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Abstract

Coronavirus pandemic (COVID-19) has infected more than ten million persons worldwide.

Therefore, researchers are trying to address various aspects that may help in diagnosis this

pneumonia. Image segmentation is a necessary pr-processing step that implemented in

image analysis and classification applications. Therefore, in this study, our goal is to present

an efficient image segmentation method for COVID-19 Computed Tomography (CT)

images. The proposed image segmentation method depends on improving the density

peaks clustering (DPC) using generalized extreme value (GEV) distribution. The DPC is

faster than other clustering methods, and it provides more stable results. However, it is diffi-

cult to determine the optimal number of clustering centers automatically without visualiza-

tion. So, GEV is used to determine the suitable threshold value to find the optimal number of

clustering centers that lead to improving the segmentation process. The proposed model is

applied for a set of twelve COVID-19 CT images. Also, it was compared with traditional k-

means and DPC algorithms, and it has better performance using several measures, such as

PSNR, SSIM, and Entropy.

Introduction

Coronavirus (COVID-19) that first reported in December 2019, in Wuhan, China, has been

spread to more than 200 countries and regions. It could be transmitted through the respiratory

droplets and the contact [1, 2]. Diagnosing COVID-19 is a critical challenge for health organi-

zations that must be accurately and efficiently implemented to make necessary plans [3]. The

real-time polymerase chain reaction (RT-PCR) can be used to diagnose COVID-19, but it is a

time-consuming test; also, it may suffer from false-negative diagnosing [4, 5]. Therefore, medi-

cal imaging, such as chest X-ray and chest Computed Tomography (CT) can be used efficiently

for diagnosing COVID-19.

Image segmentation is considered as an important key for analyzing medical images. Its

main goal is to distinguish the region of interest (ROI) from the area of outside. Moreover, it

PLOS ONE

PLOS ONE | https://doi.org/10.1371/journal.pone.0244416 January 8, 2021 1 / 13

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Abd Elaziz M, A. A. Al-qaness M, Abo Zaid

EO, Lu S, Ali Ibrahim R, A. Ewees A (2021)

Automatic clustering method to segment COVID-

19 CT images. PLoS ONE 16(1): e0244416. https://

doi.org/10.1371/journal.pone.0244416

Editor: Yiming Tang, Hefei University of

Technology, CHINA

Received: June 1, 2020

Accepted: December 10, 2020

Published: January 8, 2021

Copyright: © 2021 Abd Elaziz et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: https://github.com/

ieee8023/covid-chestxray-dataset.

Funding: The paper has fund from China

Postdoctoral Science Foundation Grant No.

2019M652647, also, the Hubei Provincinal Science

and Technology Major Project of China under Grant

No. 2020AEA011 and the Key Research &

Developement Plan of Hubei Province of China

under Grant No. 2020BAB100. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript.

https://orcid.org/0000-0002-7682-6269
https://doi.org/10.1371/journal.pone.0244416
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244416&domain=pdf&date_stamp=2021-01-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244416&domain=pdf&date_stamp=2021-01-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244416&domain=pdf&date_stamp=2021-01-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244416&domain=pdf&date_stamp=2021-01-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244416&domain=pdf&date_stamp=2021-01-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0244416&domain=pdf&date_stamp=2021-01-08
https://doi.org/10.1371/journal.pone.0244416
https://doi.org/10.1371/journal.pone.0244416
http://creativecommons.org/licenses/by/4.0/
https://github.com/ieee8023/covid-chestxray-dataset
https://github.com/ieee8023/covid-chestxray-dataset


also enables to extract important features, for example, texture, and shape of tissues [6–8].

Recent advances in the field of medical imaging show that medical images can be heavily used

in many medical procedures. Therefore, huge numbers of medical images are generated every

day. With this massive volume of images, it is a big challenge for analyzing and diagnosing

since manual segmentation requires more time; more so, it may not meet the demand of ana-

lyzing big images data.

To this end, creating automatic methods for medical image segmentation is an important

and urgent issue. Therefore, in recent decades, many efforts have been made by researchers to

propose various medical image segmentation methods using various technologies, for exam-

ple, region-based methods, clustering methods, threshold algorithms, machine learning, deep

learning techniques, and others. The segmentation of Computed Tomography (CT) images is

a critical step in Computer-Aided Diagnosis (CADx) systems. Therefore, many studies have

been proposed, such as Dev et al. [9] proposed a lung cancer detection from DICOM CT

images using the support vector machine (SVM) algorithm. The tested images could be classi-

fied as cancerous or non-cancerous. Shakeel et al. [10] applied a profuse clustering technique

(PCT) to segment lung CT images and then employed a deep learning model to detect lung

cancers from the tested CT images. Medeiros et al. [11] presented a segmentation method

based on active contour method (ACM) with fuzzy border detector to segment lung CT

images. Wang et al. [12] presented CT image segmentation method based on adaptive fully

dense(AFD) neural network. Their proposed method had been evaluated using CT images of

liver cancer. More so, they showed that this method could successfully segment CT images

with complex boundaries. Sousa et al. [13] proposed an automatic CT images segmentation

method for lung and trachea. Their proposed method, called ALTIS showed good perfor-

mance in detecting abnormal structures in CT images. Ye et al. [14] proposed a heart CT

image segmentation method using multi-depth fusion network. Sun et al. [15] proposed con-

volutional neural networks (CNN) model to classify CT images, moreover, to segment eyes,

and the surrounding organs. Li et al. [16] utilized the power of blockchain technology for med-

ical image segmentation. Paulraj et al. [17] proposed a possibilistic fuzzy C-means method for

lung CT images segmentation. Han et al. [18] used generative adversarial networks (GANs)

for object detection in lung nodules.

Chen et al. [19] proposed a dictionary-based method for automatically segment 3D CT

images of pathological lungs. Shariaty et al. [20] used a thresholding algorithm to segment

lung CT images. Day et al. [21] proposed a lung segmentation approach to identify lung dis-

eases using CT images. They used an enhanced graph cuts algorithm and Gaussian mixture

model (GMM). Swierczynski et al. [22] proposed a mathematical model for lung CT image

segmentation. The proposed level-set formulation combines active dense displacement estima-

tion with Chan–Vese segmentation. Sousa et al. [13] presented a segmentation method called

ALTIS to segment lung and trachea in CT images.

Among all the mentioned methods, deep learning approaches have received wide popular-

ity because of their notable performance in image segmentation. However, these methods

require extensive training using many images [23], and this may cause a problem for some

applications that have only limited images. Therefore, unsupervised methods, such as cluster-

ing, are preferable since they do not require more images for training. There are several types

of clustering segmentation methods used for medical images, for example, fuzzy C-means

[24], density-based clustering [25], and K-means [26].

According to Tao et al. [27] Chest CT is more sensitive to diagnose COVID-19 comparing

to RT-PCR (initial reverse-transcription polymerase chain reaction). Therefore, in this paper,

we propose a clustering method to segment chest CT images of infected people of COVID-19.

PLOS ONE Automatic clustering method to segment COVID-19 CT images

PLOS ONE | https://doi.org/10.1371/journal.pone.0244416 January 8, 2021 2 / 13

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0244416


In this study, we apply density peaks clustering (DPC) [28, 29] based on generalized

extreme value distribution to deal with chest CT scans of COVID-19. Based on visual selection

rule of density peaks clustering and following [30], the clustering point has a higher density

than other points with a relative large distance between each of them. Moreover, the measure

that used to determine the clustering center is approximately the generalized extreme value

(GEV) distribution [31]. Whereas, the upper quantile of GEV is used to detect the clustering is

higher. The main motivation to combine the DPC and GEV is to benfit from the strength of

DPC that avoids the limitations of iteration clustering methods. In addition, using GEV to

determine the optimal number of clustering in automatic form.

The contributions of this study are as follows:

• Present an image segmentation model to segment COVID-19 CT images using a density

peaks clustering based on generalized extreme value distribution.

• The proposed model was evaluated with a set of twelve CT images of COVID-19 collecting

form different datasets.

• To evaluate our model, we compared it with density peaks clustering and k-means clustering

methods, and it showed better performances.

Materials and methods

Density peaks clustering

In this section, the basic concepts of clustering by finding the peaks of density (DPC) algo-

rithm is introduced [28]. In general, the main hypothesis in DPC is assumed that centers of

clusters have a higher density than their neighbors, as well as, the distance between those cen-

ters is large.

Considering the dataset is given by X = [x1, x2, . . ., xn] has n samples. The local density ρi of

xi can be computed as:

ri ¼
XN

i¼1

xðdij � dcÞ; ð1Þ

where dij is the distance between xi and xj, while dc refers to the cut-off distance. ξ represents

the kernel function and it is defined as:

x ¼

(
1; xi > 0

0; otherwise
; ð2Þ

Moreover, the minimum distance between xi and other points of higher ρ is represented by δi
and it is defined as:

di ¼

(
minj:rj>riðdijÞ; 9rj > ri

maxjðdijÞ; otherwise
; ð3Þ

The points that have large δ and high ρ are considered as clustering centers. However, each

of the rest points is assigned to the nearest center. According to these behaviors, the DPC algo-

rithm is faster than other clustering methods that need more iterations to find the optimal

cluster centers.

In some cases, the class may have two high-density points with a small distance between

each them, and to avoid splitting the class into small sub-classes, there is another measure that
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is used which consider both ρ and δ together and it is defined as:

y ¼ min ðr�; d�Þ ð4Þ

where ρ� and δ� refer to the normalization of ρ� and δ�, respectively and they are formulated

as:

r� ¼
r � rmin
rmax � rmin

; d
�
¼

d � dmin
dmax � dmin

ð5Þ

The clustering centers have θ higher than other points.

Generalized extreme value distribution

This section presented the mathematical notation of the generalized extreme value (GEV) dis-

tribution [31]. In general, the GEV is considered as a generalized family of the Gumbel, Fré-

chet and Weibull using single parameter and is defined as:

Hðx; k; s; mÞ ¼ expf� ð1þ kð
x � m
s
ÞÞ
� 1
k g ; ð1þ kð

x � m
s
ÞÞ > 0 ð6Þ

where μ, σ and k represent the location, scale and shape parameter, respectively. The maximum

likelihood estimation is used to estimate these parameters which defined as:

‘ðx; m; s; kÞ ¼ � n logs � ð1þ
1

k
Þ
Xn

i¼1

log ð1þ kð
xi � m
s
ÞÞ

�
Xn

i¼1

ð1þ kð
xi � m
s
ÞÞ
� 1
k

ð7Þ

For determining the MLEs of the parameters (μ, σ, k) we can for any given data set the maximi-

zation is straightforward using standard numerical optimization algorithms for solving the fol-

lowing equations:

@‘

@m
¼ ðkþ 1Þ

Xn

i¼1

1

1þ Ai
�
Xn

i¼1

1

ð1þ AiÞ
1þ1

k
¼ 0 ð8Þ

@‘

@s
¼ ðkþ 1Þ

Xn

i¼1

Ai

1þ Ai
�
Xn

i¼1

Ai

ð1þ AiÞ
1þ1

k
� nk ¼ 0 ð9Þ

@‘

@k
¼
Xn

i¼1

log ð1þ AiÞ þ
Xn

i¼1

ð1þ AiÞ
� 1
k
Xn

i¼1

Ai

1þ Ai
� ðkþ 1Þ

Xn

i¼1

Ai

1þ Ai

�
Xn

i¼1

1

ð1þ AiÞ
1
k

Xn

i¼1

log ð1þ AiÞ ¼ 0

ð10Þ

Where Ai ¼ k xi � m
s

� �
in (7).

Thereafter, using this estimation to obtained the quantile x̂p can be defined as:

x̂p ¼
m̂ � ŝ

k̂
1 � y� k̂p
� �

; k̂ 6¼ 0

m̂ � ŝ log ðypÞ; k̂ ¼ 0

; yp ¼ � log ðpÞ

8
><

>:
ð11Þ

where p represents the probability of quantile. Therefore, the xi is considered as a clustering
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center when the following condition is satisfied.

yi > x̂p ð12Þ

Proposed COVID-19 image segmentation model

In this section, the proposed model that used to tackle the problem of segmented the COVID-

19 image using the density peak clustering based on generalized extreme value is introduced.

The proposed model starts by reading the image and computing the value of ρ and δ using Eqs

(1) and (3), respectively. Thereafter compute the value of θ using Eq (4) and using the maxi-

mum likelihood method to estimate the parameters of GEV using θ as input for it. Followed

by applying Eq (12) to determine the clustering centers and determining the cluster for each

other points. In the case, the distance between cluster center and current point is less than δi
then assigned the current point to the cluster center. The steps of the proposed model are

given in Fig 1.

Fig 1. Steps of proposed COVID-19 image segmentation method.

https://doi.org/10.1371/journal.pone.0244416.g001
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Experiment and results

Dataset

To assess the quality of the segmentation method for COVID-19 CT images, a set of twelve

image is used from [32]. These images are collected from different datasets such as CheX aka

CheXpert [33], OpenI [34], Google [35], PC aka PadChest [36], NIH aka Chest X-ray14 [37],

and MIMIC-CXR [38]. The images are resized to 224x224 pixels [32]. Fig 2 depicts the sample

of the tested image which contains twelve COVID-19 images.

Performance measure of segmentation

Three measures are used to assess the performance of all algorithms to evaluate the quality of

the segmentation process. These measures are peak signal-to-noise ratio (PSNR) [39] as in Eq

(13), the structural similarity index (SSIM) as in Eq (14) [40], and entropy as in Eq 15.

PSNR ¼ 20 log 10ð
255

RMSE
Þ;

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i¼1

PQ
j¼1
ðIði; jÞ � Isði; jÞÞ

2

M � Q

s ð13Þ

Fig 2. Original COVID-19 images.

https://doi.org/10.1371/journal.pone.0244416.g002
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where I and Is determine the image and its segmented version, respectively at the size M × Q.

SSIMðI; IsÞ ¼
ð2mImIs þ c1Þð2sI;Is þ c2Þ

ðm2
I þ m

2
Is
þ c1Þðs

1
I þ s

2
Is
þ c2Þ

ð14Þ

where μI and mIs determine the average intensity of the I and Is, respectively. σI and sIs deter-

mine the standard deviation values for the I and Is, respectively. Covariance of I and Is is pre-

sented by sI;Is . c1 is set to 6.5025 and c2 is set to 58.52252.

Moreover, the entropy of a discrete random variable is used to assess the quality of segmen-

tation, and it is defined as:

HðXÞ ¼ �
X

x2X

ProbðxÞ log ðProbðxÞÞ ð15Þ

where Prob is a probability mass function.

Results and discussion

This section shows the results of the proposed methods against the classical algorithm density

peaks clustering (DPC) and K-means algorithm; these algorithms are widely used for process-

ing medical images and clustering fields. The comparison uses three measures: PSNR, SSIM,

and entropy for evaluating the algorithms using 12 images. Tables 1 and 2 and Fig 3 record

these results. Table 1 depicts the number of clusters obtained by each method. To assess these

obtained cluster centers we used PSNR, SSIM, and entropy.

From Table 2 that can be seen, the proposed method obtained the best PSNR results in 10

out of 12 images. In spite of the K-means obtained the best PSNR in two images, it is ranked

last after DPC because it attained the better PSNR in 7 images in comparison with K-means, as

shown in Fig 3.

In terms of the SSIM measure, the proposed method achieved the highest SSIM value in 11

out of 12 images, followed by DPC and K-means, respectively. That means, the proposed

method can get the highest similarity with the original images than the other algorithms. As in

Fig 3, the proposed method reached 89% of SSIM while the DPC and K-means reached 82%

and 76%, respectively.

Regarding the entropy measure, the proposed method has higher image entropy than DPC

and K-means algorithms. It outperformed them in 10 out of 12 images that lead to the best

Table 1. Number of clusters obtained by each algorithm.

Image Proposed DPC K-means

Im1 5 3 6

Im2 11 9 10

Im3 7 6 5

Im4 6 4 9

Im5 6 7 5

Im6 7 2 5

Im7 5 3 5

Im8 6 3 2

Im9 4 2 3

Im10 4 2 3

Im11 4 5 6

Im12 5 4 3

https://doi.org/10.1371/journal.pone.0244416.t001
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segmentation results. The rest of the algorithms are ranked as follows; the DPC reached the

second rank while the K-means is ranked last.

Figs 4 and 5 shows the original images and the segmented results of the proposed method,

DPC, and K-means. To display all images, the images are split into figures. From these figures,

we can see that the proposed method produced better segmentation results in most of the

images. These results indicate that the proposed method can efficiently segment the chest CT

images with COVID-19.

From the previous analysis, it has been observed that the performance of the proposed

model is better than the other two models. However, there are some limitations that affect its

quality, such as processing time may be increased with increasing the size of a given image due

to computing the pair-wise distance between the pixel of images.

Conclusion

Analyzing medical images is very important for diagnosing diseases, and there are preliminary

steps that needed to be implemented in image analysis process, such as image segmentation.

The main work of segmentation methods in medical images is to find the region of interest

(ROI) and to help in distinguishing it from outside regions. With the pandemic of COVID-19,

it is necessary to find efficient segmentation methods that may help in improving the diagnos-

ing process. Therefore, this paper proposes an efficient segmentation method for COVID-19

CT images. The proposed method uses density peaks clustering depending on generalized

Table 2. Segmentation results of all algorithms.

Name Proposed DPC K-means

PSNR SSIM Entropy PSNR SSIM Entropy PSNR SSIM Entropy

Im1 39.2430 0.9908 4.1429 38.5551 0.9890 3.9253 26.8397 0.8332 1.7742

Im2 35.4548 0.9527 3.0468 24.2043 0.6870 0.7217 27.3187 0.7953 1.8065

im3 28.6461 0.9139 2.7085 26.9444 0.8532 1.9093 25.614 0.7542 1.7084

im4 32.6640 0.9425 2.9139 28.1261 0.8765 2.3435 23.7001 0.7247 1.8484

Im5 29.6723 0.9041 2.1994 28.5004 0.8915 2.4193 27.1021 0.8192 1.7120

Im6 32.0327 0.9457 2.5502 30.5735 0.9170 2.1647 26.7181 0.7309 1.8814

Im7 27.8433 0.8417 2.1388 27.7479 0.7906 1.8795 24.8568 0.6965 1.8639

Im8 25.1145 0.8161 2.3687 20.4955 0.6730 0.9318 25.595 0.7146 1.8095

Im9 25.1354 0.8451 1.8843 24.3401 0.8012 1.4831 26.0249 0.7536 1.8796

Im10 21.2405 0.7133 0.9849 18.9556 0.7143 1.5063 21.0752 0.683 1.7009

Im11 41.2158 0.9949 4.3850 32.1631 0.9478 3.1105 27.361 0.8666 1.6193

Im12 27.6072 0.8535 2.1303 21.5256 0.7508 1.5235 23.3786 0.7325 1.8377

https://doi.org/10.1371/journal.pone.0244416.t002

Fig 3. Average of the results of all measures.

https://doi.org/10.1371/journal.pone.0244416.g003
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extreme value distribution. To test the performance of the proposed method, a set of twelve

images of COVID-19 CT scans is used. The proposed method was compared to DPC and K-

means clustering methods, and it showed better performances in terms of PSNR, SSIM, and

entropy.

Fig 4. The segmented image of Im1 to Im6 based on the obtained results by (v)proposed method, (w) DPC, and

(x) K-means.

https://doi.org/10.1371/journal.pone.0244416.g004
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Fig 5. Original images Im7 to Im12 and their and the segmented results of the proposed method, DPC, and K-

means.

https://doi.org/10.1371/journal.pone.0244416.g005
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