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Abstract: Graph analysis allows exploring transcriptome compartments such as communities and
modules for brain mesostructures. In this work, we proposed a bottom-up model of a gene regulatory
network to brain-wise connectome workflow. We estimated the gene communities across all brain
regions from the Allen Brain Atlas transcriptome database. We selected the communities method
to yield the highest number of functional mesostructures in the network hierarchy organization,
which allowed us to identify specific brain cell functions (e.g., neuroplasticity, axonogenesis and
dendritogenesis communities). With these communities, we built brain-wise region modules that
represent the connectome. Our findings match with previously described anatomical and functional
brain circuits, such the default mode network and the default visual network, supporting the notion
that the brain dynamics that carry out low- and higher-order functions originate from the modular
composition of a GRN complex network

Keywords: mesoconnectome; gene regulatory network; Allen Brain Atlas; graph communities; brain
transcriptome; bottom-up modeling

1. Introduction

The human brain is a complex cell network that yields high-level and complex func-
tions, including memory, reasoning, awareness, and language, among others [1–3]. The
brain and its ailments are typically explored in several ways. Some methods measure
higher-order effects such as electrical activity (Electroencephalography-EEG) and energetic
demand (functional Magnetic Resonance Imaging-fMRI). The latter has led to whole-brain
cartography with region-wide resolution [4–7] , and to model dynamics in resting-state net-
works [8,9] and neuropathology, i.e., epilepsy [10,11]. Other studies focus on the molecules,
proteins, hormones, neurotransmitters, genes, and transcripts [12–15].

Transcriptional studies have mapped the brain cartography and described the emer-
gence and development of brain structures, thus pointing to molecular gradients that
are likely to drive brain plasticity [16–19]. Such evidence suggests a pathway between
brain transcriptomics and brain connectomics. Richiardi et al. [20] mapped the brain from
macro functions to cell populations gradients and gene expressions, setting a top-down
transcription approach of the connectome.

Recent works aimed to bridge the gap between the macroscale towards the microscale
landscapes demonstrated the genes’ influence on connectome dynamics for C. elegans [21],
M. musculus [22] and even humans [23]. Similar studies screened genes with dimension-
reducing methods in previously connected structural or functional brain nodes [24,25].
Their conclusions point to few genes responsible for brain connectivity, yet this does not
imply that some scattered genes drive brain structure, for the brain and its functions result
from many interacting genes.
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The analysis of gene regulatory networks in complex phenotypes has revealed a
compartmentalization phenomenon able to aggregate into more complex structures, com-
pounding its effects [26–29]. It has been hypothesized that a hierarchic organization of
these compartments allows genes to reach higher-order phenomena in the human brain,
i.e., memory, consciousness, and self-awareness [30].

An approach to exploring those brain compartments is through graph analysis, par-
ticularly through the graph mesostructures, such as cliques, communities, and modules.
Barabási and Barabási and Kovács et al. studied brain genetics through cliques; however,
this work was unable to establish brain-wide connectivity [31,32], while Betzel et al. con-
ducted a comparative analysis of the fMRI voxel communities of various connectomes but
was only able to correlate with coexpression networks in the mouse [33].

In contrast, a different, bottom-up approach was proposed [34–36], yet experimental
works have not been developed as far as we know. In the present article, we explore
brain-wise connectivity through functional gene regulatory networks. We identify gene
communities related to distinct brain cell phenomena and brain modules that map previ-
ously described anatomic and functional brain circuits. Our model is the first attempting
to bridge the gap between micro- and macroscale connectomics.

2. Materials and Methods
2.1. Database and Graph Estimation

We retrieved RNA-seq studies from the Allen Brain Atlas database of the two different
donors [37]. Both donors are African-American males, Donor 1 (D1) aged 24 and Donor
2 (D2) 39 years. D1 showed normal neuroanatomy and a history of asthma, while D2
presented a possible small pituitary adenoma. Each RNA-seq consists of 121 post-mortem
gene expression segments, corresponding to specific brain regions. To minimize findings
from the baseline cellular processes throughout the analysis, we removed transcripts
annotated as long non-coding and those related to transcription, translation, and replication
(i.e., rRNAs, tRNAs, DNA polymerase, etc.). We estimated the gene expression variance
logarithm across all brain regions for each subject according to:

ŝ2
gi
= log

∑N
n=1 gi,n − ḡi

N − 1
(1)

where gi,n correspond to gene expression in a n brain region, ḡi stands for the mean gene
expression through brain, N is equal to the 121 studied brain regions, and ŝ2

gi
is the gene

expression variance.
Low-variance gene expressions were discarded since expression gradient skew high-

variance connectivity. To determine the threshold between low-variant and high-variant
genes, we performed a sweep of 0.1 increments of the variation logarithm and estimated the
genes above the evaluated threshold. Then, we calculated the first and second derivatives of
the retained genes number and set the limit of variant genes where both the first derivative
is minimum and the second derivative is highest (see Figure 1, on the left).

Jensen–Shannon divergence is an informational distance based on the Mutual Infor-
mation (Kullback–Leibler Distance) of two probability distributions. The mean probability
distribution of both of them is estimated; then their deviation from this distribution is
measured, with one representing that both distributions differ while 0 indicates that they
are the same. In this work, we aimed to screen those brain gene expressions that had
higher similarity as a coexpression biomarker; thus, we chose this measure to build the
adjacency matrix.

With the whole-brain expression of high-variant genes ĝi, we calculated the paired
Jensen–Shannon divergence (JSD) (Equation (2)) among all the genes obtaining a square
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matrix that reflects the brain expression profiles, JSD(ĝi||ĝj). The brain’s gene network
was built from this matrix.

JSD( ˆgi,n|| ˆgj,n) =
1
2

N

∑
n=1

ˆgi,n(log( ˆgi,n)− log(m̂i,j,n)) +
1
2

N

∑
n=1

ˆgj,n(log( ˆgj,n)− log(m̂i,j,n)) (2)

To retain only the strongest gene-to-gene relationships, we estimated the maximum
entropy value of the betweenness distribution according to Monaco’s works [38,39] and
selecting the edges with the lowest divergence. The resulting network was from here on
treated as an unweighted graph.

Figure 1. The left plots displays the retrieve genes curve for D1 at the top and D2 at the bottom. The
threshold was set on gene expression variance 10-log equal to 4.5 to determine variant genes; the
first and second derivatives for both donors are displayed as well. On the right, the betweenness
entropy to determine the effective edges according to Monaco approach [38], dotted line for the edge
threshold, for D1 at the 41st percentile, and D2 at the 45st percentile.

2.2. Gene Community Analysis (Gene-Wise)

Genes carry out cellular functions in groups; thus, mesoscale structures are ideal for
modeling them, i.e., communities, partitions, or clique complex. We first calculated their
graph features to analyze those gene communities, i.e., eigenvector centrality, betweenness
centrality, closeness centrality, assortativity coefficient, and degree-assortativity metrics.
Afterward, we applied the leading-eigenvector method [40]. Which is an eigenspectrum
modularity optimization method where the modularity is the quality function:

Q =
1

2m ∑
i,j

Bi,jδ(gi, gj) (3)

where B is the modularity matrix which is estimated by subtracting the connection proba-
bility P between vertex to the adjacency matrix A, δ(gi, gj) is the Kronecker delta function,
and m is the number of edges. Q is optimized by selecting the eigenvalue and the corre-
sponding eigenvector that will maximize it. With the selected eigenvector, we performed
spectral clustering, where each cluster corresponds to a community.

A community is a set of genes sharing similar topological properties [41] and poten-
tially co-expressed through the brain. We discarded communities with less than ten genes.
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For those containing more than 150 genes, we estimated the method once again for each
one confirming whether the communities no longer held any other partitions.

We ran 30 times the community stage for each donor and calculated its modularity. To
prove that the identified communities are non-trivial features, we compared the donors’
modularity distributions against those of 30 Erdős–Rényi null models using the same
community analysis approach.

We enriched the identified communities through ontologies based on the Gene On-
tology (GO) with ViSEAGO [42] and FDR corrected with Fisher test p < 0.01. We then
measured the semantic similarity between the ontologies linked to each community, based
on Wang’s method [43] within GOSemSim library [44,45].

2.3. Multilayer Analysis (Module-Wise)

Once we obtained the gene communities, we retrieved the individual community’s ex-
pression profile for every brain region and calculated the Jensen–Shannon divergence across
those regions. Each of these Jensen–Shannon matrices represented brain connectivity sub-
set from each gene community, and the multilayered network represents the whole-brain
community-wise connectivity model. We modeled the transcriptional mesoconnectome
by binarizing those matrices among zones. We set the threshold for the multilayer links
in the corresponding value to the divergence distribution mode for both donors. This
minimizes the potential spurious connections while preserving the least divergent through
the network layers. We used the term human mesoconnectome for the (macro-level) brain
architecture integration derived from gene co-expression circuitries (micro-level).

To analyze the transcriptional mesoconnectome dynamics, we estimated with the
MuxViz framework [46] the following multilayer network metrics: degree, page rank,
eigenvector centrality, k-core. Degree is the number of links through the layers ignoring the
inter-layer link nodes of itself; Page Rank (Equation (4)) is the probability of a node reaching
any node (1−r)

NL , thus ranking the nodes based on the latter probability [47]. As in the single
layer, those probabilities are uniform rTiα

jβ through all nodes and interactively updated;

however, in the multi-layer case, the probabilities uiα
jβ are passed as the initial values to the

subsequent layer [48]. For eigenvector centrality (Equation (5)), the suprajacency matrix is
encoded into an aggregate matrix Miα

jβ via an eigentensor Θjα. The eigenvector centrality is

the dot product of the leading eigenvector λ−1
1 and the neighborhood of each node [48].

The k-core (Equation (6)) represents the ratio of the coreness nk−core for the probability of
specific degree-node nk(q) through all the layers [49].

Riα
jβ = rTiα

jβ +
(1− r)

NL
uiα

jβ (4)

Θjβ = λ−1
1 Miα

jβΘiα (5)

Pk(q) =
nk(q)

nk−core
(6)

Modules are clusters of intra- and inter-layer nodes inside the multilayer network.
Such modules portray brain ‘circuits’ connected by their shared molecular functions. In this
work, we identified these modules following the proposed algorithm in [50] and mapped
them to the regions of Allen Brain Atlas.

3. Results and Discussion
3.1. Data Preprocessing

After removing the annotated transcripts described in Section 2.1 from both donors,
D1 and D2 of the Allen Brain Atlas, we collected 22,318 gene expression data of each
donor. Monaco et al. suggested that low-variance gene expression is of no relevance
to identify target genes associated with brain study conditions [39]. This can also mean
that low-divergent genes are ubiquitous, carrying out the most fundamental biological
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functional architecture. At the same time, those with higher divergence will play a more
relevant role in connectome dynamics. To determine the divergent genes, we calculated a
threshold based on the first order log-variance resulting in a log10 = 4.5 (see Figure 1, on
the left). After setting the threshold, the remaining genes were 7986 for D1 and 7791 for D2.

For an overview of how well defined are variant vs. non-variant genes, we observed
their intersection (Figure 2, on the left). While most genes share the common feature (i.e.,
they are either variant or non-variant in both donors), a small portion are mixed. This is
expected, given the intrinsic variability between both donors (e.g., genomics, age, behavior,
health, etc.). Moreover, it is common knowledge that genes are pleiotropic, meaning
they can produce multiple phenotypic outcomes [51,52] and phenotypic effects between
genes have the potential to be cross-linked leading to polygenic functions [53,54]. This
has lead to a screening of genes toward identifying those that influence brain dynamics,
like the top-down approach of the transcriptional connectome [18,21,23,25]. A different
(i.e., bottom-up) approach may study gene functions and orient those functions depending
on their gene communities and interactions. Thus, we enriched those expressed genes
by retrieving their GOs with an FDR-corrected p < 0.01. Figure 2 (on the left) shows a
Venn diagram of their respective GOs (see Supplementary Tables S2–S5). Except for two
ontologies, those functions are either present brain-wise or vary within regions; note that
variant sets share most functions. While the former indicates that some functions are more
related to general brain tissue architecture, the latter suggests interacting gene communities
whose functions perform more local endeavors.

Figure 2. Venn diagrams of Genes variant and invariant (on the left) and their GOs entries (on the right) for both D1 and
D2. Note a marked division between the GOs of variant and invariant genes, pointing to different biological roles of both
gene sets.

3.2. Gene-Wise Analysis

To understand the gene interactions among brain regions, we built similarity matrices
among all genes based on their Jensen Shannon divergence for each donor then assembled
gene regulatory adjacency matrices from the binarized divergence values below the 41st
percentile for D1 and 45th percentile for D2, i.e., 0.118964 and 0.111294, respectively. These
values were set following Monaco’s criterion [38] where the threshold is the percentile with
maximum entropy value of the betweenness distribution (Figure 1, on the right).

We filtered out all zero-degree subgraphs from both gene regulatory adjacency ma-
trices. The two resulting gene regulatory networks (GRNs) included 7914 nodes and
13,070,196 edges for D1 and 7730 genes/nodes and 13,653,610 edges for D2. We analyzed
the GRNs with the metrics described in Section 2.2, and displayed in Figure 3 corresponding
to both donors. The figure shows a positive correlation between Degree and Eigenvector
centrality (EC), showing that genes with higher degree provide an easy pathway to connect
all genes. In comparison, those of lower degree are more distant from them, which suggests
a core-periphery trend of the GRN. Such feature is usually related to a high assortativity.
The assortativity coefficient resulted in 0.248 for D1 and 0.234 for D2. All the previous
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results plus degree-closeness high correlation and degree-betweenness low correlation
suggest that the brain GRN is a distributed network [55–57] with a tendency to node
dissociation, meaning that nodes of the same degree do not necessarily connect each other.

Results of D1 and D2 degree-assortativity show a known three-phase behavior [58]
(see Supplementary Figure S1): Phase I, an initial dissortative trend, where high and
low degree nodes tend to link; Phase II, an assortative trend, where same-degree nodes
attach together; and, Phase III, a final neutral trend, where nodes connect among them
no matter its degree [59]. Such complex feature is associated with networks that have
high modular behavior and a robust information flow [60], essential traits for connectome
GRNs [18,23–25].

Most connectome studies focus on macro-level brain modeling employing observable
dynamics on functional connectivity [61–64] followed by the search of select genes that
show variation inside their macroconnectome [21,22,25,65], suggesting that only a fraction
of genes drives the brain’s identity and its functionality. Such top-down modeling drives to
a narrow gene screening, constraining the brain endophenotype spectrum which makes it
unlikely to find any brain’s transcriptional network responsible for the brain’s wiring and
functions. Meta-analysis of brain genes notes this limitation and discuses the need to extend
the gene pool that is evaluated in a brain-wise approach [66,67]. Some bottom-up studies of
GRNs across different tissues and diseases have shown how distributed modulation across
a wide range of genes plays essential roles in function and pathophysiology [68–71]. Here
we present a bottom-up model [34] that explores the molecular assemblies (in terms of gene
expression) and the gene communities as the dynamic clusters that constitute functional
regulatory units, as a first step to understand gene regulatory networks as the precursors
of a brain archetype.

Figure 3. Dispersion plot of GRN metrics: degree, betweenness, eigenvector, and closeness centrality,
in dark blue for D1 and orange for D2. In the principal diagonal, distribution of each metric.
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In this work, we set up a GRN community detection workflow. By choosing communi-
ties instead of cliques and rich clubs, we obtained the highest number of mesostructures in
the network hierarchy organization while ensuring lesser topological constraints [33,72]. A
clique analysis would only retain minuscule fully connected gene subgraphs, restricting the
identification of specialized brain pathways [31,32]. In contrast, a rich-club analysis would
yield essential genes that modulate the GRN [73,74] without considering the complexity of
transcriptional mechanisms to carry out the basal molecular pathways within the brain.

Community detection through the leading eigenvector method yields variable results
due to the singular value decomposition algorithm used to estimate each eigenvector.
Thus, we repeated our detection 30 times for each donor and measured the variability
of the gene composition for every resulting community. Variability gene distribution
between communities behaved as a log distribution, inflecting at 10-gene communities.
After removing all communities with less than 10 genes, six communities remained for D1
with communities between 753 and 1841 genes, while the seven remaining communities
for D2 had a range between 862 and 1893 genes, as shown in Table 1 (gene lists for each
community in Supplementary Table S6). To test if such communities were not the result
of chance [75,76], we compared our data’s modularity distribution with 30 degree-null
modularity distribution models. We obtained significantly higher modularity for both
partitions (ANOVA p < 2.20× 10−196 and p < 2.33× 10−192 for D1 and D2, respectively)
against the null models’ partitions.

Table 1. Communities for D1 and D2 and their gene counts.

Donor Community # Genes Donor Community # Genes

D1

D1-C1 1138

D2

D2-C1 889
D1-C2 1356 D2-C2 1127
D1-C3 1830 D2-C3 862
D1-C4 1841 D2-C4 872
D1-C5 753 D2-C5 1893
D1-C6 941 D2-C6 887

D2-C7 1141

We enriched the identified communities based on the Gene Ontology (GO) Consortium
annotation. This yielded a high number of GOs associated with neuronal processes along
with various cognitive processes. This was expected since the mapped communities were
assumed to provide a transcriptional identity of the brain’s functions. Representative GOs
for analysis are highlighted for biological processes in Figure 4 and for cellular components
and molecular functions in Figure 5, whereas all GOs and their significance level may be
found in the Interactive Supplementary Figures S18–S23.

Next, we measured the GOs semantic similarity among communities, considering
both inter- and intra-subject analyses (see Supplementary Figures S2–S4). On intra-subject
examination, we observed that communities are semantically different, suggesting func-
tional compartmentalization. For example, the D2_C3 community is a particular case since
it is highly similar to other communities. This may be explained due to the applied method
that compares the ontological hierarchy considering all ancestor terms [43] bias a high
similarity between communities if a child GO is involved. With these results, we searched
for specific functions in each community.

To summarize and insight into the biological role of each community, we built word
clouds with their GOs (see supplementary notes and Supplementary Figures S5–S17). For
donor 1, we identified two communities associated with general neuronal activity phenom-
ena, D1_C5 immunological activity in neurons and D1_C6 to signaling and brain activity.
Community D1_C3 is involved in neuronal cell proliferation and differentiation [77–79],
where differentiation is driven by neurogenesis kinase-mediated pathways [80,81].
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The remaining three D1 communities are related to neuronal activity. These include
mechanisms involved in cognitive dynamics, such as the D1_C1 community associated
with the neuronal lipidome and key pathways for cognitive functioning [82,83], as well as
the D1_C2 community linked to the regulation of neuronal cell lifespan through potentially
cell trimming [84]. D1_C4 is involved in axonogenesis, which, together with the former
communities, potentially regulates brain plasticity [85,86].

Figure 4. Multi-Dimensional Scale plot of biological process GOs for all donor. The color represents clusters of related
functions. Circled are examples of specific brain-related functions. The interactive figures of these GOs for each community
and their corresponding p-values are Supplementary Figures S20 and S23. Colors between donors are self-generated.
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Figure 5. Multi-Dimensional Scale plot of the molecular function and cell component GOs for all donor. The color represents
clusters of related functions. Circled are examples of specific brain-related functions. The interactive figures of these GOs
for each community and their corresponding p-values are Supplementary Figures S21, S22, S24, and S25. Colors between
donors are self-generated.

For Donor 2, we encountered communities linked to neuronal processes, albeit general.
Such is the case of the D2_C3 community associated with dendritic spine regulation [87]
and D2_C2 with a role in neuroimmune modulation that altogether might influence brain
repair [88] or circadian cycles [89]. Equivalent to the D1_C6 community, the D2_C1 com-
munity is involved in signaling.

We also identified two communities linked to specialized neuronal functions, D2_C5
counterpart to the D1_C4 associated to axonogenesis, while D2_C6 controls and regulates
the dendritic tree or dendritogenesis. Both mechanisms, alongside spinogenesis, have a
crucial effect on neuronal development and proliferation [90–92]. We outlined commu-
nity D2_C4 involved in angiogenesis. Adult brain angiogenesis is typically considered
halted or null, except for pathological processes such as ischemia and tumors [93,94]. Yet,
together with their aforementioned neighboring communities, they can be summarized as
neurotrophic phenomena. Lastly, the D2_C7 community dedicates to processes involving
the choroid plexus as well as cerebral ventricles. The interpretation is that this community
is associated with the blood–brain barrier and the cerebrospinal fluid system [95,96].

Two factors previously reported in [25] may explain the low degree of correspondence
between D1 and D2 communities. First, donor 2 has shown the widest transcriptome
variability of all six donors in the Allen Human Brain Atlas. Furthermore, second, since
donor 2 had a possible pituitary adenoma, this may bias community topologies and thus
their ontologies [97].

3.3. Module-Wise Analysis

The community analysis represents a perspective of performing functions throughout
the brain. Yet, all communities at each brain region operate simultaneously, and a single-
graph approach oversimplified the transcriptional dynamics. To start a mesoconnectome
approach, we selected each community across all brain regions then created a new connec-
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tivity graph where the edges are weighted according to their expression profile similarity
for that community. Such a connectivity graph represents a layer of an n-layered network,
where n corresponds to each identified community.

To our knowledge, no previous work has reported multilayer network models based
on genes. Thus, a reference threshold has not been proposed. In the present study, we
decided to set as a lower-bound the percentile corresponding to the distribution mode in
both donors. These percentiles are 23 and 27 for donor 1 and donor 2, respectively. We
discarded the central measures (i.e., average and median) as threshold candidates due
to a highly biased brain region connectivity degree that showed only two modules with
modularity (around 0.2).

We estimated the metrics described in the Methodology (see Section 2.3) for mul-
tilayered networks. Figure 6 shows their distributions and tendencies. Note a positive
correlation between degree and page rank (PR), an expected trend given that nodes the
more connected, the more popular are in a graph. There is a positive relationship between
degree and eigenvector, reinforcing the importance of the most connected brain regions
since their neighbors are interconnected as well. Yet, no clear tendency is evident for
PR and eigenvector centrality, which supports the notion of not single but several genes
expressing together across brain regions.

Figure 6. Dispersion plot of multilayer mesoconnectome metrics: degree, PageRank, eigenvector, and
k-core. Dark blue is for D1 and orange for D2. In the principal diagonal, distribution of each metric.

The idea of connectome modular topology is widely described in the literature, al-
though largely approached from the macro- perspective [1–3]. We found a logarithmic
correlation between k-core and eigenvector, with an apparent convergence to a k-core value
(72 and 86 for D1 and D2, respectively), something previously suggested as typical in mul-
tilayer networks caused by the occurrence of efficient information distributor nodes within
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one layer that is prevalent between layers [98] in the mesoconnectome. Furthermore, the
pronounced presence of k-cores leads towards a modular topology of the mesoconnectome,
a feature that has been reported in [99]. Observing such behavior on a bottom-up model
based on brain transcriptomics provides support for a multi-scale brain model [36].

To outline the connectome, we evaluate how the different brain areas communicate
between them through gene communities. The rationale for this is that intra-community
expression modulation works as a communication channel; under this assumption, we
modeled the connectome as a multi-layer network, where each layer is the modulation
degree among the communities via brain regions. Then, to explore the network dynam-
ics, we estimate various graph metrics showing a tendency to work as integrative brain
modules. To outline the modules that compose the mesoconnectome, we carried out
a Louvaine community analysis, which is the most widely used method for multilayer
graphs [100,101].

For donor 1 we found 13 modules whereas for donor 2 there were 9 (see Supplementary
Tables S6 and S7). Such modules are color-coded on the multigraph for both donors in
Figure 7. For multilayer module decomposition, it is important to evaluate each layer’s
modularity to ensure that each partition properly integrates the layers. These results
appear in Table 2. Given the resulting modularities, we can assert that the partitioning is
optimum [102].

Figure 7. Human mesoconnectome, each layer maps brain connectivity through the gene communities. Colors represent
the brain modules that integrate it.
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Table 2. Modularity for each layer is estimated based on their brain module partition.

Layer Modularity

D1 D2

1 0.241 0.222

2 0.229 0.307

3 0.18 0.341

4 0.222 0.178

5 0.193 0.236

6 0.34 0.261

7 0.241

Figure 8 shows the brain region connectivity through the genes they shared in all
brain modules (Full names of brain regions in Supplementary Table S1 and Interactive
Supplementary Figures S26 and S27).

The superior frontal gyrus was the most interconnected structure according to our
model. Its high connectivity with additional brain structures has been described both
anatomically [103] and functionally [104], alongside with them, they yield higher-order
cognitive functions. Other high-connected region was the angular gyrus, which is reported
as a hub in semantic [105,106] and musical [107] processing networks. Both gyri have been
linked to the social brain, comprising networks for memory processing, communication,
attention and more [108]. Thus, supporting their high level of connectivity.

The modules found within the mesoconnectome identify some anatomic-functional
networks previously described in the literature. The best example is the cerebellum brain
structure shown with edges and areas in purple in Figure 8. These brain regions for D1
are wired by module 7, while for D2, no single module links all these regions. For D1, the
brain module is built by the D1_C2 and D1_C6 communities, whose roles are neuronal
lifespan regulation and brain activity signaling. Altogether, such communities are likely to
integrate an area highly intra-connected and specialized, like the cerebellum [109–111].

Functional macroconnectivity studies have uncovered distinct integrated anatomic-
functional brain networks, for example, the default mode network (DMN) observed during
test-resting states [112,113], or the default visual network (DVN) involved in visuospa-
tial functions [114,115]. Thus, we scanned for any modules resembling the networks as
mentioned earlier.

For the DMN, we identified three modules that mapped to such network in D1,
modules 1, 4, and 6 (orange links in Figure 8). They also link other brain regions previously
labeled as gateways to different brain networks, for example, the insular gyri for the
executive network [116], and consciousness-related networks [117], and the parietal lobe
for social interaction networks [118]. For D2, the DMN mapped modules are fuzzier, but
their approximate counterparts are modules 2, 3, 4, and 5.

Modules that integrate the DVN are 3 and 4 for D1, whereas in D2, no equivalent
modules were identified, thus resulting from a higher module cohesion compared to
D1, which likely leads to intersecting modules with DMN ones. There are other regions
included in the DVN modules with visual functions, such as the fusiform gyrus [119,120]
and the temporal gyri [121,122], as well as sensory integrative regions as the insula [123,124],
and superior parietal lobe [125,126].
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Figure 8. Allen brain regions connectivity is based on shared genes within the brain modules. In
purple are the brain regions related to the cerebellum; in orange, DMN brain regions. Red and blue
are the densest connected brain regions, the medial bank of superior frontal gyrus (SFG.m) and the
superior bank of the angular gyrus (AnG.s), respectively.
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Both network cases unveil a piece of complex transcriptional machinery behind
the anatomic-functional brain circuitry since these circuits are rendered from multiple
metabolic pathways and interactions. This hints at a bottom-up molecular integrative drift
towards brain structures with cognitive capability, as proposed by van den Heuvel et al. [36].

Another case to highlight is module 2 in donor 1, which contains the regions of
lingual gyrus, angular gyrus, middle temporal gyrus, fusiform gyrus, and putamen. Such
mesoconnectome module may be related to language processing [127], since these areas
are reported to participate alone or coupled with some of them in visual signs processing
phenomena as well as in semantic processing [128]. This module is potentially comparable
to module 4 of D2. The findings of our study are not only supported by analyzing the brain
zones and their associations reported in the literature. The case of Foxp1 and Foxp4 genes,
recognized as genes associated with language functions [129]. Here we observe that they
belong to D1-C2 and D1-C3 communities for D1, respectively. Such communities within
the modules connect brain structures mainly associated with language processing (i.e.,
lingual gyrus, hippocampal gyrus).

One last exciting example is module 7 of donor 1, a cluster of areas that include
the amygdala-related regions: frontal gyrus (inferior, middle, and superior), angular
gyrus, and supra angular gyrus whose functions cover speech processing [127], attentional
processes [130], and self-awareness [131]. Altogether, these are intrinsic higher-order brain
functions implicated in consciousness ([132], Part 6).

Nonetheless, this module was missing in donor 2.
The present work is exploratory, and we were able to report some definite examples

of mesoconnectome circuits. Still, our results are limited by the dismally small brain
expression data set, which leads to low statistical power to characterize the inter-subject
modules within the gene regulatory network that build the mesoconnectome.

4. Conclusions

In this article, we present a bottom-up transcriptome modeling of brain connectivity
that led to the identification of brain circuits previously described in the literature. Our
results support the notion that the brain dynamics that carry out low- and higher-order
functions originate from the modular composition of a GRN complex network.
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