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Abstract: Trichloroethylene (TCE) is one of the most widely distributed pollutants in groundwater
and poses serious risks to the environment and human health. In this study, sulfidated nanoscale
zero-valent iron (S-nZVI) materials with different Fe/S molar ratios were synthesized by one-step
methods. These materials degraded TCE in groundwater and followed a pathway that did not
involve the production of toxic byproducts such as dichloroethenes (DCEs) and vinyl chloride (VC).
The effects of sulfur content on TCE dechlorination by S-nZVI were thoroughly investigated in
terms of TCE-removal efficiency, H2 evolution, and reaction rate. X-ray diffraction (XRD) and X-ray
Photoelectron Spectroscopy (XPS) characterizations confirmed Fe(0) levels in S-nZVI were larger
than for zero-valent iron (nZVI). An Fe/S molar ratio of 10 provided the highest TCE-removal
efficiencies. Compared with nZVI, the 24-h TCE removal efficiencies of S-nZVI (Fe/S = 10) increased
from 30.2% to 92.6%, and the Fe(0) consumed during a side-reaction of H2 evolution dropped from
77.0% to 12.8%. This indicated the incorporation of sulfur effectively inhibited H2 evolution and
allowed more Fe(0) to react with TCE. Moreover, the pseudo-first-order kinetic rate constants of
S-nZVI materials increased by up to 485% compared to nZVI. In addition, a TCE degradation was
proposed based on the variation of detected degradation products. Noting that acetylene, ethylene,
and ethane were detected rather than DCEs and VC confirmed that TCE degradation followed β-
elimination with acetylene as the intermediate. These results demonstrated that sulfide modification
significantly enhanced nZVI performance for TCE degradation, minimized toxic-byproduct formation,
and mitigated health risks. This work provides some insight into the remediation of chlorinated-
organic-compound-contaminated groundwater and protection from secondary pollution during
remediation by adjusting the degradation pathway.

Keywords: S-nZVI; sulfidation; trichloroethylene; pathway; groundwater safety

1. Introduction

Chlorinated hydrocarbons are common industrial solvents. Accidental spills and
improper disposal result in these organic compounds entering the soil, drinking water, and
groundwater [1–5]. Trichloroethene (TCE) is an intensively detected chlorinated hydrocar-
bon in groundwater [6,7]. It readily migrates, is persistent in abiotic and biotic degradation,
and poses serious threats to groundwater [8–12]. TCE poses a significant carcinogenic risk
to human health by all routes of exposure [13] and is classified as “carcinogenic to humans”
by the International Agency for Research on Cancer [14]. TCE exposure is associated with
kidney cancer, liver cancer, and lymphatic-system cancer. Groundwater serves as a primary
source of drinking water in China, which underscores the importance of developing an
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environmentally friendly technology to remediate the TCE-contaminated groundwater in
order to mitigate its health risks.

Methods such as adsorption, oxidation/reduction, and biologically reductive dechlo-
rination have been used to eliminate TCE in groundwater [2,15,16]. Among these methods,
nanoscale zero-valent iron (nZVI) is promising for the in situ chemical remediation of
TCE-contaminated groundwater, readily reacting and dechlorinating TCE into non-toxic
end products [17]. However, nZVI readily reacts with dissolved oxygen, water, and
other groundwater substrates to form iron oxides and/or hydroxides. The continuously
thickened iron oxide or hydroxide shell passivates the nZVI surface, which decreases
the electron-transfer efficiency between Fe(0) and the pollutants in the inner core, and
decreases nZVI activity [18–22]. Furthermore, nZVI shows relatively poor selectivity for
TCE reduction over water in an aqueous solution [23].

In response to these problems, many groups have reported their research regarding
ZVI modification to improve its reactivity, selectivity, and longevity. A few recent stud-
ies have reported that sulfidation could improve nZVI performance in the reduction of
chlorinated contaminants. During sulfidation, FeS forms on the nZVI surface, thereby
enhancing electron transfer between Fe(0) and chlorinated hydrocarbons and restraining
hydrogen (H2) evolution between Fe(0) and water [24–26]. Kim et al. reported that ‘Fe/FeS’
nanoparticles, synthesized via dithionite addition, enhanced TCE removal as compared
to nZVI [27]. Rajajayavel and Ghoshal reported that sulfidation of nZVI facilitated TCE
dechlorination and suggested the Fe/S molar ratio played a key role in the reactivity of
sulfidated nZVI (S-nZVI) [28]. Han and Yan reported that enhanced TCE dechlorination
rates with increasing sulfur levels were only significant at low sulfur loadings, which
differed from the findings of Rajajayavel and Ghoshal [23,28]. Thus, although incorporating
sulfur into nZVI has been demonstrated, S-nZVI needs additional refinement for better
TCE dechlorination, and the critical variables such as sulfur content and speciation need
a systematic investigation. Moreover, the abiotic TCE-degradation pathway typically fol-
lows one of three pathways such as hydrogenolysis, α-elimination, and β-elimination [17].
Among them, β-elimination is promising since it produces acetylene as an intermediate
rather than highly toxic DCEs and VC [28]. Therefore, in-depth research on the pathway of
TCE dechlorination is specifically needed for S-nZVI.

In this study, S-nZVI materials with different Fe/S molar ratios were prepared us-
ing sodium dithionite as the sulfidation agent. The effects of Fe/S molar ratios on the
morphology and structure were characterized by scanning electron microscopy (SEM),
Brunner–Emmet–Teller measurements (BET), X-ray diffraction (XRD), and X-ray photo-
electron spectroscopy (XPS). The reactivities of different S-nZVI materials and bare nZVI
to TCE and water were assessed with respect to TCE-removal efficiency, H2 evolution,
and the kinetics of TCE degradation. Furthermore, dechlorination products and pathways
were identified in order to gain insight into the mechanism of S-nZVI for TCE degradation
and the mitigation of health risks. This work provides some guidance to develop green
and environmentally friendly technologies to remediate chlorinated-organic-compound-
contaminated groundwaters and protect them from secondary pollution and potential
health risks.

2. Materials and Methods
2.1. Reagents

FeSO4·7H2O (>99%, Aanalytical Reagent), ethanol (99.8%, Guaranteed Reagent) and
NaOH (95%, Analytical Reagent) were purchased from Rhawn (Shanghai, China). NaBH4
(98%, Analytical Reagent) was purchased from Sinopharm Chemical Reagents Ltd., (Shang-
hai, China). TCE (C2HCl3, >99.5%, Guaranteed Reagent) and Na2S·9 H2O (>98.0%, An-
alytical Reagent) were purchased from Aladdin (Shanghai, China). N2 (purity 99.99%),
air (purity 99.99%), Ar (purity 99.99%) and H2 (purity 99.99%) were purchased from
Hangzhou Jingong Special Gas Co., Ltd. (Hangzhou, China). H2 standard gas (10%) and
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Alkane olefin standard gas (purity 99.99%) were purchased from Dalian Date Gas Co., Ltd.
(Dalian, China).

2.2. Preparation of nZVI

A total of 4.9643 g of FeSO4·7H2O was dissolved in 50 mL deoxygenated water and
transferred into a 250 mL three-necked flask. Absolute ethanol (20 mL) was added and
stirred to dilute the dispersed solute and make the synthesized iron particles smaller.
NaBH4 (2.0266 g) (excess Fe2+:BH4

− = 1:3) was dissolved in 20 mL of 0.1% NaOH solution
(inhibiting NaBH4 hydrolysis). The mixture was added dropwise using a constant-pressure
funnel to a three-neck flask at 2 drops/s and stirred at 1000 rpm. After the dropwise
addition was completed, stirring was continued for 0.5 h. Then, the nZVI particle was
separated from the suspension using a magnet, and washed with deoxygenated deionized
water and pure ethanol three times. After that, the material was sequentially dried in an
argon-filled glove box for 24 h and aged in the transition chamber of the argon-filled glove
box for 8 h. Finally, it was sealed and stored in the anaerobic glove box. All the reactant
solutions used in the experiment were stripped with N2 for at least 0.5 h to remove the
dissolved oxygen.

2.3. One-Step Preparation of S-nZVI

A total of 3.723 g of FeSO4·7H2O was added into 110 mL of deoxygenated water
and stirred for 0.5 h under N2 atmosphere in a 250 mL three-necked flask. Then, 7.5 mL
of aq. NaOH (1 M) was added dropwise into the FeSO4 solution at a rate of 1 drop/s
while stirring. A total of 1.0165 g of NaBH4 was dissolved into 40 mL of deoxygenated
water, and a certain amount of 0.1 M Na2S·9H2O solution was added in order to prepare a
synthesis mixture. After that, the mixture of NaBH4 and Na2S solution were introduced
into the three-necked flask at a rate of 0.2 mL/s by a peristaltic pump, followed by 0.5 h
of mechanically stirring under an atmosphere of N2. The dosages of Na2S·9H2O solution
in the synthesis mixture were 52.23, 26.12, 17.41 and 13.06 mL to achieve the Fe/S molar
ratios of 2.5, 5, 7.5 and 10, respectively. The resulting S-nZVI suspension was washed at
least three times with the deoxygenated deionized water and pure ethanol, and dried in
an argon-filled glove box for 24 h. Finally, the obtained S-nZVI particles were placed in
the transition chamber of the anaerobic glove box for 8 h of aging, and then sealed and
stored in the argon-filled glove box. All the reactant solutions used in the experiment were
purged with N2 for at least 0.5 h to remove the dissolved oxygen.

2.4. TCE Degradation and H2 Evolution

Inside an anaerobic glove box, 0.026 g of S-nZVI or nZVI was added to a 52 mL
crimp-top vial containing 26 mL of a deoxygenated 4-(2-hydroxyethyl)-1-piperazine ethane
sulfonic acid (HEPEs) buffer (50 mM, pH = 7), and sealed with an aluminum cover and
a polytetrafluoroethylene (PTFE) septum. Outside the glove box, 15 µL of a 0.136 M TCE
stock solution was injected to ensure an initial TCE concentration of 10 ppm. Finally, the
crimp-top vial was placed on a constant-temperature shaker and maintained at 30 ◦C. At
certain intervals, 100 µL of headspace gas in the bottle was extracted with a micro-sampling
needle; the TCE concentration, H2 concentration, and the TCE-degradation products were
measured by GC. The solution pH in the bottle was measured after the reaction.

2.5. Characterization

A physical adsorption instrument (Mike 2460 type, Norcross, GA, USA) measured the
adsorption isotherm of the material on N2 at 77 K using N2 as the adsorbate to calculate the
specific surface area and pore size of the material. The samples were degassed at 120 ◦C for
6 h before testing, and the specific BET surface area of the tested material was determined
based on the N2 adsorption and desorption of BJH models at 77 K. The surface morphology
of the material was analyzed by SEM (Zeiss Sigma 300, Oberkochen, Germany). The surface
composition of the material was analyzed using XPS (K-AlpHa, Thermo Scientific, Waltham,
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MA, USA). The initial binding energy of the XPS spectrum was corrected based on the
C1s peak at 284.8 eV, and the energy spectrum was analyzed using XPS-peak fit software
(V.4.1, USA). The crystal type of the material was qualitatively analyzed by XRD (X’Pert’3
Powder, Panalytical, Almelo, The Netherlands). The test conditions of the instrument were
as follows: the X-ray source was Cu target Kα rays (λ = 0.154056 nm), with a scanning
range of 10–80◦ at a scanning rate of 5◦ min−1.

2.6. Kinetic Modelings

The degradation of TCE followed the pseudo-first-order reaction kinetics (Equation (1))

y = Ae−ksat (1)

where ksa (L/(m2·h)) refers to the pseudo-first-order reaction-rate constant, y (mg/L) repre-
sents the TCE concentration of headspace sampling in the crimp-top vial, t (h) represents
the reaction time, and A (mg/L) represents the initial TCE concentration.

2.7. Analytical Methods

Concentrations of TCE and its degradation products were measured by a GC (Agilent
7890B, Santa Clara, CA, USA) equipped with a flame ionization detector (FID). The capillary
column was a GS-Q, 30 m long with a 0.53 mm diameter. The inlet temperature was 200 ◦C,
the detector temperature was 230 ◦C, the injection volume was 100 µL, and the injection
port split ratio was 10:1. The initial column oven temperature was 50 ◦C, maintained for
7 min, then increased to 230 ◦C at a heating rate of 20 ◦C/min for 10 min. During this
process, TCE and its degradation products in the samples were separated.

The concentration of H2 was measured by a gas chromatograph (FULI-9790, Taizhou,
China) equipped with a thermal conductive detector (TCD). A TXD-01 packed column
(3 mm × 2 m, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences,
Lanzhou, China) was used, with Ar as the carrier gas. The inlet temperature was 140 ◦C,
the column oven was 60 ◦C, the detector temperature was 140 ◦C, and the injection volume
was 100 µL. Since H2 solubility in water is negligible, H2 in the reaction-vial headspace
was the total H2 produced during the reaction.

3. Results and Discussion
3.1. Materials Characterization

Figure 1 shows the surface morphology of nZVI and S-nZVI materials with different
Fe/S molar ratios. Figure 1a shows spherical nZVI particles with relatively uniform sizes
(50–200 nm) that aggregate into chains due to electrostatic and magnetic forces. The S-nZVI
contained spherical and amorphous structures as shown in Figure 1b–e. By comparing
S-nZVI materials with different Fe/S ratios, the spherical structure continuously decreased,
and the main structure gradually changed from a relatively regular sphere to an irregular
amorphous structure as sulfur was added. These changes illustrated that sulfidation
increased material dispersion and improved its specific surface area, which could be related
to the formation of an FeSx layer on the nZVI surface.

Figure 2 shows XRD spectra of nZVI and S-nZVI with different Fe/S ratios. The
characteristic diffraction peaks at 2θ = 44.6◦ and 65.0◦ corresponded to the (110) and
(200) faces of Fe(0) (PDF#00-006-0696), respectively. On the other hand, there was no
obvious iron-oxide peak, which indicated that the degree of oxidation was relatively light
during the preparation and preservation of the material. Additionally, S-nZVI had a strong
diffraction peak at the same position, which indicated high crystallinity Fe(0) in S-nZVI, and
that sulfur introduction promoted the formation of Fe(0) crystals, and the peak intensity
increased with the increase of Fe/S ratio.
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The pore structure and size of different materials were analyzed to explore surface-
structure differences among nZVI and S-nZVI materials with different Fe/S ratios. As
shown in Table 1, the specific surface area of nZVI was 8.76 m2/g, and the specific surface
areas of S-nZVI with different Fe/S ratios (2.5, 5, 7.5, and 10) were 95.66, 53.52, 57.60, and
27.11 m2/g, respectively. The specific surface area and pore volume increased with added
sulfur, perhaps due to the presence of FeSx, which inhibited material agglomeration and
increased the surface roughness and surface area. For Fe/S = 5 and 2.5, the average pore
size and volume both increased significantly. This might be due to increased FeSx; the
amorphous structure became the primary structure, which resulted in larger pore size
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and volume. This conclusion agreed with SEM image data. These results indicated the
Fe/S ratio significantly impacted the pore size and characteristics of S-nZVI as well as its
reaction activity.

Table 1. Pore-structure parameters of nZVI and S-nZVI materials with different Fe/S ratios.

Sample SBET (m2/g) Daverage (nm) V total (cm3/g)

nZVI 8.76 3.41 0.01
S-nZVI (Fe/S = 10) 27.11 3.82 0.05
S-nZVI (Fe/S = 7.5) 57.60 3.41 0.12
S-nZVI (Fe/S = 5) 53.52 22.17 0.31

S-nZVI (Fe/S = 2.5) 95.66 18.91 0.48

XPS analysis determined the elemental composition and valence information on the
material surface. Fe 2p peak fitting (Figure 3a) yielded binding energies for Fe 2p 3/2,
Fe(III), Fe(II), and Fe(0) at 711.0, 709.0, and 706.7 eV, respectively, while Fe 2p 1/2, Fe(III),
Fe(II), and Fe(0) had binding energies of 724.8, 722.8, and 719.8 eV, respectively. Shoulder
peaks for Fe(III) and Fe(II) came at 718.9 and 733.4 eV, and 714.6 and 729.5 eV, respectively.
Additionally, no obvious elemental-iron peaks were observed because the XPS analysis
determined the nanomaterial components on the surface. Fitting data revealed the S-nZVI
surface was covered by iron sulfide, so the ZVI content was not detected. As shown
in Figure 3c, the one-step sulfidation of nZVI showed a drop in the Fe(III) content with
additional sulfur, while levels of Fe(II) remained steady. Peak fitting of S 2p in the material
is shown in Figure 3b, in which the binding energies of monosulfide (S2−), disulfide (S2

2−),
and sulfate (SO4

2−) were 161.5, 162.2, and 168.5 eV, respectively. As shown in Figure 3d, S
in S-nZVI mainly existed as S2−, S2

2−, or SO4
2−. With added sulfur, S2− levels decreased,

and the content of S2
2− increased, possibly due to excessive sulfur (from sodium sulfide)

that reduced to S2
2−, and the electron-transfer utilization of FeS2 was much smaller than

FeS [29], so the generation of excessive S2
2− reduced its electron-transfer efficiency and

reduced dechlorination of S-nZVI on TCE.
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3.2. Performance of TCE Degradation

Figure 4 shows the performances of nZVI and S-nZVI materials with different Fe/S
ratios (Fe/S = 2.5, 5, 7.5, and 10) in TCE degradation. As shown in Figure 4a, the 24 h
TCE-removal efficiency of nZVI was 30.2%, while that of S-nZVI (Fe/S = 10) exceeded
92.6%, which indicated that nZVI did not degrade TCE, while the dechlorination of S-nZVI
improved significantly. Meanwhile, the removal efficiency of TCE increased as the Fe/S
molar ratio increased. To confirm whether Fe (not S) degraded TCE in S-nZVI, Na2S was
mixed with TCE to monitor its degradation effect. As shown in Figure 4a, Na2S did not
degrade TCE. A quantitative test of H2 in the crimp-top vial was performed (Figure 4b)
to explore how much Fe(0) was used for H2 evolution. That test indicated that the side
reaction of H2 evolution consumed 77.0% of the initial Fe(0) in nZVI. However, only 12.8%
of the initial Fe(0) was consumed for H2 evolution in the S-nZVI at an Fe/S ratio of 10. This
indicated that sulfidation greatly inhibited side reactions so that a large amount of Fe(0)
could react fully with TCE. Some researchers reported that H2 evolution mainly occurred in
the iron oxide layer rather than the FeSx layer, while the main reaction site for TCE occurred
in the FeSx layer [30,31]. Since the FeSx layer had strong electrical conductivity [32], electron
transfer from the surface of the FeSx layer was used for TCE degradation. This was the
reason S-nZVI simultaneously suppressed H2 evolution and promoted TCE degradation.
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3.3. Kinetics of TCE Degradation

An evaluation of degradation rate constants for nZVI and S-nZVI materials was
conducted and is shown in Figure 5. Rate constants were obtained by fitting the 24 h
removal-efficiency curve for TCE using pseudo-first-order kinetics. As shown in Figure 5,
the incorporation of sulfur into nZVI greatly increased the degradation rate constant,
which was likely due to the FeS shell of S-nZVI improving electron-transfer efficiency.
The degradation activity of S-nZVI maximized for Fe/S = 10, with a rate constant of
0.117 L/(m2·h). However, when the Fe/S molar ratio varied between 2.5–10, the rate
constant for S-nZVI materials changed slightly. This may be related to excess Fe(0) in the
S-nZVI system, where the initial TCE concentration was as low as 10 ppm.
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3.4. Mechanism of TCE Degradation

As shown in Figure 6, toxic products such as DCEs and VC were not detected in
either neat nZVI or S-nZVI. Moreover, both materials primarily produced ethylene, which
confirmed that TCE degradation followed a β-elimination mechanistic pathway with
acetylene as the intermediate. In this work, primary products of TCE degradation such
as acetylene, ethylene, and ethane were measured and are shown in Figure 6. Compared
with the neat nZVI, a small amount of acetylene was detected with the S-nZVI, which
indicated that sulfidated modification of nZVI enhanced the conversion of TEC to form
acetylene. Moreover, the ethylene produced using S-nZVI was 11.3 times greater than nZVI,
which confirmed that sulfidated modification enhanced the reactivity of each step during
TCE degradation.
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Overall, dechlorination of TCE occurred via β-elimination through chloroacetylene,
followed by hydrogenolysis of chloroacetylene to acetylene, which agreed with previous
reports [23,33]. A larger dose of S-nZVI produced ethylene and ethane via hydrogenation
of acetylene, and may generate C3-C6 hydrocarbons via the polymerization of acetylene
(Figure 7).
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4. Conclusions

This study found that sulfidation significantly improved TCE dechlorination via nZVI.
XRD and XPS results illustrated that sulfidation caused the material to store more Fe(0),
and Fe(0) increased with the decreasing sulfur ratio (Fe/S ≤ 10). The 24 h TCE-removal
efficiency of S-nZVI with an Fe/S ratio of 10 increased from 30.2% to 92.6% compared to
nZVI. This was attributed to a reduction in H2 evolution from nZVI after sulfidation. At an
Fe/S molar ratio of 10, Fe(0) consumed by H2 evolution was only 12.8%, which suggested
a large amount of reactive Fe(0) was available to react with TCE. Compared with nZVI,
the pseudo-first-order kinetic rate constants of S-nZVI materials increased significantly.
Additionally, the reaction of TCE degradation by S-nZVI was explored. Acetylene was
the intermediate product, followed by the production of ethylene and ethane. C3–C6
hydrocarbons may be generated via the polymerization of acetylene. Overall, this work
provides insights into developing green and environmentally friendly technologies to
remediate chlorinated organic compound-contaminated groundwater and protect them
from secondary pollution as well as potential health risks in groundwater utilization.
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