
MINI REVIEW
published: 19 August 2015

doi: 10.3389/fmicb.2015.00788

Edited by:
Venkata S. R. Atluri,

Florida International University, USA

Reviewed by:
Andrea D. Raymond,

Florida International University, USA
Ankit Shah,

University of Missouri - Kansas City,
USA

*Correspondence:
Pravin C. Singhal,

Feinstein Institute for Medical
Research, Hofstra North Shore LIJ

School of Medicine, 100 community
Drive Great Neck, NY11021

New York, NY, USA
psinghal@nshs.edu

Specialty section:
This article was submitted to

Virology,
a section of the journal

Frontiers in Microbiology

Received: 30 April 2015
Accepted: 20 July 2015

Published: 19 August 2015

Citation:
Chandel N, Malhotra A and Singhal
PC (2015) Vitamin D receptor and

epigenetics in HIV infection and drug
abuse.

Front. Microbiol. 6:788.
doi: 10.3389/fmicb.2015.00788

Vitamin D receptor and epigenetics in
HIV infection and drug abuse
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Illicit drug abuse is highly prevalent and serves as a powerful co-factor for HIV
exacerbation. Epigenetic alterations in drug abuse and HIV infection determine
expression of several critical genes such as vitamin D receptor (VDR), which participates
in proliferation, differentiation, cell death under both physiological and pathological
conditions. On that account, active vitamin D, the ligand of VDR, is used as an
adjuvant therapy to control infection, slow down progression of chronic kidney diseases,
and cancer chemotherapy. Interestingly, vitamin D may not be able to augment VDR
expression optimally in several instances where epigenetic contributes to down regulation
of VDR; however, reversal of epigenetic corruption either by demethylating agents (DACs)
or histone deacetylase (HDAC) inhibitors would be able to maximize expression of VDR
in these instances.

Keywords: vitamin D receptor, vitaimin D, HIV, opioids, alcoholism, epigenetics, gene expression regulation,
cocaine

Introduction

Drug abuse is an important public health problem in the United States, affecting both the user and
their families. Drug abuse and addiction not only cost the United States over six billion annually
in health care but are also associated with loss of productivity due to associated factors (NIDA,
2008). Illicit drug abuse is considered the second most common cause of human immunodeficiency
virus type 1 (HIV-1) infection (Pandhare, 2011). Drugs of abuse such as opioids are known to
produce numerous physical abnormalities, including addiction, physical dependence, withdrawal,
imbalance in the Th1 pro-inflammatory and Th2 anti-inflammatory cytokines, organ damage, and
epigenetic changes (Cabral, 2006; Renthal and Nestler, 2009; Wang et al., 2011). Prevalence of drug
abuse is common in individuals who have experienced a stressful life and epigenetic modifications
(Cadet, 2014). Epigenetics is the heritable and reversible change in gene transcription that doesn’t
change DNA sequences. There are two most commonly studied epigenetic alterations, histone
acetylation and DNA/histone methylation (Robertson, 2005; Renthal and Nestler, 2009). One of
the primary components of epigenetics is chromatin accessibility [open (euchromatin, uncoiled,
active, or permissive) or closed (heterochromatin, coiled, inactive, or restrictive)]. Chromatin and
its components are nucleosomes and histones, which are involved in DNA condensation and are
critically important in gene regulatory control and their expression (Takizawa, 2008; Bergman and
Cedar, 2009; Robison and Nestler, 2011). Epigenetic mechanisms reversibly modulate the structure
of chromatin, thereby controlling the expression of genes such as vitamin D receptor (VDR).

Vitamin D receptor and Epigenetics

Vitamin D (Vit D, 1, 25-α [OH]2D3) is the hormone synthesized in the skin following to sun
exposure while vitamin D2 is a synthetic form and often found in fortified food. To become
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FIGURE 1 | VDR gene structure and regulation VDR target genes. (A)
The genomic structure of the VDR gene on chromosome 12q13. The VDR
gene spanning the 14 exons of the VDR gene. (B) Vit D binds VDR in the
cytosol facilitating its translocation into the nucleus, followed by
heterodimerization with RXR. VDR-RXR complex binds to vitamin D response
elements (VDREs) on target genes leading to formation of either coactivator
(with liganded VDR) or repressor (with unliganded VDR) complexes.

biologically active (1, 25-α [OH]2D3), the vitamin D undergoes a
series of enzymatic conversions in the liver and kidneys (Koren,
2006). Vit D works through its receptor- VDR- which spans
11 exons on the reverse strand of chromosome 12q12-q14 and
carries a large non-coding region containing exons 1F-1C and
exon 2-9 and encoding a protein comprised of 424-amino acids
(Figure 1A; Uitterlinden et al., 2004a,b). VDR is a member of the
nuclear receptor (NR) family of transcription factors (Germain
et al., 2006; Norman, 2007). Actions of NRs use cyclical gene
regulation in which transcription factors oscillate between on
and off states (Germain et al., 2006). VDR differs from these
classical NRs by being located in the nucleus even in the absence
of its ligand (1, 25-α [OH]2D3) (Klopot et al., 2007; Cantorna
and Waddell, 2014; Singh et al., 2015); however, the presence
or absence of VDR ligand determines whether it will recruit
activator or repressor complexes (Tagami et al., 1998; Singh et al.,
2015). VDR heterodimerizes with Retinoid X Receptor (RXR)
and forms VDR-RXR complex, which recruits either repressor
or activator complexes depending on its unliganded or liganded
status (Figure 1B; Prufer et al., 2000; Pike et al., 2012; Singh et al.,
2015). VDR ligand status modulates proteosomal degradation as
well as regional chromatin profile through enzymatic control of
histone modifications (Goldberg et al., 2007; Peleg and Nguyen,
2010; Kongsbak et al., 2013).

VDR expression in unstimulated T cells is controversial,
whereas activated T cells show robust expression (Provvedini and
Manolagas, 1989; Palmer et al., 2011; Joseph et al., 2012). VDR
also modulates the immune response via balancing Th1 /IL17
axis and Th2/Tregs axis (von Essen et al., 2010; Cantorna and
Waddell, 2014). Liganded VDR acts as negative regulator of renin
(Li, 2003; Salhan et al., 2012), which generates angiotensin (Ang)
II, a hall mark of Vit D deficient state (Chandel et al., 2013b).
Ang II is a vasoactive agent and is known to induce oxidative
stress in a variety of cells, including T lymphocytes (Shah et al.,

FIGURE 2 | HIV-1 and drugs of abuse induced epigenetic Changes.
Cells exposed to HIV-1 and drugs of abuse lead to similar epigenetic
modifications. Drug and HIV milieus promote pro-inflammatory environment
and induce epigenetic changes at the histone/DNA levels. Alcohol induces
histone H3 and H4 acetylation. In contrast, morphine can lead to HDAC1 and
HDAC2 recruitment to the histones preventing gene transcription. Morphine
can cause epigenetic changes at the DNA level potentially resulting in
increases in DMNT (DNA methyltransferase) recruitment to the DNA, leading
to CpG methylation, which would prevent specific gene expression. *HDACs
(histone deacetylases); **H3 and H4 (histone fractions); ***Me (methyl group).

2010; Chandel et al., 2012, 2013a; Rehman et al., 2013; Rai et al.,
2015).

Fetahu et al. (2014) clearly elaborated the importance of
methylation and acetylation on the regulation of VDR and other
vitamin D target genes. Vit D induces VDR histone acetylation
through histone acetyl transferase to enhance transcription of
VDR (Karlic and Varga, 2011). In two colorectal cell lines,
HCT116 and SW480, knockdownofHDAC3not only restored the
VDR expression but also preserved the sensitivity ofVDR to Vit D
(Godman et al., 2008). Vit D increases H3K27 acetylation on the
promoter of several early target genes of VDR (Seuter et al., 2013)
specially on p21 promotes in MDA-MB453 breast cancer cell line
(Saramäki et al., 2009).

DNA methylation, which is catalyzed by DNA methyl
transferases (DNMTs), is the most studied epigenetic mechanism
contributing to down regulation of gene transcription
and maintains chromatin in its inactive state through
Cytosine–Phosphate-Guanine (CpG) repetitive sequences
(Okano et al., 1998; Herman and Baylin, 2003; Wang and Leung,
2004; Robertson, 2005; Figure 2). Vit D has been demonstrated
to rescue DNA methylation in a site specific manner (Doig et al.,
2013) such as VDR promoter region in HIV milieu (Chandel
et al., 2013a). Age related CpG methylations of rectal mucosal
genes have been shown to be influenced by Vit D status (Tapp
et al., 2013). In females, plasma Vit D levels and gene-specific
methylation correlated negatively. Unlike DNA methylation,
which down regulates gene expression, histone methylation
is able to repress as well as activate the gene transcription,
depending on the site and degree of methylation (Bergman and
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Cedar, 2009). A regulatory effect between VDR and histone
demethylases has been found in colon cancer cell line, SW-480
(Pereira et al., 2012a,b). Yamane et al. (2007) showed a positive
correlation of a lysine demethylase (KDM6B) with VDR and a
negative correlation of KDM6B with Snail in patients with colon
cancer. Breast cancer cells displayed low VDR and enhanced
methylation at VDR promoter; nonetheless, treatment with
a DNMT inhibitor (5-Aza 2 -deoxycytidine) not only down
regulated DNA methylation but also restored VDR mRNA
expression (Marik et al., 2010). On the other hand, neither Vit D
nor demethylating agent (DAC) restored VDR expression either
in densely methylated VDR in choriocarcinoma trophoblastic
cell lines (JEG-3 and JAR; Novakovic et al., 2009) or in colon
cancer cells lacking VDR (Höbaus et al., 2013). Similarly,
parathyroid tumors displayed decreased VDR expression without
any alterations in methylation (Gogusev et al., 1997; Varshney
et al., 2013). Interestingly, both DACs and histone deacetylase
inhibitors (HDAC-IN) activated bone morphogenetic protein2
(BMP2, a key hormone responsible for maintenance of bone
metabolism) in combination with Vit D (Fu et al., 2013). Lin et al.
(2008) reported that methyltransferase (EZH2) may increase the
H3K27 trimethylation at VDR promoter causing the suppression
of target gene in colorectal cancer cells. Vit D is also demonstrated
to cause attenuation of methylation onWNT genes (Rawson et al.,
2012), e-cadherin (Lopes et al., 2012), and PDZ-LIM domain
containing protein 2 promoter (Vanoirbeek et al., 2014).

HIV, VDR, and Epigenetics
HIV-infected T cells have been reported to have attenuated
expression of VDR through enhanced cytosine methylation at
VDR promoter (Chandel et al., 2013a). Optimal expression of
T cell VDR expression was achieved with the use of Vit D
and a DAC (azacytidine) together. These investigators showed
that down regulation of VDR was associated with elevated
renin and Angiotensin II levels; furthermore, inhibition of VDR
methylation not only restored the VDR expression but also
provided the protection against HIV-induced T cell apoptosis
(Chandel et al., 2013a). In these studies Vit D also restricted HIV
replication in T cells. This effect of Vit D is consistent with the
hypothesis forwarded by Li (2003)—Vit D- is a negative regulator
of renin. Interestingly, renin and HIV protease are structurally
similar (Chandel et al., 2014), therefore, renin enhances HIV
replication by cleaving HIV-Gag (substrate for HIV protease;
Scharpe et al., 1991; Chandel et al., 2014) and HIV protease
increased Angiotensin I by cleaving angiotensinogen (Hyland
and Meek, 1991). In these studies, up regulation of VDR not
only inhibited HIV replication but also down regulated renin
generation in T cells (Chandel et al., 2014). In the past, aging
HIV infected patients used to have low blood pressure, partly
because of cachexia and associated intestinal parasitic infections
(Mattana et al., 1999; Hejazi et al., 2013). Currently, these patients
are developing metabolic syndrome and hypertension (Pandey
et al., 2008). However, it is not clear whether development of
hypertension in HIV infected patients is related to HIV-induced
activation of renin angiotensin system. Nonetheless, protease
inhibitors will be able to control both residual viral load as well
as blood pressure. Similarly, use of renin inhibitors or VDR

agonists will not only control blood pressure but would also slow
down HIV replication. At present, silenced HIV genomes and
the latent HIV reservoirs are major obstacles for viral eradication
strategies. Epigenetic mechanisms seem to play multiples roles
in HIV latency (Pearson et al., 2008; Taube and Peterlin, 2013),
including HIV promoter silencing, transition of activated CD4+
T-cells to resting memory CD4+ T-cells, and post-transcriptional
modifications during infection (Siliciano and Greene, 2011).

Silverstein et al. (2011); Donahue et al. (2013) highlighted the
role of methamphetamine (MA) toxicity in HIV infection. HIV
andMA aremore toxic together and both affect the same region of
brain; additionally, MA crosses through blood brain barrier easily.
These investigators showed that HIV gp120 is the main protein
which causes neurotoxicity and cell death and drugs of abuse like
morphine, cocaine and MA have the potential to interact with
gp120 and multiply its effect to many folds. Later Silverstein and
Kumar (2014) showed that both in vitro and in vivo, exposure to
alcohol and HIV proteins results in increased levels of expression
of pro-inflammatory cytokines such as interleukin-1 β and tumor
necrosis factor-α, along with increased levels of oxidative stress.

Ethanol, VDR, and Epigenetics
Alcohol abuse symptoms often have epigenetic background.
The anxiolytic effects of acute alcohol ingestion occur in
conjunction with the down-regulation of HDAC activity and
up-regulation of H3/H4 acetylation and cAMP binding protein
(CBP; Lefevre et al., 1995). HIV-infected patients are twice
likely to consume alcohol as the general population (Pandrea
et al., 2010). Chronic alcohol consumption has been found to
increase viral replication and augmentation of pro-inflammatory
cytokine production in HIV-infected patients (Rosenbloom et al.,
2010). Individuals suffering from both HIV and alcoholism
show far greater brain abnormalities compared to those afflicted
with one condition alone (Kelkar et al., 2002). D’Addario
et al. (2013) showed that binge drinking induced altera-
tions in the expression of prodynorphin and pronociceptin genes
in the rat amygdala. These authors reported increased acetylation
of histone 3 at lysine 9 (H3K9Ac) but decreased abundance of H3
trimethylation at lysine 27 (H3K27me3) residues at the promoters
of these two genes after 1 day alcohol administration. However,
5 days alcohol administration showed increased of H3K9Ac only
at the pronociceptin promoter. Qiang et al. (2011) reported that
withdrawal from chronic intermittent administration of alcohol
increased H3K9Ac at the glutamate receptor, NR2B. They also
found decreased abundance of the methyltransferases, G9a and
Suv39h1 (KMT1A), andHDAC1-3 on theNR4B promoter region.
Ethanol has also been demonstrated to induce apoptosis in T cells
through VDR down regulation (Kapasi et al., 2003; Segal and
Widom, 2009; Rehman et al., 2013).

Opiates VDR and Epigenetics
Morphine
Among all opioids, morphine has been frequently studied with
respect to its potential epigenetic effects. Various studies
highlighted the effects of HDACs in morphine induced
“conditioned place preference (CPP),” the tendency for addicted
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animals to prefer locations associated with drug administration.
Since HDAC inhibition augmented morphine-induced CPP it
suggests that HDAC activity contributes to the development of
addiction (Robinson and Kolb, 1997). A recent study showed that
morphine induced brain derived neurotrophic factor through
change of HDACs levels and increasing H3k27 trimethylation
at BDNF promoter which led to neural plasticity (Koo et al.,
2015). Morphine works through mu receptor (OPRM1) and its
expression has been modulated by MeCP2 in mice (Meaney and
Ferguson-Smith, 2010; Regan et al., 2012). In these studies, DNA
methyl transferase (Dnmt) 1 led to methylation and remodeling
of the OPRM1 promoter in various CNS regions. Lin et al. (2008)
have shown the recruitment of HDAC1/2 OPRM1 promoter and
this effect was prevented by HDAC inhibitors such as trichostatin
A. Another study demonstrated that cycloheximide activated
the murine OPRM1 gene in an epigenetic fashion and recruited
the Ac- H3 and methylated H3-K4 on the promoter (Kim et al.,
2011). Current consensus indicates that morphine induces T cell
loss (Yin et al., 2006) through VDR down regulation and Vit D
and VDR agonists carry potential to restore VDR expression and
preservation of T cell integrity (Singhal et al., 1999, 2001; Chandel
et al., 2012).

Cocaine
Cocaine induces substantial changes in brain gene expressions
(Freeman et al., 2001, 2008; Albertson et al., 2006). Levine
et al. (2005) documented a role of cAMP response element
binding (CREB) protein (CBP) in cocaine-induced acetylation
of histones by acetyl transferases at the fosB promoter (gene
responsible for addiction). Inhibition of HDACs alters behavioral
responses to drugs like cocaine. Malvaez et al. (2011) also
identified a critical role of CBP in behavioral alterations as
a consequence of cocaine-induced histone modifications and
gene expression via acetylation. He showed CBP functionality
in drug-associated memories that might have contributed to
drug addiction. Romieu et al. (2008) also showed role of HDAC
inhibitors on cocaine induced behavioral and molecular effects
including self-administration of cocaine through modulation of
acetylation. HDAC inhibitors significantly enhance locomotor
activity upon drug induction (Kumar et al., 2005; Renthal et al.,
2007). Mice deficient in the Histone Acetyl Transferase CBP have
decreased histone acetylation and display reduced sensitivity to
cocaine (Levine et al., 2005). Besides histone acetylation, cocaine
also modulates histone methylation (Maze et al., 2010). Chronic
cocaine administration modifies the histone H3 methylation
and induces long-term cocaine effects (Maze et al., 2011).
Chronic cocaine use represses histone-lysine N-methyltransferase
2 (EHMT2, also known as G9a) resulting attenuated histone
methylation globally (in the nucleus) and manifesting in the form
of altered behavioral responses. The inability of EHMT2/G9a to
regulate gene transcription following repeated cocaine ingestion
contributes to abnormal synaptic plasticity (Robinson and Kolb,
1997; Maze et al., 2010). Buch et al. (2012) have found that
cocaine can be considered as amultifactorial agent that accelerates
HIV-1 infection as well as its progression. They have shown
that cocaine further enhances the viral-induced neurotoxicity
(Sulzer et al., 2005). Schmidt et al. (2013) highlighted that the

epigenetic mechanisms including histone modification and DNA
methylation contribute to drug-induced gene expression profile.
Cocaine also increased the expression of methyl-CpG binding
protein 2 (MeCP2) and produced de novo DNA methylation
(Taniguchi et al., 2012; Kennedy et al., 2013).

Amphetamine
Amphetamine is being used to treat many ailments (Opler
et al., 2001; Thorpy, 2001). It can pass through the blood brain
barrier and raises the level of various neurotransmitters in the
brain (Torres et al., 2003; Sulzer et al., 2005; Sulzer, 2011).
Chronic administration of amphetamine induces alterations in
the acetylation status of histone 4 (Kalda et al., 2007; Shen et al.,
2008), histone methylation at H3k9 (me)2 at C-fos promoter
(Renthal et al., 2008) and DNA methylation at multiple (total
25) genes, including mPFC, OFC, and Nac (Mychasiuk et al.,
2013). Deng et al. (2010) showed that amphetamine induces
the phosphorylation of Mecp2, a gene essential for learning
and memory. Vit D provided protection against the serotonin-
depleting effect of amphetamine in the brain of animals in
the setting of repeated dosage administration. Vit D deficient
rats traveled farther in locomotion test after acute dosage
administration (Cass et al., 2006; Kesby et al., 2012). Vit D
treated animals also showed reduction in amphetamine-induced
dopamine and its metabolites when compared to control (Cass
et al., 2006). MA has also been reported to induce changes
in glutamate function through epigenetics (Cadet and Jayanthi,
2013). In another study, alterations in histone acetylation were
accompanied by decreased expression of HDAC1 but increased
expression of HDAC2 protein levels (Martin et al., 2012). Cadet
and Jayanthi (2013) provides direct evidence for epigenetic
regulation of transcriptional effects of chronic MA exposure
on glutamate receptors, which describes the potential roles of
REST, CoREST, MeCP2, HDAC1, and HDAC2 in mediating
MA-induced down regulation of GluA1, GluA2, and GluN1
transcription levels. They showed the MeCP2 and CoREST
induced recruitment of HDAC2 onto the chromatin, resulting
H4K5, K12, andK16 deacetylation and decreasedH4K5ac, K12ac,
and K16ac binding onto Glutamine11 and 2 DNA sequences.
Histone H3 methylation at the Fobs promoter after repeated
amphetamine exposure led to decreased transcription (Renthal
et al., 2008). Consistent with these results, increased expression
of the histone H3 methyltransferase JMJDs is also an after effect
of chronic amphetamine exposure (Renthal et al., 2008).

Repeated injections of marijuana also caused decreased
H3K9me2 and increased H3K4me3 at sites flanking the
proenkephalin of the rat (Tomasiewicz et al., 2012).

Conclusion and Future Direction

HIV and drugs provide an environment which is conducive to
short term and long term epigenetic modifications leading to
alterations in gene expression. Epigenetic alterations are also
dependent on use of single or multiple drugs. Since both HIV
and drugs such as morphine modulate the immune system,
environment in these scenarios is likely to be complicated by
ongoing opportunistic infections including, bacterial, viral, and
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fungal. These infections may themselves carry potential to
modulate epigenetics. Therefore, epigenetics is a complex issue in
drugs of abuse in general and specifically in the presence of HIV
infection. However, epigenetic alterations are reversible and thus
strategies can be developed to reverse them.
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