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INTRODUCTION

Friedreich Ataxia (FRDA) is a progressive neurological and systemic disorder that affects about
one in 50,000 people worldwide (Strawser et al., 2017). It is caused by mutations, usually
GAA repeat expansions (96%) but also point mutations or deletions (4%), in the FXN gene,
resulting in decreased production of functional frataxin protein (Babady et al., 2007; Delatycki
and Bidichandani, 2019). GAA length on the shorter allele inversely correlates with disease severity
(Strawser et al., 2017). Frataxin is a small mitochondrial protein that functions in iron-sulfur-cluster
biosynthesis (Colin et al., 2013). Its deficiency leads to difficulties in production of cellular ATP as
well as sensitivity to reactive oxygen species in vitro (Rötig et al., 1997; Lodi et al., 2001; Pastore
and Puccio, 2013; DeBrosse et al., 2016). These properties lead to neurological injury and clinical
impairment, including ataxia, dysarthria, sensory loss, and weakness in FRDA patients. While most
literature has focused on neurodegeneration in FRDA, the disorder also has a large developmental
component (Koeppen et al., 2017a,b). In addition, individuals with FRDA develop cardiomyopathy,
scoliosis and sometimes diabetes mellitus. The cardiomyopathy of FRDA is characterized by early
hypertrophy, with later progression to fibrosis and systolic dysfunction, leading to death from end-
stage heart failure (Tsou et al., 2011; Lynch et al., 2012; Strawser et al., 2017). Many agents are
in development for FRDA, including some designed to ameliorate mitochondrial dysfunction and
others that seek to increase levels of functional frataxin (Strawser et al., 2014; Li et al., 2015; Lynch
et al., 2018, 2021; Piguet et al., 2018; Zesiewicz et al., 2018a,b; Belbella et al., 2019; Rodríguez-Pascau
et al., 2021).

NfL AS A BIOMARKER OF FRDA AND OTHER DISEASES

In many neurodegenerative diseases, the need for disease-modifying treatments is facilitated by
identification of biomarkers to track disease progression. Such markers can capture subclinical
changes in a rapid manner and show evidence of target engagement in clinical trials in slowly
progressive neurological disorders. In other neurological disorders, including Multiple Sclerosis
(MS), Alzheimer’s disease (AD), and Parkinson’s disease (PD), neurofilament light chain levels
(NfL) in body fluids such as serum, plasma or CSF may provide a biomarker for tracking disease
activity including progression (Bridel et al., 2019; Forgrave et al., 2019; Aktas et al., 2020; Del
Prete et al., 2020; Milo et al., 2020; Thebault et al., 2020; Wang et al., 2020). Neurofilaments are
cytoskeletal proteins located in both the peripheral and central nervous system, particularly in
larger myelinated axons. They play a significant role in axonal growth and the determination of
axonal caliber (Hsieh et al., 1994; Kurochkina et al., 2018; Bott and Winckler, 2020). Logically, as
axons are damaged and die in neurodegenerative processes, NfL should leak into the interstitial
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space, then into CSF and plasma. Thus, concentrations of NfL
should generally increase as neurodegenerative diseases progress
and should reflect disease activity. For example, in progressive
MS, NfL appears to track with neuronal and axonal death, the
stage of disease, and treatment response. NfL concentration in
the CSF of MS patients parallels T2 lesion changes on MRI.
Similarly, plasma NfL concentration is higher in AD patients
than in controls and is associated with greater cognitive deficit.
Such findings suggest that NfL is a promising biomarker for
determining the stage of disease, tracking progression and aiding
in identification of disease-modifying treatments in neurological
disorders. However, in stable MS, NfL levels may not track
with clinical dysfunction, providing a reminder that changes in
biomarkers must be interpreted in the context of clinical changes
(Aktas et al., 2020).

In FRDA, data on NfL levels in serum is more complex.
Most features of FRDA depend on genetic severity (GAA repeat
length) and worsen over the course of time, thus correlating
positively with disease duration or age (Strawser et al., 2017).
Overall, the two main determinants of clinical severity in FRDA
are genetic severity and disease duration. In the three studies
evaluating serum NfL in FRDA patients, serum NfL is elevated
in patients with FRDA when compared to controls and carriers
(Zeitlberger et al., 2018; Clay et al., 2020; Hayer et al., 2020).
This shows that serum NfL levels reflect a pathological process
in FRDA. However, in these three studies NfL levels generally
do not correlate with markers of clinical or genetic severity.
Moreover, while NfL levels correlate positively with age in non-
FRDA patients (controls and carriers) in cross sectional analysis,
in FRDA patients, NfL levels are highest in young children and
decrease with age as the disease progresses (Clay et al., 2020).
Thus, serum NfL is paradoxically high in young individuals
and far lower in older individuals with more severe disease. At
later ages it even overlaps with control values. A greater genetic
severity in early onset individuals could explain some of this
paradox; however, NfL levels overall do not correlate with GAA
repeat length after accounting for age, and they even appear to
correlate inversely with GAA length in some of these studies.
Accounting for age, individuals who are more severe genetically
have lower levels of NfL. Interestingly, Nfl levels are relatively
stable over 1–2 years; consequently, NfL levels could be used as
an assessment of therapeutic response over the time used in most
clinical trials. Still, while NfL may provide a biomarker of FRDA
in some manner, the relationship of NfL to disease progression is
complex suggesting its utility may be limited to certain situations.

DISCUSSION

Understanding the exact meaning of NfL levels in serum and
how they reflect disease activity in FRDA would facilitate
their use as a marker of FRDA. In most other disorders, NfL
is viewed as a marker of neurodegeneration of either axons
or other neuronal regions. Degeneration in FRDA, though,

Abbreviations: FRDA, Friedreich Ataxia; NfL, Neurofilament light chain; GAA,
Guanine-adenine-adenine; MS, Multiple sclerosis; PD, Parkinson’s disease; CSF,
Cerebrospinal fluid; AD, Alzheimer’s disease; CNS, central nervous system.

is complex, including both peripheral nerve degeneration
(including very early degeneration of proprioceptive afferents)
with later degeneration of central nervous system axons; loss of
central nervous system elements controls most of the clinical
progression of the disease (Selvadurai et al., 2016; Koeppen et al.,
2017a; Strawser et al., 2017; Marty et al., 2019; Rezende et al.,
2019; Harding et al., 2020; Naeije et al., 2020). Brain imaging
studies are typically normal early in disease, with the exception
of atrophy of the cervical spinal cord, with progressive loss of
CNS pathways later (Selvadurai et al., 2016; Koeppen et al., 2017b;
Marty et al., 2019; Rezende et al., 2019; Harding et al., 2020; Naeije
et al., 2020). Thus, serum NfL levels in FRDA, with high values
early in disease, are discrepant from the tangible loss of CNS
axons by MRI and the loss of specific functional clinical systems
(Figure 1). The present data on serum NfL levels could be
explained by a relatively large early loss of peripheral axons that
does not contribute to clinical progression. Similarly, the inverse
correlation with GAA repeat length in early disease might lead to
a large developmental deficit at presentation. This in turn might
lead to lower serum NfL levels during neurodegeneration. This
interpretation would be consistent with the prevailing concept
of NfL levels reflecting a relatively passive leakage from dying
neurons into surrounding fluids and eventually to the serum.

Alternatively, increased levels of NfL could reflect other
components of the pathophysiology of FRDA in a manner not
directly associated with cell death. FRDA is associated with
abnormalities in lipid metabolism as well as lipid peroxidation
(Navarro et al., 2010; Obis et al., 2014; Abeti et al., 2016; Chen
et al., 2016; Tamarit et al., 2016; Cotticelli et al., 2019; Turchi
et al., 2020). Both could lead to membranes that are inherently
more permeable than normal, with consequent loss of NfL from
the cell. Why these processes would decrease with age, however,
is unclear.

Still, other processes might contribute to the paradox of
elevated NfL levels early in FRDA. NfL levels must to some degree
reflect its synthesis, as increased synthesis leads to higher levels
of soluble NfL (before it is incorporated into neurofilaments)
that should more readily efflux from neurons cells than NfL
assembled into intact neurofilaments. Increased synthesis of
structural proteins in axons occurs in response to injury and
during neuronal regeneration (Pearson et al., 1988; Havton and
Kellerth, 2001; Toth et al., 2008; Balaratnasingam et al., 2011; Yin
et al., 2014; Liu et al., 2016), and neurofilaments play different
roles in development than simply structural maintenance. The
very high levels of NfL early in FRDA could reflect attempts
at regeneration that become more impaired as the disease
progresses, leading to falling levels of NfL later in the course of the
disorder. In general, the plasticity of the nervous system decreases
with aging, matching the falls in serum NfL over time in FRDA
(Bouchard and Villeda, 2015). Thus, elevated levels of serum
NfL early in the course of FRDA could be driven by enhanced
synthesis of NFL during regeneration superimposed on increased
membrane fragility.

Interestingly, cardiac troponin levels are elevated in FRDA
serum during the period of hypertrophic disease, long before
cardiomyocytes die and cardiac fibrosis develops (Friedman et al.,
2013; Plehn et al., 2018; Legrand et al., 2020). Such elevated levels
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FIGURE 1 | Temporal course of changes in FRDA. Diagram illustrating the contrasting temporal course of clinical changes in FRDA along with serum NfL levels over

time (amalgamated from Bridel et al., 2019; Del Prete et al., 2020; Wang et al., 2020). Clinical changes are presented based on the clinical course of an early onset

individual (onset between ages 5−10). At present, no study has measured NfL in the presymptomatic period before age five.

of troponin in early FRDA cardiomyopathy might result from
similar mechanisms to the elevated levels of NfL early in FRDA
(Thebault et al., 2020).

A final possibility is that both cell-loss and cell-repair
mechanisms—and possibly still other mechanisms—mediate the
changes in NfL in FRDA. Such interpretations may only be
distinguishable over time with collection of long-term serial
data, and with collection of data during the presymptomatic
period. Furthermore, a more complete characterization of the
features of immunoreactive NfL in FRDA serum may be helpful.
While the assays used are specific for NfL, they do not assess
whether it represents full-length protein. This does not change
the observation that Nfl levels can serve as biomarkers of disease
in FRDA. However, without understanding the reason for the
unusual distribution of NfL values, it is difficult to provide

precise interpretations for clinical trial results. Normalization of
biomarker levels can provide evidence for benefit in the correct
circumstances, but can also reflect impairment of compensatory
mechanisms, thus being associated with deleterious effects. A
deeper understanding of the mechanisms of NfL elevation in
serum in FRDA is needed to make it a useful biomarker in FRDA.
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