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Moving electrons interactingwith media can give rise to electromagnetic radiations and has been emerged as a promising platform
for particle detection, spectroscopies, and free-electron lasers. In this letter, we investigate the Smith-Purcell radiation from helical
metagratings, chiral structures similar to deoxyribonucleic acid (DNA), in order to understand the interplay between electrons,
photons, and object chirality. Spiral field patterns can be generated while introducing a gradient azimuthal phase distribution
to the induced electric dipole array at the cylindrical interface. Experimental measurements show efficient control over angular
momentum of the radiated field at microwave regime, utilizing a phased electromagnetic dipole array to mimic moving charged
particles. The angular momentum of the radiated wave is determined solely by the handedness of the helical structure, and it thus
serves as a potential candidate for the detection of chiral objects. Our findings not only pave a way for design of orbital angular
momentum free-electron lasers but also provide a platform to study the interplay between swift electrons with chiral objects.

1. Introduction

Angular momentum including spin and orbital angular
momentum is a fundamental physical quantity in both
classical and quantum physics. The spin angular momentum
of light is associated with light polarization, experimentally
demonstrated by Beth in 1935 [1], while, until 1992, light
carrying orbital angular momentum called optical vortices
was firstly investigated by Allen [2] and soon verified exper-
imentally [3]. Since then, various studies on optical vortices
have been reported. Special characteristics of optical vortices
have attracted plenty of interests from many communities,
such as optical tweezers, optical communications, biology
microscopy, and so forth [4–6]. Owing to the fascinating
properties and wide applications, generating optical vortices
has been under intense study and various schemes have been
proposed such as spiral phase plate [7], computer generated

holograms (CGH) [8], metamaterials/metasurfaces [9–12],
and spoof plasmonics [13–15]. Recently, a new approach
which is able to produce vortices based on radiation emission
in extremeultraviolet (XUV) evenX-ray fromelectron vortex
beams has developed rapidly [16, 17]. Electron vortices have
also been explored as detectors of chirality in crystals [18] and
molecules [19]. Common schemes of electron vortex beams
use spiral phase plates [20–22] or interaction of the e-beam in
free-electron lasers (FELs) to the magnetic field of the helical
undulator [23–27]

Electron plays a significant role in physics. In particular,
swift electrons carry the evanescent field, which can generate
far-field radiation when the electrons interact with materials
[28]. For example, Cherenkov radiation [29, 30] is emitted
when the speed of an electron is greater than that of light
in the background medium. Especially, due to the emer-
gence of negative-index metamaterials, reversed Cherenkov

AAAS
Research
Volume 2019, Article ID 3806132, 8 pages
https://doi.org/10.34133/2019/3806132

https://doi.org/10.34133/2019/3806132


2 Research

z
y

x

Figure 1: Schematic of spiral field generation in Smith-Purcell radiation with a swift electron passing through a helical metagrating.

radiation has been proposed and experimentally observed
[31, 32]. Unlike Cherenkov radiation, Smith-Purcell radiation
is generated from the induced current varying in space and
time when charges moving near the periodically deformed
surface [33, 34]. Recently, the study of Smith-Purcell radiation
was extended beyond the simple periodic structure, into ape-
riodic arrays [35], disordered plasmonic arrays [36, 37], and
Babinetmetasurfaces [38–40] formanipulation on the Smith-
Purcell radiation polarization, beyond the simple periodic
structure. However, to the best of our knowledge, few works
discuss how to introduce angular momentum into the Smith-
Purcell radiation so far.

In this letter, we propose a new method to generate
angular momentum in Smith-Purcell radiation when a swift
electron passes through a helical metagrating. Semitheoret-
ical analysis of the spiral field generation in Smith-Purcell
radiation from a helical metagrating is performed. The
intrinsically nonradiative energy bound at the source current
sheet is coupled to an electric dipole with an azimuthal phase
factor exp(𝑖𝑙𝜑) when swift electrons pass through the helical
metagrating. Here, the angular momentum l is an integer of
two possible values (±1). Subsequently, a circular waveguide
filling with dielectric is designed to model moving electrons,
which enables the verification of the spiral field generation
in Smith-Purcell radiation in the microwave regime. Based
on the Smith-Purcell emission [34], our results may find
applications in tunable and high power terahertz sources,
particle detectors, electron-assisted spectroscopy of chiral
matters, and other novel photonic devices.

2. Results and Discussion

The schematic of spiral field generation in Smith-Purcell
radiation is illustrated in Figure 1.We consider a swift electron
with charge q, moving with velocity V̂0 = �̂�V0 = �̂�𝛽𝑐 through a
helical metagrating, where c is the speed of light in free space
and 𝛽 is velocity divided by the speed of light (𝛽 = v0/𝑐).
When the electron beam moves along the center of helical

metagrating, the induced current on the metallic surface
will generate spiral field Smith-Purcell radiation if the helix
pitch is properly designed. Next, we investigate the necessary
conditions to design the helical metagrating. Space-time
dependence of current densities is described as 𝐽(𝑟, 𝑡) =�̂�𝑞V0𝛿(𝑥)𝛿(𝑦)𝛿(𝑧− V𝑡), in which an electron goes through the
origin at t = 0. After transforming to the frequency domain,
we obtain

𝐽 (𝑟, 𝜔) = 1
2𝜋 ∫𝑑𝑡𝐽 (𝑟, 𝑡) 𝑒𝑖𝜔𝑡 = �̂�𝐼0𝑒𝑖𝑘𝑧𝑧 (1)

where 𝑘𝑧 = 𝜔/V0 = 𝜔/𝛽𝑐 and 𝐼0 = 𝑞/2𝜋. In outer space of
the helical metagrating, the radiated field can be described in
terms of Floquet modes as

𝐸𝑟 = ∑
𝑚

𝐸𝑚𝑒𝑖(𝑘𝑧+2𝑚𝜋/𝑝)𝑧+𝑖𝑘𝜌𝑚𝜌𝑒𝑖𝑙𝜑 (2)

Here, 𝑘𝜌𝑚 = √𝑘20 − (𝑘𝑧 + 2𝑚𝜋/𝑝)2 is wave number in 𝜌
direction, p is the helix pitch in z-direction and 𝑝 < 𝜆0,
and 𝐸𝑚 is electric field vector of each diffraction order. To
guarantee 𝑘2𝜌𝑚 > 0, the necessary condition for Smith-Purcell
radiation

𝑝
|𝑚| (

1
𝛽 − 1) ≤ 𝜆0 ≤ 𝑝

|𝑚| (
1
𝛽 + 1) , with 𝑚 < 0. (3)

For simplicity, we assume 𝑘𝑧 = 0 and the helix pitch is
designed as 𝑝 = −𝑚𝛽𝜆0, and the radiated wave propagates
only along the 𝜌 direction (in the xy-plane). Compared with
the OAM beams in conventional optical vortex generators,
the radiated propagation direction of the spiral field from
Smith-Purcell radiation is perpendicular to themoving direc-
tion of electrons (i.e., the x-y plane in Figure 1).

A proof-of-concept helical metagrating for spiral field
generation in Smith-Purcell radiation is designed in the
terahertz regime. The diameter of the helical metagrating is
D = 10 um, the helix pitch is p = 25 um, and the gap is
g = 2.5 um. Gold is chosen as the metallic material with
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Figure 2: Simulation results of Ez field distributions of the spiral field Smith-Purcell radiation with the angular momentum l = ∓1. (a) and
(c) Radiated Ez field distribution at z = 0 (a) and the corresponding phase distribution for l = -1 (c). (b) and (d) Radiated Ez field distribution
at z = 0 (b) and the corresponding phase distribution for l = +1 (d). The working frequency is 1.5 THz.

a conductivity of 4 × 107 S/m and a thickness of 0.1 um.
Full-wave simulations have been performed in commercial
software, COMSOL MULTIPHYSICS. In the simulation, a
swift electron moves along the +z direction in the center of
the helical metagrating. We set the electron velocity as V0 =𝛽𝑐 = 𝑐/8, and the current density as 𝐼0 = 1 𝐴/𝑚.The periodic
boundary condition is imposed in the z-direction. Under
these conditions, the spiral field Smith-Purcell radiation at
1.5 THz propagates along 𝜌 direction when 𝑘𝑧 = 0. All
field images are xy-plane snapshots of electric fields at the
position of z = 0. When the swift electron passes through
a left-handed helical metagrating, spiral field Smith-Purcell
radiation is generated with the angular momentum l = -1. Ez
field distribution and its phase response are plotted in Figures
2(a) and 2(c). On the contrary, for right-handed helical
metagrating, the angular momentum is l = +1, as shown in
Figures 2(b) and 2(d). Furthermore, the phase changes at
the xy-plane equal to 2𝜋, in agreement with the theoretical
prediction.

In this section, the underlying physical mechanism is
further discussed by adopting a semianalytical analysis.
When a swift electron moves through a helical metagrating,
the induced current distribution on the metal surface can
be modeled as an electric dipole array with an azimuthal
phase factor exp(𝑖𝑙𝜑). Each unit cell is considered as an
equivalent electric dipole with an azimuthal factor as shown
in Figure 3(a). The current density 𝐽𝑛(𝑟, 𝜙) of the n-th z-
direction Hertzian dipole located at the origin is

𝐽𝑛 (𝑟, 𝜙) = �̂�𝐼𝑙𝛿 (𝑟) 𝑒𝑖𝑙𝜙 (4)

The electric field due to the Hertzian dipole is calculated by
utilizing Green’s function

𝐸𝑛 (𝑟, 𝜙) = 𝑖𝜔𝜇 [𝐼 + 1
𝑘2∇∇]

⋅∭𝑑𝑟 𝑒𝑖𝑘|𝑟−𝑟|
4𝜋 𝑟 − 𝑟

𝐽𝑛 (𝑟, 𝜙)

= 𝑖𝜔𝜇 [𝐼 + 1
𝑘2∇∇] ⋅

𝑒𝑖𝑘𝑟
4𝜋𝑟𝑓 (𝜃, 𝜙)

(5)

where 𝑓(𝜃, 𝜙) = ∭𝑑𝑟𝐽𝑛(𝑟, 𝜙)𝑒−𝑖𝑘⋅𝑟 = �̂�𝐼𝑙𝛿(𝑟)𝑒𝑖𝑙𝜙 =
(𝑟 cos 𝜃 − 𝜃 sin 𝜃)𝐼𝑙𝑒𝑖𝑙𝜙. When 𝑘𝑟 ≫ 1, the electric field
distribution is expanded as

𝐸𝑛 (𝑟, 𝜙) = 𝑖𝜔𝜇 [𝐼 − 𝑟𝑟] ⋅ 𝑒
𝑖𝑘𝑟

4𝜋𝑟𝑓 (𝜃, 𝜙)

= −𝜃𝑖𝜔𝜇𝐼𝑙 𝑒𝑖𝑘𝑟4𝜋𝑟 sin 𝜃𝑒𝑖𝑙𝜙
(6)

The electric field distribution in transverse xy-plane at z = 0
can be viewed as a superposition of arrayed electric dipoles
as

𝐸𝑡𝑜𝑡𝑎𝑙 (𝑟, 𝜙) =
∞∑
𝑛=−∞

𝐸𝑛 (𝑟, 𝜙) = −�̂� (𝐴 𝑒𝑖𝑘𝑟
4𝜋𝑟𝑒𝑖𝑙𝜙) (7)

where A is amplitude. Numerical results obtained from (7)
show the same spiral pattern as those in simulation (Figure 2).
Electric field and phase distributions for the left-handed
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Figure 3: Theoretical equivalent model of the helical metagrating and the calculated radiation fields. (a) Equivalent electric dipole array of
the spiral field Smith-Purcell radiation for the left-handed helical metagrating. (b) Calculated Ez field distribution and the (c) corresponding
phase distribution at 1.5 THz.

helical metagrating are plotted in Figures 3(b)-3(c). A clear
spiral pattern is generated with a phase accumulation of -2𝜋
in the 𝜙 direction, indicating an angular momentum of l = -1.
The existence of complex-valued solutions was discussed by
Mittra [41]. More details can be found in the Supplementary
Information (available here).

Experiment is performed to verify the spiral field gen-
eration in Smith-Purcell radiation in the microwave regime.
A guided wave in the circular waveguide is utilized to
mimic the field generated by moving electron beams. There
are several principles to design the waveguide mode. First,
TM01 is chosen because of its radial diverging electric field
and azimuthally symmetric magnetic field loops. The field
patterns are similar to those of a moving electron. Then
the circular waveguide is filled with a dielectric to increase
the propagating constant and thus excite evanescent waves
at the boundary to mimic the moving electron. The details
can be found in the Supplementary Information. Second, a
monocone antenna is designed to excite second dominant
TM01 mode while blocking first dominant TE11 mode and all
other highermodes in the circular waveguide.Themonocone
antenna (Figure 4(a)) at the input of circular waveguide
acts as a TM01 mode transducer. A 50Ω coaxial connector
is used to feed the power. The dimensions are optimized
to achieve maximum conversion efficiency and bandwidth.
The optimized geometries of the TM01 mode transducer are
l1 = 7 mm, l2 = 5 mm, and d = 12 mm. The radius of
the circular waveguide is R = 15mm. Full-wave simulations

(CST Microwave Studio) have been performed to evaluate
the efficiency of TM01 transducer. The electric, magnetic
lines and S-parameters of the monocone transducer are
illustrated in Figures 4(b) and 4(c), respectively. Conversion
efficiency is larger than -0.5 dB over 9.1-11.9 GHz and the
reflection coefficient is smaller -10 dB over 9.4-11.5 GHz. The
measured transmission and reflection coefficients are plotted
in Figure 4(c), in good agreement with simulated results.

Thedesigned two spiral field Smith-Purcell radiation gen-
erators are shown in Figure 5(a). Each generator consists of a
helical metagrating at the boundary, a monocone transducer
at the bottom and the dielectric filler. The distance between
the monocone transducer and the first helical unit is 110mm,
in order to reduce the direct coupling between monocone
transducer and helical structures. The optimized gap size of
the helical metagrating is g = 3 mm, with width w = 1 mm
and helix pitch p = 15mm and these parameters are different
values in microwave regime from these in terahertz. FR4 is
selected as the dielectric filler with the relative permittivity
of 4.5 and the loss tangent of 0.025. Full-wave simulations
(CST Microwave Studio) have been performed to verify the
spiral field generation in Smith-Purcell radiation. For the
left-handed generator, the Ez field distribution and its phase
response are plotted in Figures 5(b) and 5(d) corresponding
to the angular momentum l = -1. At the meantime, for the
right-handed one, spiral pattern is generated in the opposite
direction as illustrate in Figures 5(c) and 5(e), corresponding
to the angular momentum l=+1. As expected, the verification
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Figure 4: Designer TM01 mode transducer and S-parameters. (a) Schematic of a monocone antenna transducer. (b) Field pattern of the TM01
mode in the circular waveguide. (c) Simulated and measured S-parameters.
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Figure 5: Spiral field Smith-Purcell radiation generators and simulation results. (a) Schematic of two spiral field Smith-Purcell radiation
generators of opposite handedness. (b) Scattered Ez field distribution and (d) phase distribution for the left-handed generator. (c) Scattered
Ez field distribution and (e) phase distribution for the right-handed generator.The working frequency is 10 GHz.

of the spiral field Smith-Purcell radiation in the microwave
regime agrees well with the real electron case.

To experimentally demonstrate the spiral field genera-
tion in Smith-Purcell behavior, the helical metagratings and
monocone transducer have been fabricated by laser beam

cutting technology. Figure 6(a) shows the photograph of the
samples, with the same size as the simulated ones. The field
distributions have been measured in an anechoic chamber.
The experimental setup includes an Agilent Network Ana-
lyzer and a two-dimensional near-field scanning platform.
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Figure 6: Fabricated spiral field Smith-Purcell generators and the measured results. (a) Photograph of the helical metagratings and the
monocone transducer. (b) Measured radiated Ez field distribution and (d) phase distribution for the left-handed generator. (c) Measured
radiated Ez field distribution and (e) phase distribution for the right-handed generator.The working frequency is 10 GHz.

The scanning area is 250 mm × 250 mm and the probe
position at center of helical metagrating plane is automati-
cally controlled by an electric motor and a software program.
The measured radiated Ez electric field distributions for the
two helical metagratings are plotted in Figures 6(b) and
6(c), respectively. Their corresponding phase distributions
are plotted in Figures 6(d) and 6(e). One can observe opposite
the spiral radiated field with angular momenta (l = ±1). As
expected, the measured results agree well with the theoretical
prediction and the spiral field generation in Smith-Purcell
radiation is demonstrated in the microwave regime using
circular waveguides.

3. Conclusions and Outlook

In conclusion, the interaction between swift electrons and
helical metagratings have been proposed and experimen-
tally verified. Spiral field patterns are generated in Smith-
Purcell radiation when moving electrons pass through the
helical metagratings. The angular momentum direction of
the spiral field Smith-Purcell radiation is only dependent
on the helicity of metagratings. Semitheoretical analysis of
the spiral field generation in Smith-Purcell radiation from
a helical metagrating is also performed. The intrinsically
nonradiative energy bound at the source current sheet is
coupled to the electric dipole with an azimuthal phase factor
when swift electrons pass through the helical metagrating.
Subsequently, two generators for controlling over spiral

field Smith-Purcell radiation have been constructed by a
combination of helical metagratings, a monocone transducer
and dielectric fillers. Measured field patterns from near-
field scanning platform verify the theoretical predictions on
spiral field Smith-Purcell radiation in the microwave regime.
These findings may provide an approach to understand the
interplays between electrons, photons, and chiral objects. Our
work can significantly promote the advance in novel electron
microscopy techniques and electron-beam-based photonic
technologies as well as the emerging area of photonic spin-
orbit interactions.
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