate with the decrease in intronic APA later in the
response, suggesting that other components of Ul
snRNP might not be at the rate-limiting level
during DDR.

Importantly, functional depletion of Ul RNA using
morpholino oligonucleotides increased significantly the
ratio of intron/full-length APA isoforms for POLR2A,
CDKNI1A and EFNB2 (Figure 6¢). Strikingly, using
low concentrations of Ul snRNA AMO, the changes
in the intronic/full-length ratio by Ul RNA depletion
were similar in magnitude to that observed after UV
treatment (compare Figures 4b and 6c¢). As previously
described [9], we did not detect sequences of the second
intron in any of the mRNA samples analyzed at low
concentrations of Ul snRNA AMO (Supplementary
Figure S4B), indicating that the moderate functional
decrease in U1 levels was insufficient to inhibit splicing.
However, at higher concentrations, second intron
inclusion was observed for the genes analyzed
(Supplementary Figure S4B). U2 RNA depletion using

morpholino did not increase the usage of examined
intronic pAs (Figure 6c). This is consistent with
previous studies showing that decrease of U2 snRNP
levels has a different impact on intronic APA [21].
Supporting these results, overexpression of Ul snRNA
reverses the UV-induced increase of intron-APA
(Figure 6d) and apoptosis (Figure 6e). Together,
these results indicate that the UV-induced down-
regulation of Ul snRNA, not other components of the
U1 snRNP, is chiefly responsible for the activation of
intronic APA sites during DDR.

Discussion

Here we report significant activation of intronic pAs
on UV treatment in mammalian cells, adding a new
layer of gene regulation in the cellular response to
UV-induced DNA damage. At the center of this
mechanism is Ul snRNA, one of the component of Ul
snRNP, which has previously been shown to play an
important role not only in splicing but also in 3’ end
processing [5, 20]. Our data for the first time provides a
cellular response/pathway that is affected by the
UI1-APA axis and shows that downregulation of the
Ul snRNA level is the controlling step for intronic
APA in DDR. This mechanism results in activation of
pAs located near TSS, mostly in the first intron, and
serves as a rapid (within 2h after UV) strategy to
regulate expression of affected genes. Given the dif-
ferent correlations between intronic pA activation and
gene expression changes in 0.5 vs 2h and 0 vs 0.5h
windows, it is plausible that this mechanism assures
that the expression of factors involved in the response,
such POLR2A and CDKNI1A, occurs in a controlled
and timely manner. Consistent with this, genes with
significant intronic APA regulation belong to pathways
activated during DDR and downregulation of gene
expression was more likely to be associated with
intronic APA.

Our results indicate that similar changes in APA
events occur in different cell lines in a similar time-
frame, suggesting that UV-mediated regulation of
intronic APA and 3'UTR-APA are not a cell type-
specific effect. However, our results also indicate that
p53 expression may impact the extent of APA regula-
tion during DDR. This is not surprising given that p53
is involved in different aspects of gene expression
regulation during DDR, such as controlling tran-
scription, mRNA stability and/or translation [58, 59].
Further experiments are needed to reveal the exact role
of p53 in APA regulation in DDR.
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Although transcriptional and protein level changes
of POLR2A and CDKNI1A are known mechanisms of
UV response in mammalian cells, the UV-induced
regulation of their APA isoforms and steady-state
levels of their transcripts have never been reported.
A fraction of the largest subunit of POLR2A decreases
by DNA damage-induced ubiquitination followed by
proteasomal degradation in mammalian cells [60, 61].
This modification can be detected within 15 min after
exposing cells to UV irradiation and persists for
about 8-12h [60]. POLR2A ubiquitination requires
C-terminal domain phosphorylation, which is a char-
acteristic of elongating POLR2A [61, 62]. Interestingly,
the polyadenylation factor CstF associated to the
tumor suppressors BRCA1/BARDI play a role in the
proteasome-mediated degradation of POLR2A during
DDR [27, 63]. Both the interaction of CstF and
BRCA1/BARDI complex [24, 27, 31] and the
proteasome-mediated degradation of POLR2A [27, 63]
contribute to the inhibition of 3’ end processing that
occurs after DNA damage. Those studies suggested the
existence of several, possibly redundant, mechanisms
to explain the inhibitory effect of UV irradiation on
mRNA 3’ processing. The studies presented here
add another level of complexity indicating that the
UV-induced decrease in POLR2A protein levels might
be due to intronic APA, which results in a decrease in
full-length POLR2A mRNA, supporting the idea that
Ul snRNA plays a role in this response. The cellular
function of this shorter form of POLR2A protein in
cellular transcription as well as other factors involved
in intronic APA during DDR will be addressed in
future studies. Notably, it has been shown that UV
damage switches the usage of pAs from the proximal
to the distal one in the 3’'UTR for the yeast largest
subunit of POLR2A gene [64]. How APA-medicated
regulatory mechanisms vary in different species is
another subject of future investigation.

Although it is known that a differential regulation of
genes involved in DDR occurs during the progression
of DDR, the mechanisms driving this differential
regulation are not completely understood. One exam-
ple is the p53 pathway. Although p53 binds to the
promoter of all of its target genes not all these genes are
activated with same stimulus at the same time of the
response [65-67]. For example, while UV treatment
induces p53 binding at the CDKN1A promoter, it does
not induce a strong increase in CDKNI1A levels of full-
length mRNA and protein [67]. However, p53 can
activate CDKNI1A expression under cell cycle arrest
conditions induced by doxorubicin or Nutlin-3 treat-
ment, indicating that other mechanisms contribute to
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the regulation of CDKNIA mRNA levels on UV
treatment. Previous studies have shown that this
stimulus specific response is regulated by posttransla-
tional modifications of p53 [68, 69], p53-binding
factors [70, 71], chromatin structure and transcription
factors [61]. This suggests that multiple mechanisms
contribute to define p53-dependent transcriptional
profiles. Our studies indicate that activation of intron-
APA and accumulation of shorter mRNA isoforms of
CDKNIA might provide an alternative explanation of
CDKNIA regulation during UVC-induced DNA
damage.

Together, our study reveals a significant gene-
specific regulatory scheme in DDR where Ul snRNA
impacts gene expression via APA.

Materials and Methods

Tissue culture methods

RKO, RKO-E6 and HCT116 cell lines were cultured in
Eagle's minimal essential medium and Dulbecco’s modified
Eagles medium, respectively. Media were supplemented with
10% fetal bovine serum and 1% penicillin/streptomycin
antibiotic.

DNA-damaging agents

Ninety percent confluent cultures were exposed to UV and
harvested at the indicated times. UVC doses (40 J m™) were
delivered in two pulses using a Stratalinker (Stratagene, La
Jolla, CA, USA). Prior to pulsing, medium was removed and
replaced immediately after treatment.

3’READS

Colon carcinoma RKO cells were treated with UV irradia-
tion and allowed to recover for 0.5 or 2 h. Nuclear RNA was
purified using the RNeasy kit (Qiagen, Valencia, CA, USA)
following manufacturer’s protocol, followed by 3'READS
analysis as described in ref. 33. Briefly, after RNA fragmenta-
tion, poly(A)-containing RNA fragments were captured onto
magnetic beads coated with a chimeric oligonucleotide (oligo
CUsTys), which contained 45 thymidines (Ts) at the 5’ portion
and 5 uridines (Us) at the 3’ portion, and were released from the
beads by RNase H treatment, which also eliminated most of the
As of the poly(A) tail. Eluted RNA was ligated to 5" and 3’
adapters, followed by reverse transcription, PCR amplification
and deep sequencing.

Data analysis

Reads from 3'READS were aligned to the genome using
Bowtie2 [72], and those with at least two non-genomic As at the
3" end were considered as PolyA site-supporting reads, which
were used for APA analysis. We used the Fisher’s exact test to
compare isoform expression between two samples. For 3'UTR-
APA analysis, the two most abundant 3'UTR pA isoforms were
compared; for intron-APA analysis, we either compared each
intronic pA isoform with all isoforms using pAs in the 3-most
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exon or combined all intronic pA isoforms and compared them
with all isoforms using pAs in the 3-most exon. We used
P-value < 0.05 and relative abundance change>5% to select
significantly regulated APA events. GO analysis (http://www.
geneontology.org) were carried out using Fisher’s exact test.
IPA analysis was carried out using default values (www.qiagen.
com/ingenuity). Features of introns with regulated pAs were
based on RefSeq annotations. 5’SS and 3'SS scores were based
on the maximum entropy method [73].

Analysis of endogenous mRNAs or APA isoforms
abundance

Nuclear RNA was purified from different cell lines using the
RNeasy Mini Kit (Qiagen) according to the manufacturer’s
directions. RNA concentrations of the samples obtained under
different conditions were equalized. Equivalent amounts of
purified RNA (2 pg) were used as a template to synthesize
c¢DNA using either random hexamer primers or oligo-d(T)
primers and GoScript reverse transcriptase (Promega, Madison,
WI, USA) according to the manufacturer’s protocol. PCR was
performed using the reverse transcriptase products and Tagman
master mix (Applied Biosystems, Foster City, CA, USA). The
primers used to detect intron/full-length and distal/proximal
mRNA isoforms are described in Supplementary Table S3.
Commercially available primers for GAPDH (Applied Biosys-
tems) were used in the qRT-PCR reactions to normalize
gqRT-PCR reactions. SYBR green master mix (Applied
Biosystems) was used in the qRT-PCR reactions. Relative levels
were calculated using ACt method. Genomic DNA was
prepared from HCT116 cells as in ref. 74. For detection of
second introns the following primers were used: POLR2A:
forward primer 5-GGGAAGCAGGCTGGAATTGG-3,
reverse primer 5-GTCTGCATTGTACGGAGTT-GTC-3".
CDKNI1A: forward primer 5-GAGTGGACGTTCCCCGA
GTT-3’, reverse primer 5-GTCAGCCAGGCCAAGAAGA
AG-3". Ephrin B2: forward primer 5-GCCAGGAAGGAG
GTATAATTGGG-3', reverse primer: 5~-ACCTTTCTTCTC
CCCTGCTAC-3".

Depletion and overexpression of Ul snRNA

HCT116 cells were transfected with either 10 nmol of control
oligo or Ul snRNA targeting morpholino oligonucleotides
according to the manufacturer’s instructions (Gene Tools, Phi-
lomath, OR, USA) using scrape delivery method. After addition
of morpholino nucleotides, cells were scraped and transferred to
a new six-well plate. The plasmid overexpressing Ul snRNA
was kindly provided by Dr Gunderson (Rutgers University).
HCT116 cells were transfected with this plasmid using
Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA) according
to the manufacturer’s instructions. Cells were harvested
48 h after transfection and nuclear RNA was isolated. cDNA
was prepared and wused in qRT-PCR reactions as
described above.

Nuclear extract preparation
After UV treatment, nuclear extracts were prepared from
harvested cells essentially as described [30, 32].

Cell death ELISA assay

Fragmentation of DNA after induction of apoptosis was
determined by photometric enzyme immunoassay (Cell Death
Detection ELISAPLUS; Roche, Indianapolis, IN, USA) as
recommended by the manufacturer.

Availability of supporting data

The data sets supporting the results of this article are
available in the NCBI’s Sequence Read Archive: http://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE71801.
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